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Fig. 53. Examples of the selected snapshots from the glacier calving process simulated with DEM.  

On the scale color means ice particles (white) or water partciles (blue). 
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An important limiting factor for the simulation was a computational time. Due to it, particles 

inside the modelled glacier were taken much bigger than in reality (several times), and particles 

creating the water were also large to reduce the number of particles involved in the simulation. 

As mentioned earlier, the parameters of bonds between glacier particles were chosen to obtain 

the effect of brittle fracturing. Very challenging issue was to imitate liquid (water) in the pre-

sented model. It has been decided to model the water below the glacier as a collection of un-

bonded particles. Very important property of fluids is a viscosity that characterizes their internal 

friction resulting from the shifting of fluid layers during the flow. In the presented model, vis-

cosity was taken into account by applying frictional interactions between particles.  

The selected snapshots of simulated calving process are presented in Fig. 53. 

The aim of the presented simulations was the analysis of the calving process. For this pur-

pose, some particles were selected as “receivers” and their accelerations along x-, y-, and z-axis 

were recorded. There were six receivers inside the water and four receivers inside the glacier 

(Fig. 54).  

 

 

Fig. 54. Network of receivers during glacier calving simulations with receivers numbers (cross-section 

of the model). 

The contact time (time when a falling down block of ice hits the surface of a water) of the 

height of 10 m was approximately 55 s; of 5 m, approximately 41 s; and of 3 m, approximately 

36 s. 

5.3 Simulations results 

Results are divided into two main categories with respect to analysed signals, water-located 

receivers and glacier-located receivers.  

5.3.1 Water-located receivers 

This section includes data recorded by six receivers placed in water (see Fig. 54). Nine different 

combinations of parameters were analysed, for the volume of ice 180, 200, 220 m3 falling down 

from height of 3, 5, and 10 m. On the basis of obtained results, it was attempted to draw con-

clusions about the characteristics of waves generated in water by falling mass. 
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Fig. 55. Simulated acoustic signals generated by 180 m3 of ice falling from the height of 3 m: accelera-

tion readings from receivers 1 to 6 placed in water. 

Figure 55 shows the accelerations of the six receivers placed in the water, when 180 m3 of 

ice falls from the height of 3 m. Receiver 1 has rerecorded high accelerations peaks around the 

impact time – just after the 36th second. Duration of the signal was approximately less than 10 

seconds. Receiver 2 started to accelerate later than receiver 1. It has recorded the biggest accel-

eration between 55 and 110 second. Relatively long duration of these vibrations was probably 

caused by reflections of the waves inside the tank and their superposition, as experienced by 

receiver 2. Interestingly, receiver 3 noted only small disturbances during the whole simulation; 

probably, at this distance, signals have been already dumped. For the receivers placed in depths, 
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the results are as follows. Receiver 4, just below the place of impact, recorded rapid acceleration 

toward negative direction of the x-axis around the 40th second. This can be related to the wave 

propagation after the ice enters the water. Receiver 5 noted acceleration before the event on the 

surface; this may be the numerical result of preliminary movements of particles inside the tank. 

Receiver 6, in the left bottom corner of the tank, seems to be insensitive to external interference. 

 

 
 

 
 

 
 

Fig. 56. Simulated acoustic signals generated by 200 m3 of ice falling from the height of 3 m: accelera-

tion readings from receivers 1 to 6 placed in water. 
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the packing algorithm. These are the number of consecutive failed particle insertion attempts 

allowed before the algorithm gives up and terminates (insertFails), the maximum number of 

iterations for the internal sphere fitting procedure (maxIterations) and the precision of the 

sphere fitting, i.e., the maximum tolerance up to which two particles are still considered touch-

ing (tolerance). The values insertFails=1000, maxIterations=1000 and tolerance=1e-6 usually 

work fine for small to medium models. For large models it is necessary to increase the value of 

insertFails to obtain a good packing of the particles. The value of tolerance should be considered 

in relation to the particle radii. A sixth parameter seed can be used to force a re-seeding of the 

random number generator before the packing algorithm starts. Setting seed=True guarantees a 

different packing with each run of the script, otherwise, the run is system-dependent.  

 

Generating an assembly of particles includes the following three steps: 

1. generating a block of unbonded particles, 

2. creating bonds between neighbouring particles, and 

3. specifying the type of interactions between bonded-particle-pairs. 

 

For generating a block of unbonded particles ESyS-Particle provides four methods for gen-

erating a block of particles: SimpleBlock – generates a block of particles whose centres-of-mass 

reside on the vertices of a regular cubic lattice. This is the simplest configuration but is typically 

not the best choice for serious simulations because the particle-packing is not ideal (the porosity 

is very high); CubicBlock – generates a Face-Centred Cubic (FCC) lattice of particles with a 

dense packing arrangement; HexagBlock – generates a Hexagonal Close Packing (HCP) of 

particles; RandomBoxPacker – generates a block of particles with radii randomly distributed in 

a specified range. The use of uniform particle sizes and regular particle arrangements introduces 

artefacts such as preferential movement along lattice planes. A simple way to remove such 

artefacts and to model more realistic granular materials is to use particle assemblies in which 

the positions and radii of particles are selected randomly.  

 

The RandomBoxPacker and some other ESyS-Particle Packer modules make use of an iter-

ative, geometrical space-filling algorithm to insert particles within a prescribed volume. The 

algorithm may be summarized as follows: 

1. Insert a number of seed particles at random locations within the volume ensuring they do 

not overlap. 

