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A b s t r a c t  

Earthquake prediction is often considered the Holy Grail of seismology and earthquake 

science. However, earthquake research can be motivated both by challenge, when asking 

about seismic risk or hazard, or how lives could be saved, and by curiosity, when asking about 

the physics behind the observed patterns of seismicity. In this brief review, I focus on the 

second, cognitive aspect of earthquake science. I wonder how interesting seismicity and 

earthquake physics can be for a theoretical physicist turned seismologist. 

 

1. INTRODUCTION 

A physicist looks at the world through the prism of concepts such as momentum, energy, field, 

interactions, waves, entropy or probabilities, and instabilities. A geophysicist describes the 

Earth and the elements of its system, such as the geosphere, hydrosphere, cryosphere, 

atmosphere, or near-terrestrial space, in this way. A physicist turned seismologist applies the 

same tools of physics to study seismicity, earthquakes, and related processes. 

There is no fundamental theory of earthquakes, such as the theory of electrodynamics or 

gravitation. There is a collage of diversity: specific models, concepts, or observations. Elastic 

rebound, earthquake cycle, slow and fast slips on faults, scaling relations, seismic moment 

budget, radiated seismic energy, stress trigger and shadow, slip deficit, and missing moment 

are the terms that we need to know to get some insight into the earthquake science. Thus, the 

earthquake science is more like the theory of turbulence, which remains ‘the last unsolved 

problem of classical physics’, though many of its specific problems have been well understood 

(Falkovich and Sreenivasan 2006). Understanding earthquakes and getting a consistent view on 

seismicity means putting all the pieces of the earthshaking jigsaw puzzle together (Hough 

2002). 

Mentioning that, which I believe is true, I start to think about Roman Teisseyre. I see him 

sitting at his desk and writing mathematical equations on a sheet of paper or making notes on a 

copy of a published research article. The search for a fundamental theory of earthquakes, similar 

to the theory of electrodynamics or gravitation, seems to be the main feature of his approach to 

his research, his Holy Grail of earthquake science. A physicist in search of the theory of 
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earthquakes is how I remember him as a scientist, or as a theoretical physicist who became a 

seismologist. 

2. SEISMOLOGY AND THEORETICAL PHYSICS 

Gravitation. Einstein’s theory of gravitation, or General Relativity, is based on the Einstein 

field equation, G = 8πT, where G is the Einstein tensor representing the space-time curvature, 

which can be expressed as a nonlinear function of the metric tensor, and T is the stress-energy 

tensor of the matter. Thus, the Einstein equation relates space-time geometry to the stress-

energy of the matter (Misner et al. 1973). According to this view of the Universe, space-time is 

no longer merely a stage for events. On the one hand, matter and energy curve the space. On 

the other hand, the curvature of space determines the movement of matter and energy. Although 

this equation seems simple, it is in fact a complex system of non-linear differential equations 

with a wealth of applications and consequences. It governs the motions of luminous galaxies 

and dark matter, the evolution of the large-scale structure of matter in the Universe, and the 

geometry of spacetime, including instabilities, singularities, and gravitational waves caused by 

moving matter. By adding a term with the cosmological constant to the field equation, λg, where 

g is the metric tensor, you can account for dark energy in the Universe. 

Earthquake physics is based on continuum mechanics, to which a similar geometrical 

approach can be applied, with the incompatibility law, R = S, playing the role of Einstein’s field 

equation. Here, R represents the space curvature and S represents the sources of elastic strains 

and internal stresses in the medium (Kröner 1981). Dislocations or other defects, modelled as 

non-elastic or plastic, stress-free deformations within an elastic medium, play a similar role as 

matter in the theory of gravity, i.e., as sources of deformations and changes in the geometry of 

the medium. Since earthquake sources can be modelled as dislocation distributions, this view 

enables us to explain the deeper meaning of the seismic moment tensor, as well as interactions 

between tectonic faults, where a slip in one place can cause another slip in a distant place; or 

interactions among earthquakes, which can be treated as slip events on faults (see Appendix). 

