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A b s t r a c t  

We present our own ready-to-use MATLAB script that uses bvp4c, namely, the built-in 

MATLAB solver designed to solve boundary value problems with unknown parameters. The 

script is used to study the linear stability of an exemplary system of ordinary differential equa-

tions with appropriate boundary conditions, which have the form of the eigenvalue problem. 

These equations are classical equations of magnetohydrodynamics describing a layer of elec-

trically conductive fluid in a magnetic field, in which, under the assumptions made, magne-

torotational and magnetic buoyancy instabilities may occur, both associated with some 

important astrophysical phenomena. We present sample results where we successfully use the 

bvp4c solver to solve those equations and find eigenvectors and eigenvalues of the most un-

stable linear perturbations of the assumed basic state. 

Keywords: magnetohydrodynamics, eigenvalue problem, MATLAB bvp4c, linear stability, 

instabilities. 

 

1. INTRODUCTION 

The 19th century was the heyday of classical physics, and thus also, closely related to it, math-

ematical methods of solving and analyzing differential equations. The end of this century re-

sulted in fundamental works on the so-called qualitative theory of differential equations, by the 

great mathematicians of the time, such as Henri Poincaré or Aleksandr Lyapunov, who intro-

duced the theory of stability of differential equations. In the 20th century, subsequent scientists 

developed this theory, specifying its mathematical foundations (Nemyckij and Stepanov 1989), 

analyzing its geometric aspects (Arnol’d 1992), using algebraic methods (Lanczos 1996) or, 

finally, going beyond the original assumptions and motivations, creating new interdisciplinary 

branch of science, such as the dynamical systems theory (Glendinning 1994). At the same time, 
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the popularization and constant improvement of computing devices resulted in a rapid devel-

opment of theories and applications of numerical methods for solving differential equations 

(Ackleh et al. 2010). 

Although the last century was a time of breakthrough discoveries in completely new fields, 

such as quantum and relativistic physics, the classical physics continued to benefit from the 

development of analytical and numerical methods. One of its branches where new tools were 

successfully used was fluid mechanics. On the one hand, its foundations have been established 

and strictly mathematically described in many famous works (see e.g. Batchelor 2000; Lamb 

1975), and on the other hand, it has been widely used to describe and study physical systems in 

many related fields, such as geophysics (Pedlosky 1987) or astrophysics (Chandrasekhar 1961). 

On their outskirts, a new branch of physics emerged, where some of their problems, together 

with methods and models of fluid mechanics and electromagnetism, resulted in a theory named 

by its founder, the Swedish physicist Hannes Alfvén, the magnetohydrodynamics (commonly 

abbreviated as MHD). Thanks to his work and that of his successors, a strict physical model of 

electrically conductive fluids under the influence of a magnetic field was created. It was suc-

cessfully used to describe many phenomena related to the generation, maintenance and evolu-

tion of the magnetic field of planets, stars, accretion disks, or even entire galaxies, but also in 

engineering issues such as tokamaks, MHD motors or sensors (Roberts 1967; Moffat 1978).  

One of the objects of interest of magnetohydrodynamics, in which the qualitative methods 

for differential equations are widely used, is the stability analysis of MHD systems. Although 

the description of fluid motion as a perturbation of a given basic state is well known from clas-

sical hydrodynamics (Drazin and Reid 2004), it turned out to be extremely useful in the case of 

electrically conductive fluids like plasma or liquid metals. The reason is the great variety of 

phenomena occurring in astrophysical objects that can be described as MHD waves and insta-

bilities (Chandrasekhar 1961).  

Among other things, it is worth mentioning two types of MHD instabilities. The first is 

associated with phenomena related to the extraction of plasma along with a strong magnetic 

field from the star interiors. These are, for example, prominences, coronal mass ejections, flares 

or star spots, well known due to observation of solar activity. It is believed that the responsible 

mechanism is the so-called magnetic buoyancy instability (MBI). It can occur when a toroidal 

(azimuthal) magnetic field decreases, at least locally, in the direction opposite to the gravity 

force (Acheson 1979; Gilman 1970; Hughes 1985). On the other hand, the complementary po-

loidal magnetic field component is a source of the so-called magnetorotational instability (MRI) 

if there is also a proper differential rotation of a conducting fluid in the radial direction. It occurs 

commonly in astrophysical systems and is considered to be particularly important in the case 

of accretion disk dynamics, where it is believed to be the main mechanism of angular momen-

tum transfer necessary for the accretion phenomenon (Balbus and Hawley 1991). 

From the mathematical point of view, it can be said that these instabilities are growing with 

time solutions of complicated systems of nonlinear magnetohydrodynamics equations. With the 

development of computers and numerical methods, a deeper theoretical studies of such systems 

have become possible. This applies both to the linear stability analysis and to the study of non-

linear effects, usually impossible to analyze in any other way than by computer methods. The 

linear analysis usually involves numerical solving of the systems of differential equations that 

have been linearized due to linear perturbations, e.g. of the Fourier type (Chandrasekhar 1961). 

This is usually connected with verification of the difficult-to-obtain analytical results and is the 

first stage preceding the study of non-linear instabilities. Hence, the universality and necessity 

of this type of analysis. 

The linear stability analysis can be done using a variety of computing environments de-

signed to work on such problems. In this paper, we present one of such tools, namely, the 
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MATLAB program. It is commonly used to solve complicated differential equations, both or-

dinary (Keskin 2019; Shampine et al. 2003) and partial (Coleman 2013; Smith 1985). We dis-

cuss a special case of stability analysis, when a linearized system of equations can be represent-

ed as a boundary value problem (BVP), where the instability growth rate parameter plays the 

role of the eigenvalue of the system of equations. MATLAB is a convenient tool for dealing 

with such issues since it has a dedicated built-in solver called “bvp4c”. We present its capabil-

ities on the example of the MHD system in which the above-mentioned MBI and MRI instabil-

ities are present. In the appendix, we attach our own ready-to-use MATLAB script in the form 

of a user-defined function named “mainBVPE”, which, using this bvp4c solver, determines the 

eigenvectors and eigenvalues of the implemented system of ordinary differential equations.  

The bvp4c is the main MATLAB routine for solving the boundary value problems. It uses 

the finite difference method: the three-stage Lobatto IIIa, a collocation fourth-order formula. 

The solver can be used to deal with systems of first-order differential equations with various 

complications, i.e. nonlinearities, complex-domain coefficients, singular terms, multipoint 

boundary conditions, and unknown parameters (eigenvalues). It is relatively easy to use and has 

a good documentation (for more details, see MATLAB built-in help, Kierzenka (2022), Shamp-

ine and Kierzenka (2001)). On the other hand, because of its algorithm, the bvp4c user has to 

provide the initial mesh and initial approximation of the solution at   those mesh points. For many 

even complicated equations, this “initial guess” can be as simple as a constant function, but for 

other problems the result could be poor even for a relatively good input (e.g. for the complex 

functions or extreme values of the equation coefficients). Usually a good way to deal with this 

problem is to solve the equation under study multiple times in a loop, using the found solution 

as an initial guess for the calculation in the next step of the loop. This so-called “method of 

continuation” is a powerful tool worth using for difficult issues (for some examples, see 

Kierzenka (2022)). Moreover, from the physical point of view, the most troublesome issue 

could be the BVP with the unknown parameters to be determined, namely, the eigenvalue prob-

lem. The solver treats the eigenvalue as an additional unknown constant function so it also 

needs an additional boundary condition for the solution. This can be a problem if we are con-

sidering a real physical system and there is no justification for imposing an additional boundary 

condition on the solution we are looking for. Fortunately, there are usually ways around this 

problem and they are presented in this paper (see also Shampine et al. (2003)).  

Due to the disadvantages described above, the bvp4c solver is not suitable for convenient 

and comprehensive analysis of the full spectrum of differential operators associated with the 

examined equations. In such situations, a better choice would be to use classical algebraic meth-

ods involving the study of matrices of differential linear operators of discretized equations 

(Lanczos 1996) or to use implemented MATLAB packages based on spectral methods (Tre-

fethen 2000). However, bvp4c is an excellent tool for searching for separate eigenvalues of the 

analyzed BVP. This applies both to the ones close to the given initial values (e.g. to check the 

analytical results) and to the search for the most unstable solutions, i.e. eigenvectors associated 

with the greatest eigenvalues. The latter issue is particularly important in the study of the linear 

stability analysis of the real physical systems, because the most linearly unstable perturbations  

dominate the system dynamics after a sufficiently long time, at least before non-linear effects 

start to play an important role (see Mizerski et al. (2013) on the example of magnetic buoyancy 

instability). Therefore, in this article we present in practice the possibility of using the bvp4c 

solver to find the most unstable solutions of a given system of MHD equations, about which 

we know from the theory that they can be unstable due to the previously-mentioned magneto-

rotational and magnetic buoyancy instabilities. 

The paper is organized as follows: in Section 2 we present an exemplary MHD system 

whose linear stability we want to investigate using the MATLAB bvp4c solver. The MATLAB 
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script that uses this routine is described in detail in Section 3 and its ready-to-use source code 

can be found in the Appendix. Section 4 contains sample results obtained by using this script, 

and the final Section 5 briefly summarizes all the work. 

2. EXEMPLARY PHYSICAL PROBLEM 

In this section, we describe an example of a physical problem that can be studied using the 

method announced in Section 1. Namely, we present here the theoretical introduction to the 

analysis of the linear stability of some MHD system. This system is related to simplified local 

models of astrophysical phenomena such as plasma instabilities and magnetic field generation 

in the interiors of stars (cf. Acheson 1979; Balbus and Hawley 1991; Gilman 1970, 2018a,b; 

Gilman and Dikpati 2014; Gradzki and Mizerski 2018; Hughes 1985; Mizerski et al. 2013). 

Since the purpose of this article is to present the application of the MATLAB bvp4c solver, in 

this section we only derive the main ODE which we solved by the MATLAB script presented 

in the Appendix. 

Let’s consider the fluid (solar plasma for example) which is compressible, inviscid, isother-

mal and electrically perfectly conducting, described by the ideal gas law and located between 

the two parallel infinite planes. Assuming the Cartesian coordinate system, those planes are 

determined by the equations  𝑧 = 0  and  𝑧 = 𝑑. We take into account the constant rotation  

𝛀 = (0, Ω, 0)  and the constant gravity  𝒈 = (0, 0, −𝑔). The latter vector determines the vertical 

direction in the geometry of our case. 

We adopt the standard MHD equations to describe such a system (cf. Moffat 1978; Roberts 

1967; Mizerski et al. 2013). We then nondimensionalize them as follows: layer width d is the 

unit of length, free fall time √𝑑/𝑔 is the unit of time, free fall speed √𝑔𝑑 is the unit of velocity 

in the y- and z-direction, characteristic magnitude of the shear flow 𝑈∗ is the unit of velocity in 

the x-direction; the values of the magnetic field 𝐵∗, pressure 𝑝∗, and density 𝜌∗ at the top of the 

fluid layer  (𝑧 = 1)  are the units of those quantities; the 𝑇∗ is the unit of the constant tempera-

ture of the system.  

Hence the governing MHD equations (successively: Navier-Stokes equation, the continuity 

equation, the magnetic induction equation, and the ideal gas law equation) for the main physical 

quantities (velocity u, magnetic field B, density �̅�, and pressure �̅�) take the following nondi-

mensional forms: 

 �̅�  (
𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ 𝛁𝒖) = −𝛁 (𝑃�̅� + 𝐿

𝑩2

2
) + 𝐿𝑩 ∙ 𝛁𝑩 − 𝑈𝑜�̅� 𝒆𝒛 × 𝒖 − �̅� 𝒆𝒛, (1a) 

 
𝜕�̅� 

𝜕𝑡
+ 𝛁 ∙ (�̅� 𝒖) = 0, (1b) 

 
𝜕𝑩

𝜕𝑡
+ 𝒖 ∙ 𝛁𝑩 = 𝑩 ∙ 𝛁𝒖 − 𝑩(𝛁 ∙ 𝒖), (1c) 

 �̅� = 𝑎�̅�, (1d) 

with the following nondimensional parameters: 

 𝐿 = (𝐵∗)2/(𝜇0𝜌∗𝑔𝑑),          𝑃 = 𝑝∗/(𝜌∗𝑔𝑑),          𝛼 = 𝑅𝜌∗𝑇∗/𝑝∗, (2a) 

 𝑈𝑜 = 2𝛺𝑑/√𝑔𝑑,                    𝑈𝑢 = 𝑈∗/√𝑔𝑑, (2b) 

where 𝑅 is the ideal gas constant, 𝜇0 is the vacuum permeability, 𝐿 is the squared nondimen-

sional Alfven speed, product 𝑃𝛼 is the squared nondimensional isothermal speed of sound, 𝑈𝑜 

is the nondimensional rate of rotation, and 𝑈𝑢 is the nondimensional speed of characteristic 

shear flow. The nondimensional fluid velocity u and magnetic field B have the following com-

ponents: 
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 𝒖 = [𝑈𝑢�̅�, �̅�, �̅�], (3) 

 𝑩 = [�̅�, �̅�, 𝑐̅], (4) 

and in general they are all functions of spatial coordinates x, y, z, and time t. The same applies 

to pressure �̅� and density �̅�.  

