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A b s t r a c t  

Time series clustering is an important field of data mining and can be used to identify 

interesting patterns. This study introduces a new way to obtain clusters of time series by rep-

resenting them with feature vectors that define the trend, seasonality and noise components 

of each series, in order to identify areas of the Iberian Peninsula that follow the same pattern 

of change in their maximum temperature during 1931–2009. Singular spectrum analysis de-

composition in a sequential manner is used for dimensionality reduction, which allows the 

extraction of the trend, seasonality and residual components of each time series corresponding 

to an area of the Iberian region; then, the feature vectors of the time series are obtained by 

modelling the extracted components and estimating the parameters. Finally, the series are 

clustered using a clustering algorithm, and the clusters are defined according to the centroids. 

The results identified three differentiated zones, allowing to describe how the maximum tem-

perature varied: in the north and central zones, an increase in temperature was noted over 

time, and in the south, a slight decrease, moreover different seasonal variations were noted 

according to zones. 

Keywords: clustering, maximum temperature time series, singular spectrum analysis, feature 

vectors of time series, Iberian Peninsula. 
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1. INTRODUCTION 

Climate change is a global problem that has a significant impact on society and ecosystems and 

is increasingly noticeable. In consequence, studies on climate change have become increasingly 

more important, especially those relating to temperatures, which have been increasing as stated 

in the report of the Sixth Assessment of the Intergovernmental Panel on Climate Change (IPCC) 

that reports that global mean surface temperature (GMST) has increased by 1.1 °C between the 

2001–2021 and 1850–1900 periods, after accelerating its rate after the 1970s (IPCC 2021). 

Moreover, in the very near future, 2020–2050, GMST can warm up as much as 0.25 °C per 

decade, according to some climate model predictions (Samset et al. 2020; Tebaldi et al. 2021).  

Although these numbers may seem low, the changes and effects are really remarkable, as 

manifested by global warming, prolonged droughts, heat waves and forest fires. In Europe and 

the Iberian Peninsula (IP) have been experiencing these conditions in the last years (Kuglitsch 

et al. 2010; Russo et al. 2015; Molina et al. 2020; Calheiros et al. 2021) and according to some 

climate predictions, is expected these conditions continue for the foreseeable future (IPCC 

2014; King and Karoly 2017; Dosio et al. 2018; Vicedo-Cabrera et al. 2018).  

Analysis of the temperature changes experienced by the IP, as well as the projections that 

have arisen around this issue will be a more manageable process if studies that define these 

changes by zones or sub-regions are include and if analysis that take into account temperature 

extremes are considered, which tell us about unusual changes (Gebremichael et al. 2022). 

A way to define the extreme temperature changes experienced by a geographical area for 

sub-region is by obtaining time series (TS) clusters of these temperatures defined in points or 

areas distributed over the geographical area, since; TS clustering is used to identify interesting 

patterns in TS data sets. There are mainly three categories or approaches to TS clustering (War-

ren Liao 2005; Rani and Sikka 2012; Aghabozorgi et al. 2015; Ergüner Özkoç 2021), depending 

on whether they work directly with raw data, indirectly with features or characteristics extracted 

from the raw data, or indirectly with models built from raw data. 

This study is framed within the clustering of TS based on the approach of extracting features 

from data and proposes a procedure to cluster TS by their trend, seasonality, and main autocor-

relations, so that patterns of change in maximum temperature (TMAX) can be identified for 

zone in the IP during the period 1931–2009. The novelty of our methodology is the use the 

decomposition of TS using singular spectrum analysis (SSA). In this decomposition process, 

three components associated with the trend, seasonality and residual of the initial TS are recon-

structed, allowing the extraction of the parameters that describe these components. Secondly, 

the representation of each TS is obtained from a feature vector generated on the basis of the 

calculated parameters, which allows clustering the TS using unsupervised learning algorithms, 

such as k-means (Hartigan and Wong 1979), C-medoids (Park and Jun 2009), hierarchical ag-

glomerative (HA) (Lukasová 1979), and Kohonen self-organising maps (SOM) (Kohonen et al. 

1996), which are known and representative conventional algorithms that use the Euclidean dis-

tance. Finally, in our experiment on a climatic database, after comparing the clusters obtained 

with the different methods, a hybrid approach that combines HA and k-means, called hkmeans 

(Lee et al. 2010; Kassambara 2017), is selected as a clustering algorithm to define TS that are 

similar and follow a pattern. The results made it possible to identify three differentiated zones 

according to their TMAX level and trend. In addition, was observed that the identified zones 

show different seasonal variations. 