Such a perspective allows the physicist to develop the theory of complex earthquake sources 

using similar mathematical tools, physical concepts, and intuitions, as has been done in the case 

of the theory of gravitation or other theories of physics, including electrodynamics. 

Electrodynamics. We describe the electromagnetic field using the four quantities: electric 

field strength, E, electric field induction, D, magnetic field strength, H, and magnetic field 

induction, B. Electric charge density, ρ, and electric current density, J, describe the sources of 

the electromagnetic field and their motion. Maxwell’s equations of the electromagnetic field 

determine the relationships between the quantities describing this field and its sources: Gauss’ 

laws for electric and magnetic fields, and Faraday’s and Ampère-Øersted’s laws for, 

respectively, electric and magnetic induction (Jackson 1998). 

The field equations are supplemented with three material equations characterizing the 

medium. The first defines the relationship between electric field strength and electric field 

induction, D = εE, where ε is electric permittivity. The second defines the relationship between 

magnetic field strength and magnetic field induction, B = μH, where μ is the magnetic 

permeability. The third is Ohm’s law, which defines the relationship between electric field 

strength and current density, J = σE, where σ is conductivity. From Maxwell’s equations, we 

obtain the laws of conservation of electric charge and electromagnetic field energy, i.e., the 

continuity equation and the Poynting equation, respectively. 

Earthquake physics is based on elastodynamics, with the stress-free, plastic deformations to 

model seismic source dynamics (see Appendix). Respective theory can be formulated in 

analogy to electrodynamics. The stress, τ, stands for the electric field strength, E; distortion, β, 

stands for the electric field induction, D. Displacement velocity, v, stands for the magnetic field 
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strength, H, whereas momentum density, w, stands for the magnetic field induction, B. The 

field sources are the dislocation density, α, and the dislocation current density, ρ. The field 

equations of elastodynamics have the same geometric interpretation as the equations of 

electrodynamics, including the equivalents of the Poynting equation and Ohm’s law, which 

describe the strain and kinetic energy balance, together with its dissipation during slip (Bovet 

1979). Although seismicity is a complex system and cannot be fully described by 

elastodynamics, its field equations enable us to gain deeper insight into various aspects of 

earthquake physics, including energy balance and interactions in seismic zones. 

Cosmology. Galaxies, consisting of stars and interstellar gas clouds, can be seen with 

telescopes as “points of light”. They are clustered in small and big groups, with hundreds to 

thousands of members. Such clusters are grouped in superclusters distributed along 

interconnected walls and filaments surrounding almost empty regions called voids (Martinez 

and Saar 2001; Gott 2016). The superclusters form a three-dimensional, large-scale structure of 

the Universe, which can be perceived as a cosmic web, with the richest galaxy clusters 

concentrated near its nodes. The observed galaxy distribution is the result of gravitational 

growth of small initial fluctuations or instabilities in the almost uniform early Universe (Peebles 

1981). 

However, the visible objects in the Universe are regarded as just tracers, or “light maps”, of 

the underlying cosmic matter distribution. The galaxy clusters are above all dense 

concentrations of the dark matter, which can be detected by its gravitational effects and is 

thought to account for approximately 85% of the matter in the Universe. One of the objectives 

of the modern cosmology is to relate the visible objects, both optically and by X-ray 

observations, to the underlying, actual, mostly dark mass distribution (Borgani and Guzzo 

2001). 