Let’s define the equilibrium basic state of the fluid by the horizontal z-dependent magnetic 

field in the form  𝑩𝟎(𝑧) = (𝑎0(𝑧), 𝑏0, 0)  and the horizontal z-dependent shear flow  𝒖𝟎(𝑧) =
(𝑢0(𝑧), 0, 0). Hence, from the z-component of the Navier-Stokes and ideal gas law equations, 

we get the equation for the basic state density 𝜌0(𝑧): 

 
𝑑

𝑑𝑧
(𝑃𝛼𝜌0(𝑧) + 𝐿𝑎0

2(𝑧)/2) = −𝜌0(𝑧)(𝑓 − 𝑈𝑜𝑈𝑢𝑢0(𝑧)), (5) 

with the nondimensional boundary condition  𝜌0(𝑧 = 1) = 1. The parameter 𝑓 is the indicator 

of the gravity 𝑔 (which is equal to 1 after our nondimensionalization), namely  𝑓 = 1  if the 

gravity is present (which we always assume in this paper). 

The next step in the linear stability analysis of the system is to choose the form of the per-

turbations of the assumed basic state. The system is homogenous along the x and y axis and 

hence the perturbation can adopt the form of a Fourier modes varying in those directions. In 

this analysis we focus on a simpler case, the so-called “interchange modes”, which are “two-

dimensional” and “axisymmetric” from the rotational point of view, i.e. they vary in the y-

direction and do not depend on the x argument. The stability analysis of the full “three-dimen-

sional” modes is also possible with this method, but the calculations are far more laborious (cf. 

Gradzki and Mizerski 2018; Mizerski et al. 2013). Hence the perturbations of the velocity, 

magnetic field, pressure, and density take the forms: 

 [𝑢(𝑧), 𝑣(𝑧), 𝑤(𝑧)]𝑒𝑠𝑡+𝑖𝑘𝑦𝑦,           [𝑎(𝑧), 𝑏(𝑧), 𝑐(𝑧)]𝑒𝑠𝑡+𝑖𝑘𝑦𝑦, (6a) 

 𝑝(𝑧)𝑒𝑠𝑡+𝑖𝑘𝑦𝑦,          𝜌(𝑧)𝑒𝑠𝑡+𝑖𝑘𝑦𝑦, (6b) 

where 𝑠 and 𝑘𝑦 are the perturbation growth rate and the wavenumber, respectively.  

To investigate the linear stability of the system due to these perturbations, we introduce 

them into the system of Eqs. (1a)–(1d) including the basic state Eq. (5) and neglect the non-

linear terms. We then obtain the system of eight linear ordinary differential equations for eight 

unknown amplitudes of the perturbations: 𝑢(𝑧), 𝑣(𝑧), 𝑤(𝑧), 𝑎(𝑧), 𝑏(𝑧), 𝑐(𝑧), 𝑝(𝑧), and 𝜌(𝑧). 

The coefficients of those ODE’s contain all z-dependent basic state functions, non-dimensional 

parameters (2a)–(2b), growth rate 𝑠, and wavenumber 𝑘𝑦. On the other hand, since the wave-

number 𝑘𝑦 can take any value (positive and real, for the sake of simplicity), the growth rate 𝑠 

can be considered as the eigenvalue of the linear differential operator given by the system of 

equations, for which it has the solution – an associated eigenvector of the amplitudes.   

As we know from the linear stability theory (cf. Chandrasekhar 1961; Drazin and Reid 2004) 

our system is unstable due to assumed perturbations (6a)–(6b) if we can find any eigenvectors 

exponentially growing over time, that is, the ones with the positive real part of their growth 

rates (eigenvalues), i.e. with  ℜ(𝑠) > 0. On the other hand, from Balbus and Hawley (1991), 

Gilman (2018a,b), and Mizerski et al. (2013), we can expect in our MHD system three types of 

instabilities, i.e., magnetorotational instability, magnetic buoyancy instability, and (non-magne-

tic) centrifugal instability. Hence it is an interesting physical system to study its linear stability.  

Obviously the resulting system of equations for the z-dependent perturbations amplitudes 

can be solved only by numerical methods. As it was mentioned in Section 1, there are various 

approaches to these types of issues with MATLAB program (cf. Keskin 2019; Shampine et al. 

2003; Trefethen 2000). If one wants to use a built-in bvp4c solver, the problem is the need to 
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reduce the equations of the system to a form containing the derivatives of each unknown func-

tion on only one side of the equation, namely in the algebraic form,  
𝑑𝒇(𝑧)

𝑑𝑧
= �̂�(𝑧)𝒇(𝑧), where  

�̂�(𝑧) is a matrix of the system coefficients that do not contains the differential operators. This 

is often not an easy task and the system presented in this section is an example of such a situa-

tion. However, it is usually only a matter of tedious calculations that lead to very complicated 

coefficients of the equations, which take on enormous proportions when there is diffusion in 

the system (cf. Gradzki and Mizerski 2018). In such cases, the use of symbolic calculation 

programs such as Mathematica becomes invaluable.   

In our case, we can with some effort transform the derived system of eight ODE’s for eight 

amplitudes of the perturbations (𝑢, 𝑣, 𝑤, 𝑎, 𝑏, 𝑐, 𝑝, and 𝜌) to just one second-order linear ordi-

nary differential equation for the amplitude of the vertical velocity perturbation  𝑤(𝑧): 

 𝑊2(𝑧)
𝑑2𝑤(𝑧)

𝑑𝑧2
+ 𝑊1(𝑧)

𝑑𝑤(𝑧)

𝑑𝑧
+ 𝑊0(𝑧)𝑤(𝑧) = 0, (7) 

where the z-dependent coefficients of Eq. (7) are very complicated and can be found in the body 

of the “odefun” function in the Appendix (Section “Nested functions”). 

Now we have to impose the boundary conditions on the function 𝑤(𝑧). Since there is no 

diffusion in our system, the simplest choice is the impermeability condition at the horizontal 

boundaries of our fluid layer, namely: 

 𝑤(𝑧 = 0) = 0,          𝑤(𝑧 = 1) = 0. (8) 

In conclusion, the linear stability analysis of our MHD problem reduces to a two-point 

boundary value problem (BVP): Eq. (7) with boundary conditions (8) and the eigenvalue 𝑠 (the 

growth rate of the perturbation introduced in Eqs. (6a)–(6b)). Those equations can be obviously 

transformed into the system of first-order equations with proper BC’s: 

 
𝑑𝑤1(𝑧)

𝑑𝑧
= 𝑤2(𝑧), (9a) 

 
𝑑𝑤2(𝑧)

𝑑𝑧
= − (

𝑊1(𝑧)

𝑊2(𝑧)
) 𝑤2(𝑧) − (

𝑊0(𝑧)

𝑊2(𝑧)
) 𝑤1(𝑧), (9b) 

 𝑤1(𝑧 = 0) = 0,          𝑤1(𝑧 = 1) = 0, (9c) 

where  𝑤1(𝑧) = 𝑤(𝑧)  and  𝑤2(𝑧) = 𝑑𝑤(𝑧)/𝑑𝑧. This is the form required by the bvp4c solver.  

The z-dependent coefficients of Eq. (9b) contain all basic state functions, nondimensional 

parameters, the wavenumber 𝑘𝑦 (whose value we choose for each calculation) and the growth 

rate 𝑠 (which we want to determine for the selected 𝑘𝑦). Fortunately, the form of those coeffi-

cients is not a problem for the solver like the bvp4c and the system of Eqs. (9a)–(9c) can be 

solved with this routine. The numerical procedure using this method is presented in the next 

Section 3 and the source code of the ready-to-use MATLAB script solving this problem can be 

found in the Appendix. 

3. NUMERICAL PROCEDURE 

The MATLAB built-in solver bvp4c is a great tool to deal with problems like the boundary 

value problem given by the system of Eqs. (9a)–(9c). However, using it requires some practice 

and the tasks to be solved require some preliminary preparation, especially if we are dealing 

with eigenvalue problems. In this section, we present the MATLAB script that uses bvp4c to 

solve our BVP (source code in the Appendix) and on this occasion we discuss the most im-

portant issues regarding the efficient use of the solver. 
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The script was created with MATLAB R2018a version. It has a form of a void function and 

hence it can be executed from the MATLAB command window with its name, namely 

“mainEBVP”, after copying and saving it to a file named mainEBVP.m. It means that all input 

data should be changed inside the main function, since it has no arguments.  

The source code is divided into the following types of appropriately named sections: “Gen-

eral information”, INPUT, SOLVER, OUTPUT, and “Nested functions”. The first section con-

tains a brief mathematical and physical description of the MHD linear stability problem 

presented in the previous chapter, as well as the specification of the mainEBVP function itself. 

Since that part is self-explaining, we start the description of the script from the last section, 

because it contains mainly the key functions used directly by the bvp4c solver in the SOLVER 

sections of the program. Then we present other sections from the main part of the mainEBVP 

user-defined function. 

3.1  Nested functions 

The Section “Nested functions” at the end of the script contains mainly all the functions that 

are required for the solver to work. Handles to those functions are used by the MATLAB built-

in routines: bvp4c (solves the BVP equation), bvpset (sets the solver options), and bvpinit (cre-

ates the initial guess for the solution); see MATLAB help for more info about those functions. 

3.1.1  Function y_guess_01 

This nested function is used by the bvpinit routine to create the initial guess for the solution in 

the form of a constant function (see code section no. 06). This can work surprisingly well even 

for relatively complicated equations. It is worth noting that the constant guess does not need to 

satisfy the boundary conditions in a nested function bcfun or any part of the system of equations 

in the nested function odefun. 

3.1.2  Function y_guess_02 

This is a variant of the previous function, but here the initial guess is in the sine-type form. This 

is usually a good choice if we expect a solution of a similar character. On the other hand, the 

user can define here, in a similar manner, any function that he expects to work. 

3.1.3  Function odefun 

This is the key nested function of the script, in which the main system of equations to be solved 

by the solver is given. It has implemented the complicated z-dependent coefficients W0, W1, and 

W2 of Eq. (9b) which contain all input parameters and basic state functions from the INPUT 

sections of the code, as well as the unknown eigenvalue s. The function also needs the numerical 

solution of Eq. (5) for the basic state density ρ0(z) (denoted as r0 in the script) which is solved 

numerically at the beginning of the code section no. 07. The handle to the odefun function is 

a necessary argument of the bvp4c routine. 