The remainder of this document is organised as follows. Section 2 describes the TS decom-

position method using SSA in a sequential manner. Section 3 proposes the new method for 

defining the trend, seasonality and autoregression patterns of TS. Section 4 presents the results 

of the method. Section 5 presents the main conclusions of the paper. 
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2. SEQUENTIAL SSA DECOMPOSITION METHOD 

This technique is based on the singular value decomposition (SVD) of a specific matrix 

obtained from a TS and aims to decompose an original TS into a sum of a small number of 

interpretable components, such as the trend that is smooth and slowly varying, oscillatory 

components that are periodic or pure quasiperiodic or amplitude-modulated, and noise without 

any pattern or structure (Golyandina et al. 2001; Golyandina and Korobeynikov 2014).  

In the following, the SSA method is presented formally. 

Input: 𝕋 = (𝒕𝟏, 𝒕𝟐, . . . , 𝒕𝑵) the initial TS, which is one-dimensional N-order TS. 

Result: A decomposition of 𝕋 into a sum of identifiable components  𝕋 = �̃�1 + �̃�2+. . . +�̃�𝑚. 

 

Step 1: Embedding. The so-called “trajectory matrix” is obtained as  𝑿 = 𝓣(𝕋), where 𝓣 is 

a linear map that transforms the TS 𝕋 into a matrix of order  L × K, where L is an integer that 

is called the “window length”, 1 < L < N,  and  K = N – L + 1. 

The set of all possible path matrices can be denoted as ℳ𝐿,𝐾
(ℋ)

. ℋ / denotes Hankel matrices, 

where all elements along the diagonal are equal. If N and L are fixed, then there is a biunivocal 

correspondence between the path matrices and the TS. 

The trajectory matrix X constructed from lagged vectors generated from the TS 𝕋 can be 

represented as: 
 

𝓣(𝕋) =

(

 
 

𝒕𝟏 𝒕𝟐 𝒕𝟑
𝒕𝟐 𝒕𝟑 𝒕𝟒
𝒕𝟑 𝒕𝟒 𝒕𝟓

⋯

𝒕𝑲
𝒕𝑲+𝟏
𝒕𝑲+𝟐

⋮ ⋱ ⋮
𝒕𝑳 𝒕𝑳+𝟏 𝒕𝑳+𝟐 ⋯ 𝒕𝑵 )

 
 

  .                                (1) 

 

Step 2: Decomposition of 𝑿 into a sum of the matrices of rank 1. The result obtained in this 

step is the decomposition: 
 

𝑿 = ∑ 𝑿𝒊𝒊 ,       𝑿𝑖 = 𝜎𝑖𝑈𝑖𝑉𝑖
𝑇,                                               (2) 

where 𝑈𝑖 ∈ 𝑅
𝐿 and 𝑉𝑖 ∈ 𝑅

𝐾 are vectors such that ‖𝑈𝑖‖ = 1 and ‖𝑉𝑖‖ = 1 for all 𝑖 and  𝜎𝑖 
denotes nonnegative numbers. 

If such a decomposition is performed by conventional SVD, the corresponding SSA method 

is “Basic SSA”, and the singular value decomposition of the matrix X is calculated via the 

eigenvalues and eigenvectors of the matrix  𝑆 = 𝑿𝑿𝑻  of size 𝐿 × 𝐿. Here, 𝜆1, . . . , 𝜆𝐿 denotes 

the eigenvalues of the matrix S taken in decreasing order of magnitude (𝜆1 ≥. . . ≥ 𝜆𝐿 ≥ 0) and 

𝑈𝑖, . . . , 𝑈𝐿 denotes the orthonormal system of the eigenvectors of the matrix S corresponding to 

these eigenvalues. If  𝑑 = rank(𝑿) = 𝐦𝐚𝐱{𝒊, such that  𝜆𝑖 ≥ 0}  and   𝑉𝑖 = 𝑿
𝑻𝑈𝑖 ∕ √𝜆𝑖, (𝑖 =

1, . . . , 𝑑)  are factor vectors, then  𝑿𝑖 = √𝜆𝑖𝑈𝑖𝑉𝑖
𝑇  are matrices of rank 1, so they are elementary 

matrices. Thus, the SVD of the trajectory matrix can be written as: 
 

𝑿 = 𝑿1+. . . +𝑿𝑑  .                                                (3) 
 

The collection  (√𝜆𝑖, 𝑈𝑖, 𝑉𝑖
𝑇)  is called an SVD eigenvector of order 𝑖 and consists of the 

singular value = √𝜆𝜎𝑖𝑖, an eigenvector 𝑈𝑖 (the left singular vector) and a factor vector 𝑉𝑖 (the 

right singular vector). 