Seismicity can be viewed in a similar way. The distribution of epicenters of strong 

earthquakes on the world map marks the boundaries of tectonic plates. Their patterns in specific 

regions, such as the Japanese subduction zone or the Nepal-Himalayan collision zone, reflect 

the complex processes underlying earthquake occurrence. For example, when we plot 

earthquake epicenters along the Japan Trench as circles with their radii related to earthquake 

source areas, for a given time period, we can recognize a kind of seismic web: a hierarchical 

structure with some visible voids, where earthquakes less frequently occur, as in the case of the 

cosmic web. That structure reflects the underlying plate interface physical features, such as 

asperities, where the plates are coupled stronger, and where higher stresses accumulate due to 

the plate movements, surrounded by weaker, non-asperity regions. Thus, earthquake sources 

reflect characteristic, deeper structures at the plate interface, like glowing galaxies reflect the 

deeper structure of dark matter in the night sky. The challenge is to recognize the nature of these 

voids: are they places of strong plate bonding, which, when cracked, become the source of 

strong earthquakes; or, on the contrary, are they places of weak bonding, where the slip is slow, 

invisible to seismometers. 

Turbulence. Turbulence can be defined as a chaotized flow. It can be viewed, therefore, 

from two different points of view. First, as the flow, it is modelled by the Navier-Stokes 

equations, which result from Newton’s second law applied to the viscous fluid motion and 

express momentum balance and conservation of mass in hydrodynamics. Second, as the chaotic 

process, which is irregular in both time and space, it can be described in terms of statistical 

averages, such as moments of velocity differences with their dependences on spatial scales 

(Falkovich and Sreenivasan 2006). 

Mechanism for the generation of turbulent flows can be considered as an energy cascade. 

The energy is injected at the largest length scale; it is transferred or cascaded without loss 

through the intermediate, so-called inertial range of scales, and it is finally dissipated by 
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viscosity at its characteristic, smallest length scale. Nonlinear effects are responsible for 

producing a hierarchy of motions on smaller and smaller scales. 

The motions of individual particles in a turbulent flow are irregular and unpredictable, but 

statistical tools enable us to reveal some order, or geometrical and dynamical structures, that 

occur in such a complex process. They are expressed as statistical conservation laws and scaling 

relations, which describe how different statistical averages change with scale or size measures. 

Seismicity is driven by the slow relative movement of tectonic plates, and the energy thus 

supplied to the system is released through fast and slow slips along faults, so aseismic creep 

phenomena, slow slip events, and earthquakes, all of varying sizes and scales. 

The earthquake rupture processes can be simulated by using the differential-integral 

equation, where a slip velocity at a given point on a fault depends on the net stress, so the 

driving stress caused by the tectonic loading and slips or deformations in the whole medium, 

minus the frictional stress due to material characteristics of the fault at that point (Senatorski 

2019). However, the seismicity models should involve probabilistic principles that reflect our 

uncertainty about the future earthquakes. By looking at the geodetic and seismic data, it is easy 

to explain why a given large earthquake did occur at a given time and site, and why its 

magnitude and other characteristics are as observed, but we do not know those details in 

advance. What we can only guess are possible scenarios or outcomes. We do not have enough 

knowledge to predict which of the possible scenarios will be realized, though we do know the 

constraints they should meet. 

Such constraints can be learned from energy budget observations, accumulated and released 

strains due to, respectively, the tectonic plate movements and earthquakes, or alternatively, slow 

slip events observed in a given region. They result also from the plate interface characteristics, 

which are reflected by statistical scaling relations among earthquake parameters, and from our 

understanding of the relation between the structure and material characteristics of a subduction 

channel at the plate interface and the plate coupling strength at a given location (Senatorski 

2020). We should use all and only available knowledge for the honest and effective forecasts 

of the largest earthquakes, so that our uncertainty about the system outcome is also taken into 

account. In a sense, the slippage occurring on a fault can, as in the case of turbulence, be called 

the chaotized flow; and that is why its modeling should take into account both our knowledge 

and uncertainty. 

3. CONCLUSIONS 

Earthquake prediction is often considered the Holy Grail of seismology and earthquake science. 

However, earthquake studies can be motivated both as a challenge to save lives and by curiosity 

about earthquake processes. This short review is focused on the second aspect, when we ask 

about the physics behind the observed seismicity patterns.  

