Publications of the Institute of Geophysics, Polish Academy of Sciences

Geophysical Data Bases, Processing and Instrumentation

vol. 455 (P-5), 2025, pp. 169-170

DOI: 10.25171/InstGeoph_PAS_Publs-2025-116

40th International Polar Symposium – Arctic and Antarctic at the Tipping Point, 4–7 November 2025, Puławy, Poland

In the Shadow of the Atlantic: Niche Plasticity and Coexistence Strategies of Boreal-Arctic Sibling Zooplankton in the Pelagic Realm

Marta GŁUCHOWSKA^{1,⊠}, Kaja BALAZY¹, Malin DAASE^{2,3},
Katarzyna KOZIOROWSKA¹, Sławomir KWAŚNIEWSKI¹, Karol KULIŃSKI¹,
Weronika PATUŁA¹, Janne SØREIDE³, Paul E. RENAUD^{3,4}, and Emilia TRUDNOWSKA¹

¹Institute of Oceanology, Polish Academy of Sciences (IOPAN), Sopot, Poland

²UiT The Arctic University of Norway, Tromsø, Norway

³The University Centre in Svalbard, Longyearbyen, Norway

⁴Akvaplan-niva, Tromsø, Norway

⊠ mgluchowska@iopan.pl

Abstract

The intensified inflow of warm Atlantic Water into the arctic ocean is reshaping pelagic ecosystems, making them increasingly similar to those of the North Atlantic. As a result, resident Arctic zooplankton species now commonly coexist with closely related boreal counterparts over broad regions, particularly in the European Arctic. This study explores ecological interactions between such sibling species—representing diverse taxonomic and functional groups (large calanoid copepods, amphipods, euphausiids, chaetognaths)—with a focus on their habitat use, trophic strategies, and trait plasticity.

Field data were collected during summer cruises from 2022 to 2024 aboard RV Oceania and RV Helmer Hanssen, covering six fjords across Svalbard and adjacent shelf waters. Vertical distributions and isotopic niches (δ^{13} C and δ^{15} N) were analyzed to assess spatial and trophic overlap. Species identification was based on morphological criteria and confirmed with molecular tools. Selected specimens for isotopic analysis were imaged at high resolution, and body measurements were extracted using machine learning-assisted image processing.

Although sibling species often shared similar horizontal distributions, they tended to differ in their vertical occurrence within the water column, suggesting partial spatial segregation. Stable isotope data showed that trophic niches between sibling species often overlapped, but both the position and width of these niches varied depending on the functional role of the

^{© 2025} The Author(s). Published by the Institute of Geophysics, Polish Academy of Sciences. This is an open access publication under the CC BY license 4.0.

species pair, the region, and the extent to which the species co-occurred at depth. These patterns highlight the variability in habitat use and trophic structure among boreal and Arctic zooplankton, offering insight into the complexity of Arctic pelagic systems in the context of ongoing Atlantification.

Received 15 September 2025 Accepted 20 October 2025