Now, since our analysis is linear (in other words: perturbations are infinitesimally small 

compared to the basic state) and the corresponding BVP is an eigenvalue problem, the solution 

w(z) is found only up to the unknown constant factor which cannot be determined in a linear 

analysis. On the other hand, from the numerical method point of view, the presence of an ei-

genvalue in the equation forces the user to impose an additional boundary condition to deter-

mine the solution uniquely (cf. Shampine and Kierzenka 2001). This can be a problem if we do 

not have a physical reason for such an extension. Especially in our case, there is no justification 

for the additional BC on the derivative of the function w(z), since the fluid is assumed to be 

inviscid. Nevertheless, to use the bvp4c solver, we would need a third boundary condition for 

the system of Eqs. (9a)–(9c). 
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This issue can by overcome in the following way: to our system of equations we can add an 

additional one for the new function w3(z) which can be used as a normalization of our “main” 

solution w1(z) by the proper formulation and by using two additional boundary conditions for 

w3(z) (one for new equation and one for the eigenvalue determination). The simplest choice is 

to define function w3(z) as an antiderivative of the w1(z) and the additional BC’s in a form that 

defines the integral of the latter function as equal to unity (or any other constant number). In 

such a case, our BVP given by the system of Eqs. (9a)–(9c) takes the following new form: 

 
𝑑𝑤1(𝑧)

𝑑𝑧
= 𝑤2(𝑧), (10a) 

 
𝑑𝑤2(𝑧)

𝑑𝑧
= − (

𝑊1(𝑧)

𝑊2(𝑧)
) 𝑤2(𝑧) − (

𝑊0(𝑧)

𝑊2(𝑧)
) 𝑤1(𝑧), (10b) 

 
𝑑𝑤3(𝑧)

𝑑𝑧
= 𝑤1(𝑧), (10c) 

 𝑤1(𝑧 = 0) = 0,          𝑤1(𝑧 = 1) = 0, (10d) 

 𝑤3(𝑧 = 0) = 0,          𝑤3(𝑧 = 1) = 1. (10e) 

The normalization of the function w1(z) via Eq. (10c) can be done in many other ways. 

Probably the most elegant and safest option from a mathematical point of view is to normalize 

w1(z) to a square-integrable function, namely define Eq. (10c) as: 

 
𝑑𝑤3(𝑧)

𝑑𝑧
= |𝑤1(𝑧)|2, (11) 

to be sure that we do not miss any solution. This option seems reasonable, especially if we 

expect eigenvector w(z) to be a complex function. 

The above-described procedure for extending the initial system of Eqs. (9a)–(9c) allows us 

to use the bvp4c solver. Of course, this method has one major disadvantage: by adding an ad-

ditional equation to our BVP, we increase the number of calculations, and therefore the resource 

consumption and time needed to obtain the result. The greater the increase, the more compli-

cated the additional normalizing equation. However, this is probably the most reasonable ap-

proach to solving the eigenvalue problems with bvp4c solver from both a mathematical and 

physical point of view. 

3.1.4  Function bcfun 

The handle to this function is another necessary argument of the bvp4c routine. It contains the 

boundary conditions implemented in the nested function odefun, namely Eqs. (10a)–(10e). As 

written above, in the case of the eigenvalue problem of three ODE’s, the solver needs four BC’s. 

In our case, these are two physical ones and two additional normalization conditions.  

3.1.5  Function bcjac 

This is the function that contains a Jacobian matrix of the boundary condition implemented in 

the function bcfun. It is a feature that can be enabled optionally via the in-built bvpset routine. 

If this option is turned on, the bvp4c solver will not need to numerically approximate partial 

derivatives of the boundary conditions equations. This should at least slightly speed up the cal-

culations. In practice, for typical BC’s, the gain is not great, but, on the other hand, the imple-

mentation of this function is very simple.  

The bvp4c solver also allows user to optionally use a Jacobian matrix for the main system 

of equation to be solved. Enabling this FJacobian option, in contrast to the Jacobian of boundary 

conditions, can speed up the calculations tremendously. Thus, it is recommended whenever the 

analytic form of the Jacobian is easy to find and implement. Unfortunately, for our BVP, this 

is practically impossible due to the huge complexity of the coefficients of Eq. (10b). 
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3.1.6  Function extra_space 

The last nested function is not related to the operation of the solver, but only to printing data on 

the screen and saving it to a file. It allows to print large numbers in a readable form, where 

thousands are separated by a space, e.g. extra_space(1e4) = 10 000 etc. 

3.2  INPUT sections 

The INPUT part of the script of the function mainEBVP consists of five sections numbered 

from 01 to 05. As the name suggests, this is the only part of the code where the user provides 

input data to solve the boundary value problem implemented in the nested functions odefun and 

bcfun described above. It consists of the following code blocks: 

3.2.1  “01: INPUT: Main parameters” 

In this section the user has to choose values of all physical parameters characterizing the con-

sidered system, namely the nondimensional constants (2a)–(2b), the quantities related to the 

base state functions a0(z), b0(z), u0(z), ρ0(z), and the wavenumber ky (see Section 2 for details).  

3.2.2  “02: INPUT: Basic state functions” 

The form of the basic state toroidal magnetic field  𝑎0(𝑧) and shear flow 𝑢0(𝑧) should be chosen 

in this section. The attached version of the script contains the simplest linear forms of those 

functions and the optional quadratic form of  𝑢0(𝑧). If one needs to “switch off” the magnetic 

field or the shear flow at the time of calculation, the safest would be to select the corresponding 

zero function in this section and “comment” or delete the others. There are also no obstacles for 

the user to define his own basic state functions of any form.  

3.2.3  “03: INPUT: Solver options” 

The next section includes the ability to select all implemented bvp4c options through the func-

tion bvpset. They are all well described in the in-built MATLAB help. From the scientific point 

of view, the most important option is probably the RelTol, namely, the relative error tolerance. 

Its default value is 10−3 which corresponds to 0.1% accuracy; however, the authors of the 

solver recommend a value of 10−5 for the scientific calculations (see Shampine and Kierzenka 

2001). Decreasing of the RelTol parameter will be necessary if the user wants to get the eigen-

value s with greater accuracy. Of course, with increasing the accuracy of the calculations, their 

duration also increases, sometimes very significantly, especially for the poor initial guesses for 

the eigenvalue. A fairly effective way to deal with this problem is to use the “method of con-

tinuation” described below in Section 3.2.5, when we can increase the accuracy in every step 

of the loop (cf. also Shampine et al. 2003). 

3.2.4  “04: INPUT: Initial guess properties” 

This section is probably the most important for the successful completion of the calculations 

and their duration. Here the user has to choose an initial guess for both the eigenvalue s and the 

solution 𝑤(𝑧). The value of the former should be as close as possible to the expected value (if 

it is known, for example, from analytical considerations), and the solver should calculate the 

eigenvalue closest to the input value (which is not always true, especially if it is a complex 

number). The latter one is selected from the possibilities implemented in the nested functions 

described in the previous Section 3.1, i.e. “y_guess_01” or “y_guess_02”. In addition, one has 

to select the number of starting mesh points. Although the bvp4c solver selects optimally the 

final mesh during its internal process, this initial mesh size has a huge impact on how long the 

calculation takes. In general, it is worth starting with not very dense meshes (of the order of 

several dozen points or even a dozen or so points) and densify them as necessary. On the other 
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hand, it is better to start with a grid with more points (hundreds or even thousands) if we expect 

strongly oscillating or boundary layer type solutions.  

3.2.5  “05: INPUT: OPTIONAL: solving in the loop” 

The last section of this part of the code contains all input parameters necessary to use the 

“method of continuation” mentioned before. The user has to select a value for the loop_switch 

variable: “on” (if one wants to use the method) or “off'” (if not). 

This method offers various possibilities. The simplest one requires the “off” value of the 

variable loop_over_ky and consists of repeated use of the bvp4c solver in subsequent steps of 

the loop without changing the parameter input values. In this case, the solution obtained in 

a given step becomes the initial guess in the next one. This often allows to get a solution even 

with a poor initial guess of the function we are looking for. However, one has to be careful 

when calculating the eigenvalue problems, because the solver in subsequent steps can “stick” 

to the eigenvalue (and eigenvector as well) found in the first step. This may produce undesirable 

results depending on user expectations, e.g. if we are looking for the most unstable solution. 

The second option offered by the “continuation method” is to find solutions in a loop for 

such extreme values of equation parameters that it would not be efficient (or even possible) in 

a single calculation. As an example, in the version of the script from the Appendix, the possi-

bility of increasing the wavenumber 𝑘𝑦 value in subsequent loop steps has been implemented. 

This requires the “on” value of the variable loop_over_ky. If the user wanted to solve 

Eqs. (10a)–(10e) for, say, 𝑘𝑦~106 and the remaining parameters of unity order, this would be 

a big challenge for the solver, requiring a perfect initial guess. The solution to this problem is 

the discussed method and starting calculations for a much smaller value of 𝑘𝑦, which will not 

cause difficulties for the bvp4c routine. Then we can increase this value in subsequent steps of 

the loop until the desired result is achieved. This method can give great results, but the increase 

in the value of the changed parameter must be optimally selected. If it is too low, the calcula-

tions will last unnecessarily long. If it is too big, the solver may not be able to handle the cal-

culations. The use of this method, therefore, requires some practice and usually a certain 

number of tests. 

The last possibility we mention here is to increase the accuracy of the calculation in each 

step of the loop. This is only partially implemented in the mainEBVP function script and re-

quires “uncommenting” corresponding lines in the loop structure in block of the code no. 08. 

However, the idea is simple: calculations start with the standard value of the RelTol = 10−3 

parameter (see Section 3.2.3) and are decremented in each step, e.g. by dividing by a factor of 

10. Thanks to this, we can obtain the usually desired accuracy of the result.  

Finally, it should be added that, in this section of code, the user can choose how many steps 

of the loop the data will be saved on the screen, in the file and on the plot. 

3.3 SOLVER sections 

In the next five blocks of the code, numbered from 05 to 10, all the calculations and instructions 

needed to obtain and present the results are done. The script sequentially performs the following 

tasks based on the input data: it creates the initial guess, solves the basic state Eq. (5) using 

ode45 routine, solves the main system of Eqs. (10a)–(10c) for boundary conditions (10d)–(10e) 

with bvp4c solver, optionally does calculations in a loop “by continuation”, performs some 

additional calculations (like integrating the solution) and finally creates the string variables 

needed to print and save the output results. This part of code is well described in the comments, 

but the user does not need to study and change it, unless he wants to make serious modifications 

to the script. 
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3.4 OUTPUT sections 

Code blocks of the function mainEBVP numbered 11 through 13 are responsible for presenting 

the output data. There are three types in the attached version of the script. 

3.4.1  MATLAB command window 

The script displays in the MATLAB command window all the most important input and output 

data, such as the values of: start and end date and time of calculation, some main equation 

parameters (in the current version: ky and b0), initial and final eigenvalue s, the argument for 

the largest value for the solution modulus, integrals of the solution (to check the given normal-

ization condition), start and final options and parameters of the bvp4c solver operation.  

Optionally, with the “continuation method” enabled (see Section 3.2.5), the basic results for 

calculation steps are printed on the screen at the frequency selected by the user in code block 

no. 06. 

3.4.2  Data files 

Two text files are generated by default, if they do not exist yet. The first one, called 

mainEBVP_log.txt, is a log file, where for subsequent executions of the program, the same data 

that the user sees in the MATLAB command window is saved. New results are appended to the 

end of the file. Thanks to the data from the file, the user can, for example, analyse the duration 

of calculations depending on the input solver settings. Note, however, that the calculated eigen-

value 𝑠 is saved in the file, but not the solution w(z). The latter one is saved in the second created 

file named mainEBVP_last_sol.txt, where the data is overwritten after each successful comple-

tion of the calculation. This file contains the final mesh selected by the solver and all compo-

nents of the solution vector w(z). In addition, it also contains the same data that is printed in the 

MATLAB command window. 

Additionally, if the “continuation method” is used, the file loop_sol.txt is created. The basic 

results for the subsequent steps are saved to that file with the frequency chosen by the user in 

code block no. 06. 

3.4.3  Plots 

The version of the script attached to the article produces five graphs. The first is the plot of the 

basic state density 𝜌0(𝑧) calculated from Eq. (5) at the beginning of code block no. 07.  

The other graphs represent the solution found, namely, the eigenvector 𝑤(𝑧), which is the 

first component of the complete solution vector, denoted in the script as  𝑤1(𝑧) (see Eqs. (7) 

and (9a)–(9c)). They are the separate plots of: real part of the solution ℜ(𝑤(𝑧)), its imaginary 

part ℑ(𝑤(𝑧)), its modulus |𝑤(𝑧)|, and all those three functions on one figure. All plots of 𝑤(𝑧) 

are normalized by dividing the values of the considered part of the function by the largest value 

of the modulus of that part. Of course, in case the user expects only purely real eigenvectors, it 

is most convenient to keep only the plot of  ℜ(𝑤(𝑧))  and “comment out” the rest. 