Referring to four examples – the theory of gravity, electrodynamics, cosmology, and 

turbulence – I tried to show that seismology, as a part of geophysics, can and should draw 

inspiration from even such distant fields of physics. I think that field theory, statistical physics, 

and astrophysics, along with geophysical observations, were the main inspiration and starting 

point for Roman Teisseyre’s considerations reflected in his books and articles (Teisseyre and 

Teisseyre-Jeleńska 2014). Among these inspirations, the continuum dislocation theory, briefly 

discussed in the appendix, played a special role. 

Seismicity is a complex system. Seismic networks and space geodesy provides a detailed 

view of the stress accumulation-release process at the plate interface in seismic zones. This 

approach has not brought effective earthquake predictions. We hope that new methods of data 

processing, including machine learning methods, will help to solve the problem. But perhaps 

we also need more creative and more imaginative theoretical considerations – and perhaps 
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surprisingly simple solutions – as is the case in other fields of modern physics. What makes the 

science of earthquakes so fascinating is that its different aspects – cognitive and practical – 

cannot be separated. 

A P P E N D I X  

 

Earthquakes are understood as processes of fast slips along faults. An earthquake source can 

be modelled as a plastic deformation within an elastic medium representing the crust of the 

Earth. Elastic deformations are related to stress by Hook’s law. Plastic deformations are stress-

free. 

Thought experiment. The following procedure can be imagined (Kröner 1981). A 

macroscopic body is built up of many small-volume elements. Each of the small elements is 

deformed plastically, so that they do not fit well together. Then, we deform them elastically in 

such a way that they fit together again. The elastic deformation should be just opposite to the 

plastic one to do the task. After the elements are welded and the forces responsible for the elastic 

deformation are removed, the body relaxes into the lowest energy state by a second elastic 

deformation. 

The same procedure can be applied to a finite earthquake source volume and its 

surroundings. First, we cut out and remove the volume from its neighborhood and deform it 

plastically. Then, we deform the separated volume elastically so that, when inserted back into 

its surroundings, it fits into the empty space. When the entire medium relaxes, additional elastic 

deformation occurs both in the source volume, which was plastically deformed, and outside the 

source volume, where there was no plastic deformation. 

These imagined procedures can be described mathematically by using plastic, uP, elastic, u, 

and total, uT, displacement fields, and related distortions β = ∇u,  βP = ∇uP, and  βT = ∇uT, so 

that  uT = u + uP  and  βT = β + βP. To see how stresses are generated, symmetric elastic, plastic, 

and total strain tensors are defined as symmetrized gradients of the displacement vector fields, 

respectively, ε = ∇s u,  dεP = ∇s u
P,  and  εT = ∇s u

T, so that the total strain tensor is  εT = ε + εP.  

Dislocations and incompatibility law. In general, there is no plastic or elastic unique 

displacement fields in the welded macroscopic body, so neither β = βT – βP nor βP can be 

expressed as gradients of the dis-placement fields. Instead, they can be defined as differential 

forms, du = βdx  and  duP = βPdx, where du represents a change of a distance between points 

that were at a distance dx before the deformation. Distortions β and βP are incompatible, if they 

are not compatible with the existence of a unique displacement fields and may not be expressed 

as gradients. The total distortion has to be compatible, as far as the body is not broken into 

pieces. This means that its rotation vanishes,  ∇ × βT = ∇ × ∇uT = 0. However,  ∇ × βP = α ≠ 0,  

so for elastic distortion we have the first incompatibility law:  

∇×β = –α , 

with the dislocation density tensor, α, as a source of elastic distortion (Kröner 1981). 