 

Step 3: Grouping. The input of this step is expansion (2) and a specification of how to cluster 

the components of Eq. (2). The index set  𝐼 = {1,2, … , 𝑑}  must be segmented into 𝑚 disjoint 
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subsets. 𝐼1, 𝐼2, … , 𝐼𝑚. Let  𝐼 = {𝑖1, 𝑖2… , 𝑖𝑝} ⊂ {1,2, … , 𝑑}  be a subset of indices; then, the 

resulting matrix 𝑿𝐼 corresponding to the group 𝐼 is defined as: 

 

𝑿𝐼 = 𝑿𝑖1 + 𝑿𝑖2+. . . +𝑿𝑖𝑝  .                                        (4) 

 

Thus, if a partition is specified in 𝑚 disjoint subsets of the index set {1,2, … , 𝑑}, then, by 

expansion (2), the result of the grouping step leads to the following decomposition: 

 

𝑿 = 𝑿𝐼1 + 𝑿𝐼2+. . . +𝑿𝐼𝑚  .                                      (5) 

 

The above procedure for choosing the sets  𝐼1, 𝐼2, … , 𝐼𝑚 is called the “eigentriple grouping” 

procedure. The grouping of expansion (2), where  𝐼𝑘 = {𝑘}, is called “elementary”. 

 

Step 4: Reconstruction. In this step, each matrix 𝑿𝐼𝑘 from lumped decomposition (5) is 

transferred into the form of the input object 𝕋, which is a TS of length 𝑁. Such a transformation 

is optimally performed as follows: Let  𝒀 ∈ 𝑅𝐿×𝐾  be a matrix with elements  𝑦𝑖𝑗, 1 ≤ 𝑖 ≤ 𝐿, 1 ≤

𝑗 ≤ 𝐾; we look for an object �̃� ∈ ℳ that provides the minimum of  ‖𝒀 − 𝓣(𝕐)‖𝐹 , where 

‖𝒁‖𝐹 = (∑ |𝑧𝑖𝑗|
2

𝑖𝑗 )1∕2  is the Frobenius norm of  𝒁 = [𝑧𝑖𝑗] ∈ 𝑅
𝐿×𝐾. 

Let  𝛱ℋ ∶  𝑅
𝐿×𝐾 →ℳ𝐿,𝐾

(ℋ)
  be the orthogonal projection of 𝑅𝐿×𝐾 onto ℳ𝐿,𝐾

(ℋ)
 in the Frobenius 

norm. Then, �̃� = 𝓣−1 ∘ 𝛱ℋ(𝒀). The projection 𝛱ℋ is simply the average of the entries corre-

sponding to a given element of an object (Golyandina et al. 2018; Section 1.1.2.6). In Basic 

SSA, the composite mapping  𝓣−1 ∘ 𝛱ℋ  uses the long average of antidiagonals so that  �̃�𝑘 =
∑ (𝒀𝑖𝑗) ∕ |𝒜𝑘| (𝑖,𝑗)∈𝒜𝑘 , where  𝒜𝑘 = {(𝑖, 𝑗) ∶  𝑖 + 𝑗 = 𝑘 + 1, 1 ≤ 𝑖 ≤ 𝐿, 1 ≤ 𝑗 ≤ 𝐾}. 

If  �̂�𝑘 = 𝑿𝐼𝑘  are the reconstructed matrices, �̃�𝑘 = 𝛱ℋ�̂�𝑘  are their corresponding path 

matrices, and  �̃�𝑘 = 𝓣
−1(�̃�𝑘)  are the reconstructed objects. Then, the resulting decomposition 

of the input object 𝕋 is: 

𝕋 = �̃�1 + �̃�2+. . . +�̃�𝑚  .                                        (6) 
 

If the grouping is elementary, the reconstructed objects  �̃�𝑘  in Eq. (6) are called “elementary 

components”. 