Optionally, with the “continuation method” enabled, an additional plot is created with sub-

sequent solutions drawn at the frequency selected by the user in code block no. 06.  

All plots created by the mainEBVP function are also saved in three types of files: MATLAB 

FIG, JPEG, and PDF. 
 

4. EXEMPLARY RESULTS  

As it was said in Section 1, the function mainEBVP included in the Appendix can be used to 

investigate the linear stability of the system under study in various ways. In this chapter, we 

present sample results: eigenvalues s and eigenvectors 𝑤(𝑧) (denoted also as 𝑤1(𝑧), cf. Sec- 
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tion 3.1.3) found for some fixed values of all parameters of the system. They are divided into 

three cases: purely real solutions, complex solutions, and solutions obtained by the “continua-

tion method”. In all three cases, the script solves the system of Eqs. (10a)–(10c) with boundary 

conditions (10d)–(10e) and selected forms of the basic state functions: toroidal magnetic field 

𝑎0(𝑧) and horizontal shear flow 𝑢0(𝑧). 

4.1  Real solutions 

In this section we present exemplary results for the case where the found eigenvalues s and 

eigenvectors 𝑤(𝑧) have values in the real domain. Such a situation is taking place when we 

consider the tested system with the following basic state: 

 𝑎0(𝑧) = 0, (12a) 

 𝑢0(𝑧) = 𝜁𝑧, (12b) 

hence in the absence of the toroidal magnetic field 𝑎0(𝑧) and for the presence of the linear shear 

flow 𝑢0(𝑧). The nondimensional parameter 𝜁 is in the script of the mainEBVP function denoted 

as dz. To implement the appropriate basic state, the user has to select these functions in code 

block no. 02 in the script and set the variable  la = 0. 

From previous studies, it is known that such a system can be linearly unstable due to two 

types of instabilities, namely magnetorotational and centrifugal (see Balbus and Hawley 1991; 

Drazin and Reid 2004; Gilman 2018a,b). To check this for the given set of main system param-

eters, it is enough to find at least one unstable solution, i.e. one with a positive real part of the 

growth rate s (which is our eigenvalue). As an example, we assume the following values of the 

main parameters introduced in Section 2 as well as the value of the wavenumber 𝑘𝑦 and a shear 

flow gradient 𝜁: 

 𝐿 = 0.25,          𝑃 = 1.5,          𝛼 = 1.0, (13a) 

 𝑈𝑜 = 0.9,          𝑈𝑢 = 1.0,          𝑏0 = 0.01, (13b) 

 𝑘𝑦 = 150,          𝜁 = −1.0. (13c) 

The mainEBVP function was used to search for the unstable solutions for such settings and 

with the bvp4c solver accuracy parameter  RelTol = 10−5. The number of points of the initial 

mesh (the variable meshPointsNumber) is equal to 21 on the domain [0,1] and the initial guess 

for the solution is a constant function (solinitNumber = '01'). There is no calculating in the loop 

(loop_switch = 'off'). 

According to Mizerski et al. (2013), taking into account the form of the Eq. (10b) coeffi-

cients and the assumed values of the system parameters, we can expect that the eigenvalues will 

be purely real numbers with an absolute value of the order of unity, i.e.: |𝑠|~1. In this situation, 

because the bvp4c solver requires an initial value for the unknown parameter s, it was necessary 

to carry out preliminary simulations in order to find by the “trial and error” method the region 

of possible positive eigenvalues. It turns out that such values exist, and therefore the considered 

system is linearly unstable due to perturbations assumed in the form (6a)–(6b).  

We also managed to identify the most unstable mode, i.e. the eigenvector 𝑤(𝑧) associated 

with the highest possible eigenvalue s, as well as subsequent elements of the spectrum of linear 

operator associated with the equation under study. Table 1 contains the eight greatest eigenval-

ues s found for the values of parameters (13a)–(13c), and Fig. 1 presents their corresponding 

eigenvectors 𝑤(𝑧), normalized on the plot so that  max(|w|) = 1. 
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Fig. 1. The eigenvectors w(z) associated with the eight greatest eigenvalues s of Eq. (7) for the values 

of the parameters (13a)–(13c) and basic state (12a)–(12b), found with the user-defined MATLAB func-

tion mainEBVP using the build-in bvp4c solver. The top left plot is related to the eigenvalue s1 from 

Table 1, the top right is related to s2 and so forth. The plots are normalized so that  max(|w|) = 1. 
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Table 1 

The first eight greatest eigenvalues s of Eq. (7) for the values of the parameters (13a)–(13c)  

and basic state (12a)–(12b), found with the user-defined MATLAB function mainEBVP  

using the build-in bvp4c solver 

s1 s2 s3 s4 s5 s6 s7 s8 

0.49721  0.49412 0.49091 0.48758 0.48414 0.48058 0.47693 0.47317 

4.2  Complex solutions 

In this section we present exemplary results for the case with the complex values of the eigen-

values s and eigenvectors 𝑤(𝑧). Such a situation is taking place when we consider the system 

under study with the basic state in the following form: 

 𝑎0(𝑧) = 1 + 𝜆(1 − 𝑧), (14a) 

 𝑢0(𝑧) = 𝜁𝑧, (14b) 

hence, for the linear toroidal magnetic field 𝑎0(𝑧) and shear flow 𝑢0(𝑧). The nondimensional 

parameter 𝜆 is in the script of the mainEBVP function denoted as “la”. To implement the ap-

propriate basic state, the user has to select these functions in code block no. 02 in the script. 

From previous studies, it is known that such a system can be linearly unstable due to three 

types of instabilities, namely magnetorotational, centrifugal and magnetic buoyancy instability 

(see Balbus and Hawley 1991; Drazin and Reid 2004; Gilman 2018a,b; Mizerski et al. 2013). 

To investigate this for the given values of main system parameters, it is enough to find at least 

one unstable solution, i.e. one with a positive real part of the growth rate s. As an example, we 

assume the following values of main parameters, wavenumber 𝑘𝑦, and the basic state functions 

gradients 𝜁 and 𝜆: 

 𝐿 = 0.25,          𝑃 = 1.5,          𝛼 = 1.0, (15a) 

 𝑈𝑜 = 0.9,          𝑈𝑢 = 1.0,          𝑏0 = 0.01, (15b) 

 𝑘𝑦 = 150,          𝜁 = −1.0,          𝜆 = 1.4. (15c) 

Thus, this case can be treated as an examination of the influence of the toroidal z-dependent 

magnetic field 𝑎0(𝑧) on the case presented in Section 4.1, for the perturbation with particular 

wavenumber ky. 

As in the previous section, the mainEBVP function was used to search for the unstable 

solutions for such settings and with the bvp4c solver accuracy parameter  RelTol = 10−5. The 

number of points of the initial mesh (the variable meshPointsNumber) is equal to 21 on the 

domain [0,1] and the initial guess for the solution is a constant function (solinitNumber = '01'). 

There was no calculation in the loop (loop_switch = 'off'). 

Since the coefficients of Eq. (7) are complex functions, in this case we can expect that the 

eigenvalues will be complex numbers with the real part absolute value of the order of unity, 

i.e.: |ℜ(𝑠)|~1. In this situation, because the bvp4c solver requires an initial value for the un-

known parameter s, it was necessary to carry out preliminary simulations in order to find by the 

“trial and error” method the region of possible positive eigenvalues. In the complex case, this 

is more difficult than in the real one, since we have to select initial guess for both real and 

imaginary parts of the eigenvalue. However, it turns out that such eigenvalues exist, and there-

fore the considered system is linearly unstable due to the assumed perturbations. 

We also managed to identify the most unstable mode, i.e. the eigenvector 𝑤(𝑧) associated 

with the highest possible real part of the eigenvalue s, as well as some subsequent elements of  
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Fig. 2. The eigenvectors w(z) associated with the eight eigenvalues s with the greatest real parts, for 

Eq. (7) for the values of the parameters (15a)–(15c) and basic state (14a)–(14b), found with the user-

defined MATLAB function mainEBVP using the build-in bvp4c solver. The real part ℜ(w(z)) is marked 

with a blue line, the imaginary part ℑ(w(z)) with a red line, and modulus |w(z)| with a yellow line. The 

top left plot is related to the eigenvalue s1 from Table 2, the top right is related to s2, and so forth. The 

plots are normalized so that max(|w|) = 1. 
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the spectrum of linear operator associated with the equation under study. Table 2 contains eight 

eigenvalues s with the greatest real parts, found for the values of parameters (15a)–(15c). Fig-

ure 2 presents modulus as well as real and imaginary parts of their corresponding eigenvectors 

𝑤(𝑧). The functions are normalized on the plot, so that  max(|w|) = 1. 

Table 2 

The real and imaginary parts of the first eight eigenvalues s with the greatest real parts of Eq. (7)  

for the values of the parameters (15a)–(15c) and basic state (14a)–(14b),  

found with the user-defined MATLAB function mainEBVP using the build-in bvp4c solver 

 s1 s2 s3 s4 s5 s6 s7 s8 

ℜ(s) 0.57566 0.57253 0.56936 0.56615 0.56289 0.55963 0.55637 0.55313 

ℑ(s) –0.27533 –0.27306 –0.27063 –0.26804 –0.26534 –0.26257 –0.25976 –0.25692 

 

4.3  Method of continuation 

In this section we present the exemplary results obtained using the “method of continuation” 

(for more details about the method, see Kierzenka (2022), Shampine et al. (2003)). As men-

tioned above, this method is based on a repeated use of the bvp4c solver in a loop, where in 

subsequent steps the solution found in the previous step is used as an initial guess for the next 

calculation. In this chapter, we show how to use this method to solve the eigenvalue problem 

for large values of certain parameters of the equation (in our case: for the large wavenumber 

𝑘𝑦). In such situations, using the solver once can be very inefficient if we are unable to give an 

initial guess for the eigenvalue that is very close to the correct one. The answer to this problem 

is to find a solution for a value of the selected parameter comparable to the orders of magnitude 

of the other parameters (which is usually pretty easy even for poor initial guesses), and then 

increase this parameter in subsequent loop steps until the desired value. The key here is to 

choose the increment value so that, on the one hand, the solver finds subsequent solutions with-

out any problems, and on the other hand, so that the calculations do not take too long. With 

large demanded values of the considered large parameter it may be necessary to gradually in-

crease the increment, and therefore perform calculations in several loops. 

To illustrate our example, we consider the system under study with the basic state in the 

following form: 

 𝑎0(𝑧) = 1 + 𝜆(1 − 𝑧), (16a) 

 𝑢0(𝑧) = 0, (16b) 

hence, in the presence of the toroidal magnetic field 𝑎0(𝑧) and in the absence of the shear flow 

𝑢0(𝑧). To implement the appropriate basic state, the user has to select these functions in code 

block no. 02 in the script and set the variable  dz = 0. 

From previous studies, it is known that such a system can be linearly unstable due to mag-

netic buoyancy instability. We can also expect that the growth rate s (i.e. the eigenvalue) of 

a chosen eigenvector (e.g. the most unstable one) will increase and tend to a certain fixed value 

as the wavenumber 𝑘𝑦 increases (Mizerski et al. 2013; Gradzki and Mizerski 2018). To inves-

tigate the stability of the system for the given values of main parameters, it is enough to find at 

least one unstable solution, i.e. one with a positive real part of the growth rate s. In this case, 

however, our goal will be to find the most unstable eigenvector for wavenumber  𝑘𝑦 = 100, and 

then, using the “continuation method”, determine its equivalent for wavenumber  𝑘𝑦 = 105 

along with its associated eigenvalue. 
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As an example, we assume the following values of the system parameters: 

 𝐿 = 0.25,          𝑃 = 1.5,          𝛼 = 1.0, (17a) 

 𝑈𝑜 = 0.0,          𝑈𝑢 = 1.0,          𝑏0 = 0.0, (17b) 

 𝜁 = 0.0,          𝜆 = 1.4. (17c) 

As in the previous section, the mainEBVP function was used to search for the unstable 

solutions for such settings and with the bvp4c solver accuracy parameter  RelTol = 10−5. The 

number of points of the initial mesh (the variable meshPointsNumber) is equal to 21 on the 

domain [0,1] and the initial guess for the solution is a constant function (solinitNumber = '01'). 

