PUBLS

You are not logged in.
The electronic version is available for free only for registered users.
If you are already registered, you may log in here

PUBLS

Back to the main page   Back to the subject serie


A-21 (261) P. Senatorski, HACKED BY N0XI İLLEGALİTE.COM

Show articles/contents 

Abstract, 3

1. Introduction and synopsis, 5

1.1 Introduction, 5

1.2 Synopsis, 16

2. Dynamical systems, 18

2.1 Evolution equations, 18

2.2 Visualization, 19

2.3 Attractors - asymptotic behaviour, 20

2.4 Examples, 21

2.5 Types of a steady state behaviour, 22

2.6 Attractors and dissipative systems, 23

2.7 Informational aspect of dynamics, 24

2.8 Chaos, 28

2.9 Lyapunov exponents, 28

2.10 Bifurcations, 31

3. Crack nucleation and propagation, 32

3.1 Models of faulting, 32

3.2 Griffith´s theory, 33

3.3 Slip failure phenomenology, 34

3.4 Model of faulting, 35

4. Earthquake cycles, 44

4.1 Open boundary conditions, 44

4.2 Evolution equations, 46

4.3 Remarks, 47

5. Introduction, 48

6. Non-dimensional variables, 49

7. Results, 50

7.1 Example 1: Equilibrium slip distribution, 50

7.2 Example 2: Dislocation pile-up formation, 50

7.3 Example 3: Slip failure propagation, 51

7.4 Example 4: Barrier-asperity effect, 51

7.5 Example 5: Crack nucleation, 53

7.6 Example 6: Fault interaction, 53

7.7 Example 7: Distant faults - periodic evolution, 55

7.8 Example 8: Distant fault - chaotic evolution, 55

7.9 Example 9: Close faults - periodic evolution, 56

7.10 Example 10: Close faults - chaotic evolution, 57

8. Discussion, 57

9. Conclusion, 58

Appendix A: Energy change functional, 61

Appendix B: Theory of dislocations, 64

Appendix C: Interaction coefficients, 72

Appendix D: Adiabatic approximation, 74

References, 75

Streszczenie, 80


Back to the main page   Back to the subject serie

 
Copyright © 2005-2009 Grzegorz Kwiatek