The SSA parameters, i.e., length of the window 𝐿 and the way in which 𝑿𝑖𝑘 matrices are 

grouped, are very important for the outcome of the decomposition and depend on properties of 

the initial TS and the objective of the analysis, check Golyandina et al. (2001) for more details. 

SSA can be performed sequentially, which is recommended when the TS structure is com-

plex (Golyandina et al. 2012). Sequential SSA consists of two stages: the first stage performs 

the extraction of the TS trend with a small 𝐿, and in the second stage, the periodic components 

of the residue are detected and extracted with  𝐿~𝑁 ∕ 2. 

3. TREND, SEASONALITY AND AUTOREGRESSION SSA-BASED TS PATTERN 

IDENTIFICATION 

The algorithm for the identification of trend, seasonality and autoregression patterns in TS 

proposed in this study can be summarised in the following steps: 

1) Perform sequential SSA to extract the 3 components of the initial TS associated with 

the trend, seasonality and residual part. 

2) Model the extracted TS in such a way that their associated characteristics can be ex-

tracted: 

a. Trend component: from  𝕋trend = 𝜇 − 𝛽𝑡,  estimate 𝜇 and 𝛽; 
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b. Seasonal component: from  𝕋seasonal = 𝑐1sin (2𝜋𝑡 𝑇⁄ ) + 𝑐2cos (2𝜋𝑡 𝑇)⁄ , where 

𝑇 is the period, estimate 𝑐1 and 𝑐2; 

c. Residual part: from 𝕋residual, obtain an 𝐴𝑅(𝑇) and calculate the autocorrelations 

𝜑1, 𝜑2, 𝜑3, and 𝜑𝑠, where  s = T, the period. 

A feature vector is constructed for each initial TS by considering the estimated param-

eters. 

3) Use a conventional algorithm to obtain a similar TS. 

4) By averaging the initial TS of each group, the representative patterns of each group are 

obtained based on the defined characteristics. 

 

4. RESULTS AND ANALYSIS 

A set of 1776 points from a grid of 25 × 25 km2 elaborated through spatial interpolation kriging 

by the “Servicio de Desarrollos Climatológicos” of the Meteorological Spanish State Agency 

was used. This grid includes points distributed in Spain, Portugal and the closest areas of the 

Atlantic Ocean and the Mediterranean Sea, for each point a monthly TS of TMAX from January 

1931 to 2009 is considered. 

After comparing the four clustering algorithms, k-means, k-medoids, HA and SOM, on the 

dataset, given the superiority of HA and K-Means, a hybrid method, called hierarchical k-means 

(hkmeans), was selected. 

Here, hkmeans is applied to the set formed by the feature vectors of the TS. The results are 

shown in Fig. 1. 

 

 

Fig. 1. Result of the hkmeans cluster. 

Figure 2 illustrates the distribution (the grid is composed of longitudes and latitudes in UTM 

coordinates) of the points in Spain according to the clusters obtained. 

Clearly, three clusters can be observed; zone 1 situated in the north of the IP, where the 

areas with the lowest TMAX and with a higher proportion of increase compared to the other 

areas are found, zone 2, more to the south, where the areas with the highest TMAX are located, 

but showing a slight decline over the period, and zone 3, with areas more towards the centre 

and with intermediate TMAX, which also show an increase over time. In addition, was observed 

that the identified zones show different seasonal variations. 
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Fig. 2. Distribution of points in Spain according to geographical location and clusters. 

 

 

 

 

 

 

 

 
 

              Fig. 3. Seasonal variations by zone. 

Figure 3 shows the seasonal variations by zone. It can be noted that, zone 1 shows its largest 

variations in winter months and, zone 3, in spring and autumn months. Zone 2 does not show 

marked differences in its monthly variation. 

5. CONCLUSIONS 

In this paper, we present a new method for clustering TS by taking into account their trend, 

seasonality, and residual components. The procedure allowed to describe how the maximum 

temperature varied in the Iberian Peninsula during 1931–2009 through three zones defined 

according to their trend and monthly variation. The north of the Iberian Peninsula, where the 
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areas with the lowest maximum temperatures are found, experienced a 0.2034°C increase in its 

maximum temperature per decade between 1931 and 2009, the south, where the areas with the 

highest maximum temperatures are located, only showed a slight decline, and the central zone, 

showed an increase of 0.135°C per decade. 
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