Since we want to do calculations in a loop with the ky parameter increasing, we need to set the 

following values of the corresponding variables: loop_switch = 'on' and loop_over_ky = 'on'. 

According to Mizerski et al. (2013), taking into account the form of Eq. (7) coefficients and 

the assumed values of the system parameters, we can expect that the eigenvalues will be purely 

real numbers with an absolute value of the order of unity, i.e.: |𝑠|~1. In this situation, because 

the bvp4c solver requires an initial value for the unknown parameter s, it was necessary to carry 

out preliminary simulations in order to find by the “trial and error” method the region of possi-

ble positive eigenvalues. It turns out that such values exist, and therefore the  considered system 

is linearly unstable due to perturbations assumed in the form (6a)–(6b).  

For the wavenumber  𝑘𝑦 = 100  it is relatively easy to identify the most unstable mode (i.e. 

the eigenvector 𝑤(𝑧) associated with the highest possible eigenvalue s) since the calculations 

take only few seconds. Once this is achieved, we can start the “continuation method” calculation 

by taking the eigenvalue found for  𝑘𝑦 = 100  as the initial guess in the first step of the loop. 

We set the variables  ky_final = 1e5  and  ky_step = 2. For such settings, calculations take sev-

eral minutes, and intermediate results can be saved to a file and displayed on the screen with 

a selected frequency (variables: period_print, period_save, and period_plot).  

 

 

Fig. 3. The most unstable eigenvectors w(z) of Eq. (7) for the values of the parameters (17a)–(17c) and 

basic state (16a)–(16b), associated with the greatest eigenvalues s from Table 3. Found with the “method 

of continuation” with the user-defined MATLAB function mainEBVP using the build-in bvp4c solver. 

Eigenvectors are determined for the following wavenumbers 𝑘𝑦: 100 (blue line), 500 (red line), 1000 

(yellow line), 5000 (purple line), and 10000 (green line). The plots are normalized so that  max(|w|) = 1. 



M.J. GRĄDZKI 

 

18 

Table 3 contains eigenvalues s found for several selected wavenumbers 𝑘𝑦 and for the other 

parameters values (17a)–(17c). Figure 3 presents their corresponding eigenvectors w(z), nor-

malized so that  max(|w|) = 1. As can be seen on the plot, for increasing wavenumber 𝑘𝑦, the 

most unstable mode becomes more and more localized around a certain point, which is con-

sistent with the theory (cf. Mizerski et al. 2013). 

Table 3 

The greatest eigenvalues s of Eq. (7) for selected wavenumbers 𝑘𝑦 and for the values  

of the parameters (17a)–(17c) and basic state (16a)–(16b), found using the “method of continuation” 

with the user-defined MATLAB function mainEBVP using the build-in bvp4c solver 

𝑘𝑦 100 500 1000 5000 10000 

𝑠 0.37437 0.37538 0.37550 0.37560 0.37561 

 

5. SUMMARY 

The purpose of this paper was to present the application of the built-in MATLAB bvp4c solver 

to study the linear stability of magnetohydrodynamic systems. A script using this solver in the 

form of a user-defined mainEBVP function is discussed and its ready-to-use code is included 

in the Appendix.  

As an example of application, we described the study of the stability of a magnetized elec-

trically conductive fluid layer described by Eqs. (1a)–(1d), due to two-dimensional Fourier dis-

turbances (6a)–(6b) of the basic state given by Eq. (5). We reduced this case to a two-point 

boundary value problem on the w(z) – the amplitude of vertical component of velocity field 

perturbation (Eq. (7) with boundary conditions (8)), with the growth rate s determined as the 

eigenvalue of the linear differential operator associated with this equation.  

The script described in Chapter 3 solves the BVP equation (implemented in the form of a 

system of Eqs. (10a)–(10e)), i.e. for given values of the system parameters it finds eigenvectors 

and corresponding eigenvalues. All results are displayed in the MATLAB command window, 

plotted on graphs and saved to files. Chapter 4 discusses exemplary results for both pure real 

and fully complex eigenvectors and eigenvalues.  

From the point of view of linear stability analysis of the considered MHD system, the real 

case corresponds to the so-called magnetorotational and centrifugal instabilities, and the com-

plex case, additionally, also the instability of magnetic buoyancy. The latter instability analysis 

was also used as an example of using the bvp4c solver in the so-called “continuation method”, 

i.e. solving the same equation multiple times in a loop, using the solutions as an initial guess in 

the next calculation step. 

The script included in the Appendix can be easily modified and adapted to study the stability 

of other physical systems. The necessary condition is to reduce the equations describing them 

to the system of the first order ordinary differential equations of one variable for all unknown 

functions of physical quantities. These equations do not have to be linear, but they cannot con-

tain more than one derivative of the examined functions in each of them. Often such a repre-

sentation is possible, so the bvp4c solver can be a useful tool for analysing such systems. 

In the case of the eigenvalue problems, such as the one we have presented, it is necessary to 

take into account the need to initially guess the value of the unknown parameter and the addi-

tional boundary condition that follows from this. For this reason, using bvp4c will not be a good 

idea if the purpose of the analysis is to study the whole spectrum of the differential operator 

under consideration. However, this solver is perfect for finding eigenvalues close to expected 
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ones or searching for the most unstable eigenvectors, i.e. those associated with the largest ei-

genvalues. Therefore, the bvp4c is especially useful for verifying the results of theoretical anal-

ysis, including those using approximate methods, e.g. perturbation theory, boundary layer 

method, etc. 

Finally, it is worth mentioning that the MATLAB program also has a built-in solver that 

uses higher-order method, namely the bvp5c. It can easily be used in the script present in this 

paper. However, our experience shows that calculations using it take much longer and require 

particularly well-adjusted initial guesses. Also, we observed no essential improvement in the 

accuracy of the results obtained. This leads to the conclusion that MATLAB bvp4c should be 

the first choice solver for boundary value problems, and the script included in the Appendix 

enables its convenient use for a wide range of problems. 
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A p p e n d i x  

THE SOURCE CODE OF THE USER-DEFINED “MAINEBVP” FUNCTION: 

function mainEBVP() 

%% ---------- General information ---------- 

%  

% Function mainEBVP uses MATLAB bvp4c solver to solve the eigenvalue 

% problem: the 2nd order linear ODE with non-constant coefficients and with 

% given boundary conditions (the boundary value problem): 

% W2(z,s)w''(z) + W1(z,s)w'(z) + W0(z,s)w(z) = 0 

% w(z=0) = 0 

% w(z=1) = 0 

% where 's' is the unknown eigenvalue of the equation.  

%  

% For the eigenvalue problem bvp4c solver requires an additional boundary 

% condition to determine the value of s. Hence the main ODE is implemented 

% in the nested function odefun as the system of three 1st order ODEs: 

% w1'(z) = w2(z) 

% w2'(z) = -(W1/W2)w2(z) - (W0/W2)w1(z) 

% w3'(z) = w1(z) (or: abs(w1(z))^2, etc.) 

% where the last equation for the antiderivative of w1(z) together with two 

% additional boundary conditions is the normalization of the solution w1. 

% This boundary conditions are implemented in the nested function bcfun as:  

% w1(z=0) = 0 

% w1(z=1) = 0 

% w3(z=0) = 0 

% w3(z=1) = 1 

%  

% Function mainEBVP after simple modifications can potentially solve other 

% linear ordinary eigenproblems of higher orders, different BC etc. The 

% below version of the mainEBVP function implements as an example the 

% equation for the w(z) function, which is the amplitude of the linear 

% axisymmetric Fourier-form perturbation of the fluid velocity field in the 

% z-direction. The considered fluid is compressible, inviscid, isothermal 

% and electrically perfectly conducting, described by the ideal gas law and 

% located between the two infinite planes (z=0 and z=1). The fluid in the 

% basic equilibrium state is determined by the external magnetic field of 

% the form [a0(z), b0, 0], gravity [0,0,-g], rotation [0,R,0] and the shear 

% flow [0,u0(z),0]. This basic state is perturbed by the x-independent 

% modes varying in the y-direction, which for the velocity field take the 
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% form: [u(z),v(z),w(z)]*exp(s*t+i*ky*y), where ky is the wavenumber in the 

% horizontal y-direction and s is the growth rate of the potential 

% instability (complex number in general). It can be shown that the system 

% of equations for the perturbations amplitudes can be algebraically 

% manipulated to obtain one 2nd order ODE for the function w(z) with growth 

% rate s determined as the eigenvalue of the problem. This is the main 

% equation solved in this script, and hence the function w1(z) mentioned 

% above is the vertical velocity perturbation amplitude w(z) in considered 

% physical system. For more details of the similar systems see: 

% 1) The case without the rotation and shear flow: 

% Mizerski,K.A., Davies,C.R. & Hughes,D.W.(2013),"Short-wavelength magnetic 

% buoyancy instability", The Astrophysical Journal Supplement, 205, 16. 

% 2) The case from 1) with magnetic and thermal diffusion added: 

% Gradzki,M.G. & Mizerski,K.A.(2018),The Effect of Weak Resistivity and 

% Weak Thermal Diffusion on Short-wavelengt Magnetic Buoyancy Instability, 

% The Astrophysical Journal Supplement, 235, 13 

% 

% The function mainEBVP optionally uses the so-called "method of 

% continuation", where the first solution found is used as a initial guess 

% for the next solver calculation, and so forth in the loop. The bvp4c 

% solver requires the initial guess for both the solution function and the 

% eigenvalue, which can be a problem because the computation takes a long 

% time when this input data differs significantly from the output. The 

% method of continuation allows to obtain solution even from relatively 

% poor initial guesses. What is more, it also allows to change the 

% parameter values or the accuracy of calculations in each step of the 

% loop, which can be very useful. On the other hand it seems to be less 

% effective for the complex functions and eigenvalues. For more details see: 

% Jacek Kierzenka(2022), "Tutorial on solving BVPs with BVP4C", MATLAB 

% Central File Exchange, Retrieved November 12, 2022. 

%  

% In the current version, the mainEBVP function takes the following INPUT 

% (the numbers correspond to the numbering of the code blocks): 

% 01: INPUT: Main parameters [from physical problem] 

% 02: INPUT: Basic state functions [from physical problem] 

% 03: INPUT: Solver options [see bvp4c MATLAB help] 

% 04: INPUT: Initial guess properties [see bvp4c MATLAB help] 

% 05: INPUT: OPTIONAL: solving in the loop [for the method of continuation] 

% 

% The mainEBVP function gives the following OUTPUT: 

% 11: OUTPUT: Display results on the screen [MATLAB Command Window] 

% 12: OUTPUT: Save data to the files [last solution file & log file] 

% 13: OUTPUT: Plots [basic state density; Re, Im, and Abs of the solution] 

% 

% The mainEBVP function uses the following nested functions: 

% w_guess_01  [constant initial guess for the solution]  

% w_guess_02  ["half-sine" initial guess for the solution] 

% odefun   [main ODE to be solved] 

% bcfun       [boundary conditions of the main ODE] 

% bcjac       [Jacobians of the boundary conditions] 

% extra_space [print numbers with spaces by thousand] 

% 

% It is worth noting that the mainEBVP function after minor modifications 

% can be also used with higher-order MATLAB bvp5c solver. 

%  

% Abbreviations used in the comments: 

% ODE - ordinary  differential equation 

% MF  - magnetic field 

% SF  - shear flow 

% GR  - growth rate of the instability (eigenvalue s of the system) 

% BS  - basic (equilibrium) state  

% BC  - boundary condition(s) 

% IG  - initial guess of the solution 

%  

% Copyright: M.J.Gradzki 2022© 

% Contact: marek.gradzki@gmail.com 
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%% ---------- 01:INPUT: Main parameters ---------- 

  

% Main nondimensional parameters: 

Uu = 1.00;  % shear flow scale 

Uo = 0.90;  % rotational frequency scale 

P  = 1.50;  % squared "pressure speed" scale 

a  = 1.00;  % P*a is the squared isothermal speed of sound scale 

L  = 0.25;  % squared Alfven speed scale 

f  = 1.00;  % gravity "flag": 1.0="gravity on", 0.0="gravity off"  

  

% Basic state functions parameters: 

b0 =  0.01;  % constant poloidal MF (y-direction) 

la =  1.4;     % parameter of the basic toroidal MF a0(z) 

dz = -1.0;     % parameter of the basic horizontal shear flow u0(z) 

R1 =  1.0;     % BC for the basic state density: r0(z=1)=R1  

  

% Horizontal wavenumber (y-direction): 

ky = 150;   

  

  

%% ---------- 02:INPUT: Basic state functions ---------- 

  

% Choose one form of the basic shear flow and toroidal magnetic field 

% COMMENT the other options! 

