Publications of the Institute of Geophysics, Polish Academy of Sciences

Geophysical Data Bases, Processing and Instrumentation

vol. 455 (P-5), 2025, pp. 241-242

DOI: 10.25171/InstGeoph_PAS_Publs-2025-139

40th International Polar Symposium – Arctic and Antarctic at the Tipping Point, 4–7 November 2025, Puławy, Poland

Inorganic Chemistry of Surface Waters in the Palsa Mires Region of Northern Finland

Joanna JÓŹWIK^{1,⊠}, Krystyna KOZIOŁ², Danuta SZUMIŃSKA², Marcin FRANKOWSKI³, Marta JAKUBIAK⁴, Kamil NOWIŃSKI⁵, Mieszko WOŁYŃSKI¹, and Żaneta POLKOWSKA¹

¹Gdańsk University of Technology, Chemical Faculty, Gdańsk, Poland

²Kazimierz Wielki University in Bydgoszcz, Faculty of Geographical Sciences, Bydgoszcz, Poland

³Adam Mickiewicz University, Faculty of Chemistry, Poznań, Poland

⁴University of Wrocław, Institute of Geological Sciences, Wrocław, Poland

⁵University of Gdańsk, Faculty of Oceanography and Geography, Gdańsk, Poland

⊠ joanna.jozwik@pg.edu.pl

1. INTRODUCTION

Climate warming in the Northern Hemisphere accelerated permafrost degradation (Streletskiy 2021), leading to physical and chemical changes in Arctic and sub-Arctic watersheds (Tananaev and Lotsari 2022; Verdonen et al. 2023). Palsa mires are a feature of sporadic and patchy permafrost landscapes in Northern Finland. We analysed inorganic chemistry (ions, metals and metalloid concentrations) of freshwater (rivers and lakes) collected from this region in the summer 2022 to detect their characteristic features.

2. MATERIALS AND METHODS

We have collected 54 water samples between Aug 17th and 25th 2022 in the Tana river watershed, from the tributaries connected to a various extent to palsa mires, and ten lakes both inside and outside of the palsa mire, for comparison. We have analysed acidified (high-purity HNO₃, Suprapur, Merck Life Science) filtrate for elemental concentrations of Be, P, S and Ti with inductively coupled plasma optical emission spectrometry (ICP-OES 9820, Shimadzu, Japan) and of Ag, Al, As, Ba, Bi, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Sb, Se, Si, Sr, V and Zn with inductively coupled plasma mass spectrometry (ICP-MS 2030, Shimadzu, Japan).

^{© 2025} The Author(s). Published by the Institute of Geophysics, Polish Academy of Sciences. This is an open access publication under the CC BY license 4.0.

J. JÓŹWIK et al.

3. RESULTS

The water were well buffered (pH range 5.93-8.23) and poor in dissolved solute (SpC $16.5-44.3~\mu\text{S/cm}$). The concentrations of metals and metalloids were generally in the low range, never exceeding the drinking water guideline levels. However, the geochemical background was exceeded for some samples in the case of Ni and Zn concentrations. Multiple correlations were found between the elemental concentrations determined, and clear differences occurred between various study areas.

4. CONCLUSIONS

The hydrochemistry of palsa mire waters has showed distinct features from the surrounding waters.

Acknowledgments. We express our gratitude to the team of the Kevo Subarctic Research Station in Utsjoki for receiving our team in 2022, and to Filip Pawlak, PhD, for assistance in laboratory analyses. Funding from the PER2Water National Science Centre of Poland (NCN) grant no. 2021/41/B/ST10/02947 is acknowledged. Research Potential Maintenance funds at Gdansk Tech also supported this work.

References

- Streletskiy, D. (2021), Permafrost degradation. **In:** W. Haeberli and C. Whiteman (eds.), *Snow and Ice-Related Hazards, Risks, and Disasters*, 2nd ed., Chp. 10, Elsevier, 297–322, DOI: 10.1016/B978-0-12-817129-5.00021-4.
- Tananaev, N., and E. Lotsari (2022), Defrosting northern catchments: Fluvial effects of permafrost degradation, *Earth-Sci. Rev.* **228**, 103996, DOI: 10.1016/j.earscirev.2022.103996.
- Verdonen, M., A. Störmer, E. Lotsari, P. Korpelainen, B. Burkhard, A. Colpaert, and T. Kumpula (2023), Permafrost degradation at two monitored palsa mires in north-west Finland, *Cryosphere* 17, 5, 1803–1819, DOI: 10.5194/tc-17-1803-2023.

Received 15 September 2025 Accepted 20 October 2025