Publications of the Institute of Geophysics, Polish Academy of Sciences

Geophysical Data Bases, Processing and Instrumentation

vol. 455 (P-5), 2025, pp. 251–253

DOI: 10.25171/InstGeoph_PAS_Publs-2025-143

40th International Polar Symposium – Arctic and Antarctic at the Tipping Point, 4–7 November 2025, Puławy, Poland

Isotopic and Geochemical Signatures of Proglacial Lakes at Lions Rump (King George Island, Antarctica): Identifying Hydrological Sources and Assessing Chemical Composition in a Changing Polar Environment

Joanna POTAPOWICZ^{1,⊠}, Krystyna KOZIOŁ², Marta JAKUBIAK³, Marcin FRANKOWSKI⁴, Robert Józef BIALIK⁵, Anna SULEJ-SUCHOMSKA⁶, Sara LEHMANN-KONERA⁷, Joanna JÓŹWIK⁸, and Żaneta POLKOWSKA⁸

¹Faculty of Oceanography and Geography, Gdańsk, Poland

²Faculty of Geographical Sciences, Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland

³Institute of Geological Sciences, University of Wrocław, Wrocław, Poland

⁴Faculty of Chemistry, Adam Mickiewicz University Poznań, Poznań, Poland

⁵Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland

⁶Faculty of Management and Quality Sciences, Gdynia Maritime University, Gdynia, Poland

⁷Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland

⁸Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland

⊠ joanna.potapowicz@ug.edu.pl

Keywords: proglacial lakes, stable isotopes, trace elements, glacial meltwater, climate change, Antarctica.

1. INTRODUCTION

Proglacial lakes in Antarctica, primarily fed by melting ice and snow, are sensitive indicators of climatic shifts and ongoing cryospheric and geochemical processes in their surroundings (Turner et al. 2005). Due to their shallow depth, limited water exchange, and geographic isolation, these systems are particularly vulnerable to contamination and hydrological imbalance (Bargagli 2008). Lions Rump headland (ASPA 151), located in the southwestern part of King

^{© 2025} The Author(s). Published by the Institute of Geophysics, Polish Academy of Sciences. This is an open access publication under the CC BY license 4.0.

George Island, is a region of high ecological value with prominent glacial and limnological features. These isolated lakes not only record hydrological and chemical changes (Mulvaney et al. 2012) but also act as potential sites of contaminant accumulation, as previously demonstrated for periglacial systems in Admiralty Bay (Szopińska et al. 2018). This study, conducted on seventeen lakes in the area (water samples LR1–LR17), integrates the analysis of stable isotopes of hydrogen and oxygen with a broad spectrum of major and trace element concentrations to determine the origin of waters, mechanisms of recharge, and potential sources of chemical constituents.

2. METHODS

Isotopic analyses were carried out using cavity ring-down spectroscopy (CRDS, Picarro L2140-i), calibrated with international reference standards and normalized to the Vienna Standard Mean Ocean Water (VSMOW) scale (Skrzypek 2013). The δ^2 H and δ^{18} O composition showed distinct spatial variability between lakes located near glacier termini and those situated further inland or at higher elevations. Some samples were characterized by depleted δ^{18} O and δ^2 H values, indicative of a dominant glacial meltwater component, while others reflected mixing with snowmelt or atmospheric precipitation. Isotopic enrichment observed in a few lakes suggests the influence of evaporative processes. The δ^2 H vs. δ^{18} O relationship and the position of samples relative to the local meteoric water line provided insight into recharge mechanisms and lake isolation levels (Gat 1996; Leng and Marshall 2004).

3. RESULTS

Chemical analyses were performed using ICP-OES and ICP-MS (Shimadzu 9820 and 2030), allowing quantification of major elements (Ca, Mg, Na, K, Fe, Si, P, S) and 22 trace elements, including Pb, Zn, Cu, As, Mn, Ni, Cr, Cd, and Se. The chemical composition of lake waters revealed clear spatial patterns related to glacier proximity, exposure to atmospheric deposition, and influence from wildlife activity. In most samples, lithogenic elements dominated, indicating strong interaction between water and bedrock through glacial erosion and mechanical weathering. Several lakes showed elevated levels of trace metals, potentially associated with ornithogenic input or long-range atmospheric deposition, a phenomenon also reported in freshwater of Admiralty Bay (Szopińska et al. 2018).

In some samples, increased concentrations of redox-sensitive metals such as Mn, Fe, and Al were found, especially in shallow, well-oxygenated basins, suggesting mobilization under oxidizing conditions. Slight enrichments of potentially toxic elements like Pb, As, and Zn were also noted but remained within typical Antarctic background levels. These findings highlight the need for continued monitoring of the seasonal dynamics and environmental thresholds of these aquatic ecosystems.

4. CONCLUSIONS

The integration of isotopic and geochemical data enabled the identification of water sources and the assessment of processes influencing solute composition. The results serve as a valuable reference point for further limnological studies in Antarctic proglacial zones and provide essential knowledge for conservation efforts in protected areas.

References

- Bargagli, R. (2008), Environmental contamination in Antarctic ecosystems, *Sci. Total Environ.* **400**, 1–3, 212–226, DOI: 10.1016/j.scitotenv.2008.06.062.
- Gat, J.R. (1996), Oxygen and hydrogen isotopes in the hydrologic cycle, *Ann. Rev. Earth Planet. Sci.* **24**, 1, 225–262, DOI: 10.1146/annurev.earth.24.1.225.
- Leng, M.J., and J.D. Marshall (2004), Palaeoclimate interpretation of stable isotope data from lake sediment archives, *Quat. Sci. Rev.* **23**, 7–8, 811–831, DOI: 10.1016/j.quascirev.2003.06.012.
- Mulvaney, R., N.J. Abram, R.C.A. Hindmarsh, C. Arrowsmith, L. Fleet, J. Triest, L.C. Sime, O. Alemany, and S. Foord (2012), Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history, *Nature* **489**, 141–144, DOI: 10.1038/nature11391.
- Skrzypek, G. (2013), Normalization procedures and reference material selection in stable HCNOS isotope analyses: an overview, *Anal. Bioanal. Chem.* **405**, 2815–2823, DOI: 10.1007/s00216-012-6517-2.
- Szopińska, M., D. Szumińska, R. Białik, S. Chmiel, J. Plenzler, and Ż. Polkowska (2018), Impact of a newly-formed periglacial environment and other factors on fresh water chemistry at the western shore of Admiralty Bay in the summer of 2016 (King George Island, Maritime Antarctica), *Sci. Total Environ.* **613–614**, 619–634, DOI: 10.1016/j.scitotenv.2017.09.060.
- Turner, J., S.R. Colwell, G.J. Marshall, T.A. Lachlan-Cope, A.M. Carleton, P.D. Jones, V. Lagun, P.A. Reid, and S. Iagovkina (2005), Antarctic climate change during the last 50 years, *Int. J. Climatol.* **25**, 3, 279–294, DOI: 10.1002/joc.1130.

Received 15 September 2025 Accepted 20 October 2025