  

% % Function handle to ZERO basic toroidal MF a0(z): 

% a0_fh = @(z) 0.0;  % MF  

% da0   = 0.0;       % MF 1st z-derivative  

% dda0  = 0.0;       % MF 2nd z-derivative  

  

% Function handle to LINEAR basic toroidal MF a0(z): 

a0_fh = @(z) 1+la.*(1-z);  % MF  

da0   = -la;               % MF 1st z-derivative  

dda0  = 0.0;               % MF 2nd z-derivative  

  

% % Function handle to ZERO basic SF u0(z): 

% u0_fh  = @(z) 0.0;  % SF 

% du0_fh = @(z) 0.0;  % SF 1st z-derivative  

% ddu0   = 0.0;       % SF 2nd z-derivative 

  

% Function handle to LINEAR basic SF u0(z): 

u0_fh  = @(z) dz.*z;  % SF 

du0_fh = @(z) dz;     % SF 1st z-derivative  

ddu0   = 0.0;         % SF 2nd z-derivative 

  

% % Function handle to QUADRATIC basic shear flow u0(z):  

% u0_fh  = @(z) dz.*(z.*z - z + 1);  % SF 

% du0_fh = @(z) dz.*(2*z - 1);       % SF 1st z-derivative  

% ddu0   = 2*dz;                     % SF 2nd z-derivative 

  

  

%% ---------- 03:INPUT: Solver options ---------- 

  

options = [];  % <- DO NOT CHANGE that line 

options = bvpset(options, 'Stats', 'off');        % 'on'/'off' 

options = bvpset(options, 'RelTol', 1e-5);        % default: 1e-3 

options = bvpset(options, 'AbsTol', 1e-6);        % default: 1e-6 

options = bvpset(options, 'Vectorized', 'on');    % 'on'/'off' 

options = bvpset(options, 'BCJacobian', @bcjac);  % comment to switch off 

options = bvpset(options, 'NMax', 1e20);          % default: floor(1e4/n) 

  

  

%% ---------- 04:INPUT: Initial guess properities ---------- 

  

% Initial value of the growth rate s (eigenvalue): 

sRe =  0.58;  % real part 
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sIm = -0.28;  % imaginary part 

  

% Properities of the initial guess (IG) of the solution:  

za = 0.0;  % left boundary of the domain  

zb = 1.0;  % right boundary of the domain 

meshPointsNumber = 1+2e1;  % number of points of the IG mesh 

solinitNumber    = '01';   % IG solution type: '01'=constant, '02'=sine 

  

  

%% ---------- 05:INPUT: Solving in the loop (OPTIONAL)  ---------- 

% Solving 'by continuation' in a loop.  

% Uses previously obtained solution as initial guess it next step 

% Possible change of parameter values in subsequent steps (ky, RelTol,...), 

% to obtaine high values of ky or better tolerance 

  

% Loop Calculation Switch: 

loop_switch = 'off';  % 'on'/'off' 

  

% Choose loop with ky changing ('on') or constant ('off'):  

loop_over_ky = 'off';  % 'on'/'off' 

  

% Set for the loop with changing ky: 

ky_final = ky + 10;  % the greatest ky in the loop / ky + 1000.0 

ky_step  = 1.0;        % ky increment in the loop 

  

% Set for the loop with constant ky: 

loop_steps_number = 10; 

  

% Choose the frequency of printing, saving and ploting: 

period_print = 1;  % Period of printing on the screen [unit=step] 

period_save  = 1;  % Period of saving to the file [unit=step] 

period_plot  = 1;  % Period of drawing the plot [unit=step] 

  

% Plot delay: 

pause_time_plot = 0.0;  % 0.0=no pause in drawing new plots in the loop 

  

  

%% ---------- 06:SOLVER: Creation of the initial guess ---------- 

  

% Initial value of the growth rate s (eigenvalue): 

s_init  = sRe + 1i*sIm; 

  

% Uniform mesh for initial guess: 

z_mesh = linspace(za, zb, meshPointsNumber);  % (0, 1e<n>, 1+1e<n>) 

  

% Create initial guess of the solution using solinit: 

if strcmp(solinitNumber, '01') 

    solinit = bvpinit(z_mesh, @w_guess_01, s_init); 

elseif strcmp(solinitNumber, '02') 

    solinit = bvpinit(z_mesh, @w_guess_02, s_init); 

end 

  

  

%% ---------- 07:SOLVER: Calculation of the solution ---------- 

  

% Convenient definition: 'P' and 'a' appear only in the product: 

Pa = P*a;     

  

% Basic state equation for the basic density r0(z): 

myode = @(z,r) ((Uu*Uo*u0_fh(z)-f)/Pa)*r - (L/Pa)*a0_fh(z)*da0; 

  

% Solution of the basic state equation for the basic density r0(z): 

sol_r0 = ode45(myode, [1 0], R1);  % BC: r0(z=1)=R1 

  

% Evaluation of the basic density r0(z) (used by nested functions): 

r0_fh = @(z) deval(sol_r0, z, 1);  % '1' is the first part of sol vector 
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tic  % start stopwatch timer 

start_date = datestr(now);  % start date and time of the calculation 

fprintf('%-5s\n', ['Start: ', start_date]);  % print start date and time 

  

% Print initial setup info: 

ky_init = ky; 

fprintf('ky   = %.1f\n', ky_init) 

fprintf('b0   = %.1e\n', b0) 

fprintf('Init sigma = %+.15f %+.15fi \n', sRe, sIm) 

fprintf(['Init guess = ', solinitNumber, ' (number) \n']) 

fprintf('Init mesh  = %1.0f points \n', meshPointsNumber) 

fprintf('RelTol = %.1e\n', bvpget(options,'RelTol',1e-3)) 

fprintf('AbsTol = %.1e\n', bvpget(options,'AbsTol',1e-6)) 

  

% !!! The first and main use of the solver... 

% ... and the only one, if loop_switch = 'off' 

sol = bvp4c(@odefun, @bcfun, solinit, options); 

  

% Components of the variable sol (created by bvp4c): 

% sol.x = final mesh of the domain z=[0,1] 

% sol.y(1,:) = w1(x) = w(z) = amplitude of z-comp. of velocity perturb. 

% sol.y(2,:) = w2(x) = w'(z) = derivative of w(z) 

% sol.y(3,:) = w3(x) = function used for normalization of w(z) 

  

% Stop the timer and set the date if loop_switch = 'off' 

if strcmp(loop_switch, 'off') 

    time = round(toc);         

    end_date = datestr(now); 

end 

  

loop_steps = 1; % DO NOT CHANGE whether the loop_switch is 'on' or 'off' 

  

  

%% ---------- 08:SOLVER: OPTIONAL: Solving in a loop ---------- 

% Solving 'by continuation' in a loop (see ).  

% Uses previously obtained solution as initial guess it next step 

% Possible change of parameter values in subsequent steps (ky, RelTol,...), 

% to obtaine high values of ky or better tolerance 

  

if strcmp(loop_switch, 'on') 

     

    % Open the file to save loop-solving results: 

    loop_sol = fopen('loop_sol.txt','w'); 

     

    % Save initial setup info to the file: 

    fprintf(loop_sol, 'ky   = %.1f\n', ky_init); 

    fprintf(loop_sol, 'b0   = %.1e\n', b0); 

    fprintf(loop_sol, 'Init sigma = %+.15f %+.15fi \n', sRe, sIm); 

    fprintf(loop_sol, ['Init guess = ', solinitNumber, ' (number) \n']); 

    fprintf(loop_sol, 'Init mesh  = %1.0f points \n', meshPointsNumber); 

     

    % Print & save info about the first solution found in the section 07: 

    [~, x_max_ind] = max(abs(sol.y(1,:))); 

    x_plot = sol.x(x_max_ind);  % argument of the maximum of abs(sol.y(1)) 

    RelTolLoop = bvpget(options,'RelTol'); 

    AbsTolLoop = bvpget(options,'AbsTol'); 

    % Print on the screen: 

    fprintf('For ky = %5.6e, s = %+4.15f %+4.15fi, z_loc = %+4.15f,',... 

        ky, real(sol.parameters), imag(sol.parameters), x_plot); 

    fprintf(' RelTol = %5.1e, AbsTol = %5.1e. Step %1.d \n',... 

        RelTolLoop, AbsTolLoop, 1); 

    % Save in the file: 

    fprintf(loop_sol, 'For ky = %5.6e, s = %+4.15f %+4.15fi, z_loc = %+4.15f,',... 

        ky, real(sol.parameters), imag(sol.parameters), x_plot); 

    fprintf(loop_sol, ' RelTol = %5.1e, AbsTol = %5.1e. Step %1.d \n',... 

        RelTolLoop, AbsTolLoop, 1); 
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    % Creation of the main PLOT of this section: 

    figLoop = figure('Name','Solving in the loop'); 

    hold on 

    pause_time = pause_time_plot;   

     

    % Plot of the REAL part of the initial guess of w1(z): 

    plot(solinit.x, real(solinit.y(1,:))/max(abs(solinit.y(1,:))), '-'); 

    title('Solving in the loop', 'interpreter','latex'); 

    xlabel('$$z$$', 'interpreter','latex') 

    ylabel('$$\Re[w(z)]$$', 'interpreter','latex') 

    set(gca, 'FontSize', 15) 

    xlim([0.0 1.0]) 

    % ylim([0.0 1.0]) 

    % grid on 

    drawnow 

    pause(pause_time) 

     

    % Plot normalized first solution found in previous section: 

    plot(sol.x, real(sol.y(1,:))/max(abs(sol.y(1,:))), '-'); 

    drawnow 

    pause(pause_time) 

     

    % Loop setup: 

    k_init  = ky;  % Do NOT change!!! 

    % If loop with changing ky was chosen in section 05 we have:  

    if strcmp(loop_over_ky, 'on')   

        loop_steps_number = 1 + ceil((ky_final-k_init)/ky_step); 

    end 

      

    % In each step solve and then optionally print, plot, save to file:  

    for i1 = 2:loop_steps_number  

        if strcmp(loop_over_ky, 'on')  

            ky = ky + ky_step;  % for loop with changing ky 

        end 

        % % Uncomment ONLY for loop over the RelTol: 

        % RelTolLoop = RelTolLoop/10;  

        % options = bvpset(options, 'RelTol', RelTolLoop); 

        % % Uncomment ONLY for loop over the AbsTol: 

        % AbsTolLoop = AbsTolLoop/10;  

        % options = bvpset(options, 'AbsTol', AbsTolLoop); 

        % Solve in the current loop step:  

        sol = bvp4c(@odefun, @bcfun, sol, options); 

        % Find argument z of the abs(w1(z)) maximum: 

        [y_max, x_max_ind] = max(abs(sol.y(1,:))); 

        x_plot = sol.x(x_max_ind);         

        % OPTIONALLY print, plot, save to file with period chosen in sec.05 

        if mod(i1, period_print) == 0  % Print on the screen: 

            fprintf('For ky = %5.6e, s = %+4.15f %+4.15fi, z_loc = %+4.15f,',... 

                ky, real(sol.parameters), imag(sol.parameters), x_plot); 

            fprintf(' RelTol = %5.1e, AbsTol = %5.1e. Step %1.d \n',... 

                RelTolLoop, AbsTolLoop, i1); 

        end 

        if mod(i1, period_save) == 0  % Save to file: 

            fprintf(loop_sol, 'For ky = %5.6e, s = %+4.15f %+4.15fi, z_loc = 

%+4.15f,',... 

                ky, real(sol.parameters), imag(sol.parameters), x_plot); 

            fprintf(loop_sol, ' RelTol = %5.1e, AbsTol = %5.1e. Step %1.d \n',... 