For strains, the incompatibility tensor is then defined as  η = ∇ × εP × ∇  (meaning that 

rotation is calculated column-wise then row-wise). It is equal to zero, if εP  can be expressed as 

a symmetrized gradient of the plastic displacement field,  εP = ∇s u
P. Since for the total strain 

tensor we have  εT = ∇s u
T, the second incompatibility law is: 

∇ × ε × ∇ = –η , 

with the dislocation incompatibility tensor, η, as a source of elastic strains (Kröner 1981). 
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The second incompatibility law provides us with the geometric constraints on the elastic 

strain field, ε, if sources  η ≠ 0  are present. This local formula does not change when the elastic 

deformation described by any displacement field, λ, is imposed. Any solution of the 

incompatibility law may be written as  ε = ε′ + ∇λ, where ε′ is its particular solution. The 

compatible strains ∇λ, which can be produced by external forces, do not change the geometric 

constrains given by the incompatibility law. Using this invariance, the incompatibility law can 

be rewritten, in analogy to the Einstein’s field equations, as  R = S. Tensor field  R = ∆ε 

represents space curvature and can be expressed as function of the metric tensor, whereas tensor 

field  S = ½ (η – ηÎ), where η is the trace of the incompatibility tensor, represents sources of 

elastic strains and internal stresses in the medium. 

The incompatibility tensor can be expressed as symmetrized rotation of the dislocation 

density tensor, η = (∇ × α)s. For given internal stress sources S, elastic strains can be calculated 

by using Green’s function, as in the case of theory of gravitation. 

Seismic moment tensor. The seismic moment tensor is one of the basic quantities 

characterizing the size and strength of a seismic source. Based on the scalar seismic moment, 

the so-called earthquake magnitude, mW, is defined. The physical interpretation of the seismic 

moment is based on the concept of plastic deformations, i.e., inelastic, free of stress deformation 

of the medium within the seismic source volume (e.g. Udías et al. 2014; Madariaga 2015). 

After the procedure described above, elastic strains are  ε = ∇s u
T – εP, where  εP = 0  outside 

the seismic source volume. The related stress field is, according to Hook’s law:  

σ = C∙ε = C∙∇ uT – m , 

where the seismic moment density tensor, m = C∙εP, is the excess stress, i.e., the difference 

between the stress due to displacements uT and Hook’s law, and the actual stresses in the 

medium. C is the elasticity or stiffness tensor. 

The tensor field  m(t, r) = 0  outside the source region. Its gradient determines the additional 

volumetric force to be included in the equations of motion for a continuous medium. Integrating 

over the source area, we get the tensor of the total seismic moment of the source: 

M(t) = ∭dr m(t, r) , 

which can be interpreted as the internal stress generated in the medium by its inelastic 

deformation within the seismic source. 

In the case of slip along a fault, displacement discontinuities are obtained by passing to the 

zero limit of the thickness, h, of the narrow zone of plastic deformation in such a way that the 

volume integral of deformations remains finite. We write the deformation tensor as a 

generalized function: 

lim
ℎ→0

𝜺𝑃(t, r) h = [∆u (t, r) n]s δ(r ∈ A) , 

where ∆u denotes slip along the plane A, and n is the unit vector normal to A.  

The seismic moment density tensor is: 

m = C∙∆u∙n δ(r ∈ A) ,  

and the total seismic moment is:  

M(t) = ∬dA C∙∆u(t, r)∙n . 

For isotropic medium  Cijkl = λδij δkl + μ(δδik δjl + δil δjk), so the seismic moment tensor can 

be written as:  

M(t) = 2μ�̅�A[n∙d]s , 
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where  MO = �̅�μA  is the scalar seismic moment, μ is shear modulus, �̅� is mean slip, and d is 

the slip unit vector. 

Other applications. Both discrete (Anderson et al. 2017) and continuum (Kröner 1981) 

theories of dislocations allow to model complex, heterogeneous seismic sources, including their 

static characteristics and long-range interactions, rupture dynamics, as well as aseismic 

processes leading to earthquake rupture. Their generalization to a more complex medium with 

asymmetric stresses, or non-symmetric elasticity tensor, rotational effects, and conjugated 

strain modes enabled Roman Teisseyre to develop his innovative approach towards earthquake 

source physics (e.g. Teisseyre and Teisseyre-Jeleńska 2014). 
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