Publications of the Institute of Geophysics, Polish Academy of Sciences

Geophysical Data Bases, Processing and Instrumentation

vol. 455 (P-5), 2025, pp. 61-62

DOI: 10.25171/InstGeoph_PAS_Publs-2025-084

40th International Polar Symposium – Arctic and Antarctic at the Tipping Point, 4–7 November 2025, Puławy, Poland

Stress Resilience of the Polar Streptophyte Green Microalga *Klebsormidium Flaccidum* from Svalbard, High Arctic

Anastasiia KOLOMIIETS^{1,2,3,⊠}, Oleksandr BREN^{2,3}, Pavel PŘIBYL³,

Jana KVÍDEROVÁ^{2,3,6}, Lenka PROCHÁZKOVÁ⁴, Ekaterina PUSHKAREVA⁵,

Josef ELSTER^{2,3}, and Burkhard BECKER⁵

¹Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic

²Centre for Polar Ecology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic

³Department of Phycology, Institute of Botany CAS, Třeboň, Czech Republic
 ⁴Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
 ⁵Institute for Plant Sciences, University of Cologne, Cologne, Germany

⁶Centre for Biology, Geosciences and the Environment, Faculty of Education, University of West Bohemia, Plzeň, Czech Republic

□ anastasiia.kolomiiets@ibot.cas.cz

Abstract

Polar regions are generally considered to have extreme environmental conditions: nutrient-deficient soils, low temperatures and frequent freeze-thaw cycles in winter, and desiccation in summer. These factors are highly demanding for biological soil crusts microalgae to develop various adaptation strategies. The novel experimental strain of the widespread green streptophyte microalga *Klebsormidium flaccidum* CCALA 1182, found in terrestrial and freshwater habitats, was isolated from biological soil crusts in Svalbard (High Arctic). The study aimed to explore *Klebsormidium flaccidum* CCALA 1182 stress resilience to desiccation, nitrogen starvation, low temperatures, and freezing using laboratory-simulated conditions that mimic natural, through a physiology and transcriptomic approach. We discovered that metabolic activity was altered by nitrogen limitation, whereas low temperatures and des-

^{© 2025} The Author(s). Published by the Institute of Geophysics, Polish Academy of Sciences. This is an open access publication under the CC BY license 4.0.

iccation had a more subtle effect. Furthermore, low temperature hardening stimulated resilience to desiccation and freezing, in contrast to nitrogen deficiency, which intensified the detrimental effect of these treatments. Overall, the experimental strain *Klebsormidium flaccidum* CCALA 1182 demonstrated its ability to acclimate to unfavourable conditions, with constant stress-related gene expression, and highlighted the limited information available about the mechanisms of resistance to freezing stress of this microalga.

Keywords: polar biological soil crusts, desiccation, *Klebsormidium flaccidum*, nitrogen starvation.

Received 15 September 2025 Accepted 20 October 2025