                RelTolLoop, AbsTolLoop, i1); 

        end               

        if mod(i1, period_plot) == 0  % Plot Re(w1(z)) on the main plot: 

            plot(sol.x, real(sol.y(1,:))/y_max, '-'); 

            drawnow 

            pause(pause_time) 

        end 

        loop_steps = loop_steps + 1; % ONLY for display & strings!!! 

    end 

    hold off 
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    % Close file with saved loop results: 

    fprintf(loop_sol, '%-5s\n', '');  % adds empty line 

    fclose(loop_sol);     

     

    % If the loop_switch = 'on': 

    time = round(toc);  % The timer stops 

    end_date = datestr(now);  % End date stops 

     

    % plot to file: 

    saveas(figLoop,'figLoop')  % plot to .fig file 

    orient(figLoop,'landscape') 

    print('figLoop','-dpdf','-fillpage') % plot to .pdf file 

    orient(figLoop,'portrait')  

    print('figLoop','-djpeg') % plot to .jpeg file 

end 

  

  

%% ---------- 09:SOLVER: Additional calculations ---------- 

  

% Final ky and s (for strings in plots and files): 

ky = ky(end);  % It works fine even if ky is a scalar 

s_fin = sol.parameters; 

  

% index of argument z for max value of w1(z): 

[~, x_max_ind] = max(abs(sol.y(1,:))); 

% argument of this max value: 

x_fin = sol.x(x_max_ind); 

  

% Some integrals of the solution w1(z):  

S_w1      = trapz(sol.x, sol.y(1,:));         % Int. of Re(w1)+i*Im(w1)  

S_w1_abs  = trapz(sol.x, abs(sol.y(1,:)));    % Int. of Abs(w1) 

S_w1_sq   = trapz(sol.x, sol.y(1,:).^2);      % Int. of Re(w1^2)+i*Im(w1^2) 

S_w1_abs2 = trapz(sol.x, abs(sol.y(1,:)).^2); % Int. of Abs(w1)^2 

% These integrals are used to check the normalization condition ... 

... namely the last EQ in odefun(z,w,s) 

  

  

%% ---------- 10:SOLVER: Creating strings for plots and files ---------- 

  

% Proper time unit (to dispaly) is automatically selected here: 

if (60<=time) % && (time<=3600) 

    time = (time/60); 

    calcTimeUnit = char(' min'); 

elseif time>3600 

    time = (time/3600); 

    calcTimeUnit = char(' h'); 

else 

    calcTimeUnit = char(' s'); 

end 

  

% Proper f-jacobian info (to dispaly) is automatically selected here: 

if isempty(bvpget(options,'FJacobian')) 

    FJac = 'FJac.  = off'; 

else 

    FJac = 'FJac.  = on'; 

end 

  

% Proper BC-jacobian info (to dispaly) is automatically selected here: 

if isempty(bvpget(options,'BCJacobian')) 

    BCJac = 'BCJac. = off'; 

else 

    BCJac = 'BCJac. = on'; 

end 

  

% Strings for plot annotation and for data files: 

str01 = { ... 
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      ['Start: ', start_date] ... 

    , ['End  : ' end_date] ... 

    , ['b0   = ', num2str(b0,'%+.1e\n')] ... 

    , ['ky   = ', extra_space(ky_init)] ... 

    , ['ky FINAL         = ', extra_space(ky), ' ~ ', num2str(ky,'%.0e')] ... 

    , ['sigma FINAL      = ', num2str([real(s_fin),imag(s_fin)],'%+.15f 

%+.15fi\n')] ... 

    , ['sigma init.guess = ', num2str([sRe, sIm],'%+.15f %+.15fi\n')] ... 

    , ['z.max FINAL      = ', num2str([real(x_fin),imag(x_fin)],'%+.15f %+.2fi\n')] 

... 

    , ['Integral  w1     = ', num2str([real(S_w1),imag(S_w1)],'%+.8f %+.8fi\n')] 

... 

    , ['Integral |w1|    = ', num2str(S_w1_abs,'%+.8f\n')] ... 

    , ['Integral  w1*w1  = ', num2str([real(S_w1_sq),imag(S_w1_sq)],'%+.8f 

%+.8fi\n')] ... 

    , ['Integral |w1*w1| = ', num2str(S_w1_abs2,'%+.8f\n')] ...     

    , ['Total.calculation.time    = ', num2str(time, '%10.1f\n'),calcTimeUnit] ... 

    , ['Loop steps number         = ', num2str(loop_steps,'%10.d\n')] ... 

    , ['Solution init. guess no.  = ', num2str(solinitNumber,'%10.d\n')] ... 

    , ['Initial mesh pts.number   = ', num2str(numel(z_mesh),'%10.d\n')] ... 

    , ['Final mesh points number  = ', num2str(sol.stats.nmeshpoints,'%10.d\n')] 

... 

    , ['Final ODEfun evals.number = ', num2str(sol.stats.nODEevals,'%10.d\n')] ... 

    , ['Final BCfun  evals.number = ', num2str(sol.stats.nBCevals,'%10.d\n')] ... 

    , ['Final.maximum.residual    = ', num2str(sol.stats.maxres,'%10.1e\n')] ... 

    , ['Solver = bvp4c'] ... 

    , ['RelTol = ', num2str(bvpget(options,'RelTol',1e-3),'%10.1e\n')] ... 

    , ['AbsTol = ', num2str(bvpget(options,'AbsTol',1e-6),'%10.1e\n')] ... 

    , ['NMax   = ', num2str(bvpget(options,'NMax','def.'),'%10.1e\n')]... 

    , ['Vect.  = ', bvpget(options,'Vectorized'),]... 

    , FJac ... 

    , BCJac 

    }; 

  

  

%% ---------- 11:OUTPUT: Display results on the screen ---------- 

  

% Print result at the command window: 

fprintf('---------------- OUTPUT START ----------------\n'); 

for i2 = 1:numel(str01) 

        fprintf('%-5s\n', str01{1,i2}); 

end 

fprintf('------------------ OUTPUT END ------------------\n'); 

fprintf(' \n'); 

  

  

%% ---------- 12:OUTPUT: Save data to the files ---------- 

  

% Save calculation details to the file (without overwriting): 

f00_info = fopen('mainEBVP_log.txt','a'); 

fprintf(f00_info, '---------------- LOG START ----------------\n'); 

for i3 = 1:numel(str01) 

    fprintf(f00_info, '%-5s\n', str01{1,i3}); 

end 

fprintf(f00_info, '---------------- LOG END ------------------\n'); 

fprintf(f00_info, '\n'); 

fprintf(f00_info, '\n'); 

% fprintf(f00_info, '%-5s\n', ''); 

fclose(f00_info); 

  

  

% Save NONnormalized solution sol to the file (with overwriting): 

f01_sol = fopen('mainEBVP_last_sol.txt','w'); 

for i4 = 1:numel(str01)  

    fprintf(f01_sol, '%-5s\n', str01{1,i4}); % Save calculation details 

end 

fprintf(f01_sol, '%-5s\n', ''); 
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fprintf(f01_sol, '%+17s %+17s %+17s %+17s\n',... 

    'sol.x', 'sol.y1', 'sol.y2', 'sol.y3'); 

fprintf(f01_sol, '%+12.10e %+12.10e %+12.10e %+12.10e\n', ... 

    [sol.x; sol.y(1,:); sol.y(2,:); sol.y(3,:)]); % Save the solution 

fclose(f01_sol); 

  

  

%% ---------- 13:OUTPUT: Plots ---------- 

  

% Plot of the basic state density r0(z), calculated in the section 07: 

fig0r0 = figure('Name','Basic state density r0(z)'); 

plot(sol_r0.x, sol_r0.y, '-', 'MarkerSize',10) 

title('Basic state density $$\rho_{0}(z)$$', 'interpreter','latex'); 

xlabel('$$z$$', 'interpreter','latex') 

ylabel('$$\rho_{0}(z)$$', 'interpreter','latex') 

set(gca, 'FontSize', 15) 

xlim([0.0 1.0]) 

% Save plot to files:  

saveas(fig0r0,'fig_BasicStateDensity')  % plot to .fig file 

orient(fig0r0,'landscape') 

print('fig_BasicStateDensity','-dpdf','-fillpage')  % plot to .pdf file 

orient(fig0r0,'portrait')  

print('fig_BasicStateDensity','-djpeg')  % plot to .jpeg file 

  

  

% Plot of the normalized real part of the solution w1(z), i.e.: Re[w(z)]: 

fig01real = figure('Name','Real part of the normalized solution: Re[w(z)]'); 

plot(sol.x, real(sol.y(1,:))/max(abs(real(sol.y(1,:)))), '-', ... 

     'MarkerSize', 10) 

title('Real part of the normalized solution: $$\Re[w(z)]$$', 'interpreter','la-

tex'); 

xlabel('$$z$$', 'interpreter','latex') 

ylabel('$$\Re[w(z)]$$', 'interpreter','latex') 

set(gca, 'FontSize', 15) 

xlim([0.0 1.0]) 

% Save plot to files:  

saveas(fig01real,'fig_solution_real_y1')  % plot to .fig file 

orient(fig01real,'landscape') 

print('fig_solution_real_y1','-dpdf','-fillpage')  % plot to .pdf file 

orient(fig01real,'portrait')  

print('fig_solution_real_y1','-djpeg')  % plot to .jpeg file 

  

  

% Plot of the normalized imaginary part of the solution w1(z), i.e.: Im[w(z)]: 

fig01imag = figure('Name','Imaginary part of the normalized solution: Im[w(z)]'); 

plot(sol.x, imag(sol.y(1,:))/max(abs(imag(sol.y(1,:)))), '-', ... 

     'MarkerSize', 10) 

title('Imaginary part of the normalized solution: $$\Im[w(z)]$$', 'interpret-

er','latex'); 

xlabel('$$z$$', 'interpreter','latex') 

ylabel('$$\Im[w(z)]$$', 'interpreter','latex') 

set(gca, 'FontSize', 15) 

xlim([0.0 1.0]) 

% Save plot to files:  

saveas(fig01imag,'fig_solution_imag_y1')  % plot to .fig file 

orient(fig01imag,'landscape') 

print('fig_solution_imag_y1','-dpdf','-fillpage')  % plot to .pdf file 

orient(fig01imag,'portrait')  

print('fig_solution_imag_y1','-djpeg')  % plot to .jpeg file 

  

  

% Plot of the normalized modulus of the solution w1(z), i.e.: |w(z)|: 

fig01abs = figure('Name','Moduls of the normalized solution: |w(z)|'); 

plot(sol.x, abs(sol.y(1,:))/max(abs(sol.y(1,:))), '-', ... 

     'MarkerSize', 10) 

title('Moduls of the normalized solution: $$|w(z)|$$', 'interpreter','latex'); 

xlabel('$$z$$', 'interpreter','latex') 
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ylabel('$$|w(z)|$$', 'interpreter','latex') 

set(gca, 'FontSize', 15) 

xlim([0.0 1.0]) 

% Save plot to files:  

saveas(fig01abs,'fig_solution_abs_y1')  % plot to .fig file 

orient(fig01abs,'landscape') 

print('fig_solution_abs_y1','-dpdf','-fillpage')  % plot to .pdf file 

orient(fig01abs,'portrait')  

print('fig_solution_abs_y1','-djpeg')  % plot to .jpeg file 

  

  

% Plot of all normalized parts of the solution w1(z), i.e.: 

% Re[w(z)], Im[w(z)] and Abs[w(z)]: 

fig01all = figure('Name','All parts of the normalized solution w(z)'); 

plot(sol.x, real(sol.y(1,:))/max(abs(sol.y(1,:))), '-', ... 

     sol.x, imag(sol.y(1,:))/max(abs(sol.y(1,:))),  '-', ... 

     sol.x,  abs(sol.y(1,:))/max(abs(sol.y(1,:))),  '-', ... 

     'MarkerSize', 10) 

title('All parts of the normalized solution: $$w(z)$$', 'interpreter','latex'); 

xlabel('$$z$$', 'interpreter','latex') 

ylabel('$$w(z)$$', 'interpreter','latex') 

leg1 = legend('$$\Re[w(z)]$$', '$$\Im[w(z)]$$', '$$|w(z)|$$'); 

legend('Location','northwest') 

set(leg1,'Interpreter','latex'); 

set(gca, 'FontSize', 15) 

xlim([0.0 1.0]) 

% Save plot to files:  

saveas(fig01all,'fig_solution_all_y1')  % plot to .fig file 

orient(fig01all,'landscape') 

print('fig_solution_all_y1','-dpdf','-fillpage')  % plot to .pdf file 

orient(fig01all,'portrait')  

print('fig_solution_all_y1','-djpeg')  % plot to .jpeg file 

  

  

%% ---------- Nested functions ---------- 

  

% Components of the variable sol (created by bvp4c): 

% sol.x = final mesh of the domain z=[0,1] 

% sol.y(1,:) = w1(z) = w(z) = amplitude of z-comp. of velocity perturb. 

% sol.y(2,:) = w2(z) = w'(z) = derivative of w(z) 

% sol.y(3,:) = w3(z) = function used for normalization of w(z) 

  

% ----- Initial guess 01: constant ----- 

    function w_init = w_guess_01(z) 

    w_init = [1; 1; 1]; 

    end  % w_guess_01 

  

  

% ----- Initial guess 02: sine-type ----- 

    function w_init = w_guess_02(z) 

    w_init = [sin(1*pi*z) 

         pi*cos(1*pi*z) 

         -(1/pi)*cos(1*pi*z)]; 

    end  % w_guess_02 

  

  

% ----- Main ODE to be solved ----- 

    function dwdz = odefun(z,w,s) 

    % All formulae in this function are VECTORIZED! 

    % WORKS OK even for 'Vectorization' = 'off' !!!! 

     r0 =  r0_fh(z);  % r0(z): basic state density calc. from BS ODE 

     a0 =  a0_fh(z);  % a0(z): toroidal MF       

     u0 =  u0_fh(z);  % u0(z): horizontal shear flow    

    du0 = du0_fh(z);  % u0'(z): z-derivative of the horizontal SF    

    % Relations obtained from basic state equation: 

    dr0  = ((Uu*Uo*u0-f)/Pa).*r0 - (L/Pa)*da0.*a0; 

    ddr0 = ((Uu*Uo*u0-f)/Pa).*dr0 + (Uu*Uo/Pa).*r0.*du0 ... 
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           - (L/Pa).*((da0).^2 + a0.*dda0);  

    % Main coefficients of the 2nd order ODE for w(z): 

    W2 = (-b0.^2.*ky.^2.*L - r0.*s.^2).* ... 

        ((a0.^2.*L + Pa.*r0).*s.^2 + b0.^2.*L.*(ky.^2.*Pa + s.^2)).* ... 

        (b0.^2.*ky.^2.*L.*(ky.^2.*Pa + s.^2) + ... 

        s.^2.*(a0.^2.*ky.^2.*L + r0.*(ky.^2.*Pa + s.^2))); 

    W1 = (-b0.^4).*ky.^6.*L.^2.*Pa.*s.^2.*(a0.*da0.*L + 2.*dr0.*Pa +... 

        r0.*(f - u0.*Uo.*Uu)) - r0.^2.*s.^8.*(3.*a0.*da0.*L + 2.*dr0.*Pa +... 

        r0.*(f - u0.*Uo.*Uu)) + ky.^2.*((-(a0.^2.*L + Pa.*r0)).*s.^6.*... 

        (a0.^2.*dr0.*L + a0.*da0.*L.*r0 + r0.*(2.*dr0.*Pa + r0.*(f - ... 

        u0.*Uo.*Uu))) - b0.^2.*L.*s.^6.*(a0.^2.*dr0.*L + 4.*a0.*da0.*L.*r0 +... 

        2.*r0.*(2.*dr0.*Pa + r0.*(f - u0.*Uo.*Uu)))) + ky.^4.*((-b0.^4).*... 

        L.^2.*s.^4.*(a0.*da0.*L + 2.*dr0.*Pa + r0.*(f - u0.*Uo.*Uu)) -... 

        b0.^2.*L.*s.^4.*(a0.^3.*da0.*L.^2 + 2.*a0.*da0.*L.*Pa.*r0 +... 

        2.*Pa.*r0.*(2.*dr0.*Pa + r0.*(f - u0.*Uo.*Uu)) + a0.^2.*L.*... 

        (3.*dr0.*Pa + r0.*(f - u0.*Uo.*Uu)))); 

    W0 = b0.^6.*ky.^10.*L.^3.*Pa.^2 - 1i.*b0.*da0.*ky.*L.*r0.^2.*s.^7.*Uo +... 

        r0.^2.*s.^8.*((-dr0).*f - da0.^2.*L - a0.*dda0.*L - ddr0.*Pa + ... 

        dr0.*u0.*Uo.*Uu + r0.*(s.^2 + Uo.^2 + du0.*Uo.*Uu)) - ... 

        1i.*a0.*b0.^3.*ky.^7.*L.^2.*Pa.*s.*Uo.*(a0.*da0.*L + dr0.*Pa + ... 

        r0.*(-f + u0.*Uo.*Uu)) + ky.^8.*(2.*b0.^6.*L.^3.*Pa.*s.^2 + ... 

        b0.^4.*L.^2.*Pa.*(2.*a0.^2.*L.*s.^2 + Pa.*r0.*(3.*s.^2 + du0.*Uo.*Uu)... 

        + a0.*da0.*L.*(f - u0.*Uo.*Uu))) + ky.^6.*(b0.^6.*L.^3.*s.^4 + ... 

        b0.^4.*L.^2.*s.^2.*(2.*a0.^2.*L.*s.^2 - Pa.*(dr0.*f + da0.^2.*L + ... 

        ddr0.*Pa - dr0.*u0.*Uo.*Uu - 2.*r0.*(3.*s.^2 + du0.*Uo.*Uu)) + ... 

        a0.*L.*((-dda0).*Pa + da0.*(f - u0.*Uo.*Uu))) + b0.^2.*L.* ... 

        s.^2.*(a0.^4.*L.^2.*s.^2 + Pa.^2.*r0.^2.*(3.*s.^2 + Uo.^2 + ... 

        2.*du0.*Uo.*Uu) + a0.^3.*da0.*L.^2.*(f - u0.*Uo.*Uu) + ... 

        2.*a0.*da0.*L.*Pa.*r0.*(f - u0.*Uo.*Uu) + a0.^2.*L.*Pa.*(r0.*(4.*s.^2 +... 

        Uo.^2 + 2.*du0.*Uo.*Uu) + dr0.*(-f + u0.*Uo.*Uu)))) + ... 

        ky.^3.*((-1i).*b0.^3.*L.^2.*(a0.*dr0 + da0.*r0).*s.^5.*Uo - ... 

        1i.*b0.*L.*s.^5.*Uo.*(a0.^3.*dr0.*L + da0.*Pa.*r0.^2 + ... 

        a0.*r0.*(dr0.*Pa + r0.*(-f + u0.*Uo.*Uu)))) + ... 

        ky.^5.*((-1i).*a0.*b0.*L.*(a0.^2.*L + Pa.*r0).*s.^3.*Uo.*(a0.*da0.*L +... 

        dr0.*Pa + r0.*(-f + u0.*Uo.*Uu)) - ... 

        1i.*b0.^3.*L.^2.*s.^3.*Uo.*(a0.^2.*da0.*L + da0.*Pa.*r0 + ... 

        a0.*(2.*dr0.*Pa + r0.*(-f + u0.*Uo.*Uu)))) + ... 

        ky.^4.*((-b0.^4).*L.^2.*s.^4.*(dr0.*f + da0.^2.*L + a0.*dda0.*L + ... 

        ddr0.*Pa - dr0.*u0.*Uo.*Uu - r0.*(3.*s.^2 + du0.*Uo.*Uu)) + ... 

        (a0.^2.*L + Pa.*r0).*s.^4.*(Pa.*r0.^2.*(s.^2 + Uo.^2 + du0.*Uo.*Uu) +... 

        a0.*da0.*L.*r0.*(f - u0.*Uo.*Uu) + a0.^2.*L.*(r0.*(s.^2 + Uo.^2 + ... 

        du0.*Uo.*Uu) + dr0.*(-f + u0.*Uo.*Uu))) + ... 

        b0.^2.*L.*s.^4.*((-a0.^3).*dda0.*L.^2 + 2.*Pa.*r0.*((-dr0).*f - ... 

        da0.^2.*L - ddr0.*Pa + dr0.*u0.*Uo.*Uu + r0.*(3.*s.^2 + Uo.^2 + ... 

        2.*du0.*Uo.*Uu)) + a0.^2.*L.*(-2.*dr0.*f + da0.^2.*L - ddr0.*Pa + ... 

        2.*dr0.*u0.*Uo.*Uu + r0.*(4.*s.^2 + Uo.^2 + 2.*du0.*Uo.*Uu)) + ... 

        2.*a0.*L.*(da0.*dr0.*Pa + r0.*((-dda0).*Pa + da0.*(f - u0.*Uo.*Uu))))) +... 

        ky.^2.*(b0.^2.*L.*r0.*s.^6.*(r0.*(3.*s.^2 + Uo.^2 + 2.*du0.*Uo.*Uu) -... 

        2.*(da0.^2.*L + a0.*dda0.*L + ddr0.*Pa + dr0.*(f - u0.*Uo.*Uu))) +... 

        s.^6.*((-a0.^3).*L.^2.*(da0.*dr0 + dda0.*r0) + Pa.*r0.^2.*((-dr0).*f -... 

        da0.^2.*L - ddr0.*Pa + dr0.*u0.*Uo.*Uu + 2.*r0.*(s.^2 + Uo.^2 + ... 

        du0.*Uo.*Uu)) + a0.*L.*r0.*(2.*da0.*dr0.*Pa + r0.*((-dda0).*Pa + ... 

        da0.*(f - u0.*Uo.*Uu))) + a0.^2.*L.*((-dr0.^2).*Pa + 2.*r0.^2.*(s.^2 +... 

        Uo.^2 + du0.*Uo.*Uu) + r0.*(da0.^2.*L - ddr0.*Pa - ... 

        2.*dr0.*(f - u0.*Uo.*Uu)))));  

    % Structure of the main system of equations:  

    % dw1/dz = w2 

    % dw2/dz = [main eq] 

    % dw3/dz = abs(w1)^2  % exemplary normalization of w1(z) function 

    dwdz = [w(2,:) 

            -(W1./W2).*w(2,:)-(W0./W2).*w(1,:) 

            abs(w(1,:)).^2]; 

            % Normalization options for the last equation: 

            % w(1,:) / abs(w(1,:)) / w(1,:).^2 / abs(w(1,:)).^2 

            % First one is the fastest, last one is the saftiest!  

    end  % odefun 
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% ----- Boundary conditions ----- 

    function res = bcfun(wa,wb,s) 

    % Three BC + additional 4th BC to determine the eigenvalue! 

    res = [wa(1) 

           wb(1) 

           wa(3)       % normalization of w1 

           wb(3)-(1)]; % normalization of w1 

    end  % bcfun 

  

  

% ----- Jacobian of the boundary conditions ----- 

    function [dbcdwa,dbcdwb,dbcds] = bcjac(z,w,s) 

    % Analytical partial derivatives of bcfun(wa,wb,s): 

    dbcdwa = [1 0 0 

              0 0 0 

              0 0 1 

              0 0 0]; 

    dbcdwb = [0 0 0 

              1 0 0 

              0 0 0 

              0 0 1]; 

    dbcds  = [0; 0; 0; 0]; 

    end  % bcjac 

  

  

% ----- Spaces in chars-numbers ----- 

    function numOut = extra_space(numIn) 

    % Function gives char or string with spaces by thousand, e.g.: 

    % e.g.: extra_space(1e7) = '10 000 000' 

    jf = java.text.DecimalFormat; 

    numOut = char(jf.format(numIn));  % omit "char" if you want a string 

    end  % extra_space 

  

  

end  % MAIN: mainEBVP 
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