2. Identify 4 adjacent particles 

(a) compute the centroid of the tetrahedron defined by the 4 particles 

(b) compute the radius of a particle that touches all 4 particles 

(c) if the radius of that particle is within the specified range and it is entirely 

within the prescribed volume, insert the particle 

3. Repeat step 2 until the number of failed insertion attempts reaches the maxInsertFails 

 

The tolerance parameter defines what is implied by touching in the above algorithm. If par-

ticles overlap by less than the prescribed tolerance, they are said to be touching. The cu-

bicPackRadius is a parameter for setting up the neighbours table used to track relative locations 

of adjacent particles. The optimal value for this is approximately 2.2 x maxRadius. circDimList 

informs the packing algorithm of any circular (or periodic) boundaries so particles will be fitted 

together along these boundaries rather than being fitted to straight walls. This algorithm for 

filling a volume with spherical particles has some distinct advantages over some other methods 

but also has some limitations. The algorithm requires no equilibration simulation such as some 

dynamical methods (e.g. expanding particle algorithms) to achieve a close packing of relatively 
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low porosity. On the downside, the user has little control over the final distribution of particle 

sizes (apart from specifying the range of sizes). Experience has shown that for a broad range of 

sizes (e.g. [0:1; 1:0]) the final particle size distribution is a power-law. For a narrow range of 

sizes (e.g. [0:4; 0:6]) the size distribution is approximately a uniform random distribution. 

 
# -- setup packer -- 

# iteration parameters 

insertFails = 1000 

maxIter = 1000 

tol = 1.0e-6 

 

# packer 

packer = InsertGenerator3D( minRadius,maxRadius,insertFails,max-

Iter,tol,False) 

packer3 = InsertGenerator3D( minRadius,maxRadius,insertFails,max-

Iter,tol,False) 

 

When the volume, the neighbour table and the packer are defined, the actual work can start. 

First the packer needs to fill the volume with particles. In the simplest case this requires two 

arguments to the generatePacking function of the packer: the volume to fill and the neighbour 

table in which to store the particles.  

 
# pack particles into volume 

packer.generatePacking( 

volume=box1, #the volume to fill with particles 

ntable=mntable, #the neighbours table that particles are inserted into 

groupID=0,#the group ID assigned to particles (default: 0) 

tag=100#the tag assigned to the generated particles (optional (default: -

1) if not followed by ShapeList) 

) 

 

The last thing to do to complete the generation of the particle arrangement is to create the 

bonds between touching particle-pairs. Because the neighbour table contains all information 

necessary to determine which particles should be bonded, i.e., particle positions and radii, the 

bonding procedure is a member function of the neighbour table. The most simple form of the 

function call, which just bonds all neighbouring particles in one group, needs 3 arguments: the 

ID of the particle group that should be bonded groupID, the bonding tolerance and the tag given 

to the newly created bonds bondID. Because considered neighbour table contains only one 

group of particles, the groupID can be equal to 0. The tolerance for bonding should normally 

be larger than the packing tolerance used in the packer, hence, 1.0e-05 is chosen here. The bond 

tag can be set to any value, in this case it was marked as 0.  

 
# create bonds between neighbouring particles: 

mntable.generateBonds( 

groupID=0,#the group ID of particles to bond together (default: 0) 

tolerance=1.0e-5,#maximum distance separating bonded particles 

bondID=0)#the bond ID to assign generated bonds 
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ESyS-Particle script written in Python 

from esys.lsm import * 

from esys.lsm.util import * 

from esys.lsm.geometry import * 

from WallLoader import WallLoaderRunnable 

from WallLoaderMod import WallLoaderRunnableMod 

from math import * 

 

#mpirun -np 2 esysparticle tiger.py 

#dump2vtk -i snapshot -o vtk_snaps_ -rot -t 0 2 1 

 

maxR=800 

minR=200 

time_steps=2000000 

increment=1000 

 

field_saver=500 

check_pointer=10000 

 

 

ym=1.0e+06 

pr=0.25 

coh=1000.0 

ta=1.0 

den=940*1.0e-06 

den2=1000*1.0e-06 

 

dt=1.0e-04 

 

plik=open("step.dat","w") 

plik.write(str(dt)) 

plik.close() 

 

#instantiate a simulation object: 

sim = LsmMpi (numWorkerProcesses = 1, mpiDimList = [1,1,1]) 

 

#initialise the neighbour search algorithm: 

sim.initNeighbourSearch ( 

particleType = "RotSphere", 

gridSpacing = 2*maxR+0.2*minR, 

verletDist = 0.2*minR 

) 
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#set the number of timesteps and timestep increment: 

sim.setNumTimeSteps (time_steps) 

sim.setTimeStepSize (dt) 

 

sim.readGeometry("berg_meshBezKlastrow2.geo") 

 

#density 

sim.setParticleDensity( 

tag=100, 

mask=-1, 

Density=den 

) 

 

#density 

sim.setParticleDensity( 

tag=200, 

mask=-1, 

Density=den2 

) 

 

sim.createWall ( 

name = "right_wall", 

posn = Vec3(30000.0, 0.0, 0.0), 

normal = Vec3(-1.0, 0.0, 0.0) 

) 

 

sim.createWall ( 

name = "left_wall", 

posn = Vec3(-40000.0, 0.0, 0.0), 

normal = Vec3(1.0, 0.0, 0.0) 

) 

 

sim.createWall ( 

name = "back_wall", 

posn = Vec3(0.0, 0.0, 0.0), 

normal = Vec3(0.0, 0.0, 1.0) 

) 

 

sim.createWall ( 

name = "front_wall", 

posn = Vec3(0.0, 0.0, 2000.0), 

normal = Vec3(0.0, 0.0, -1.0) 

) 
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sim.readMesh( 

fileName = "meshBottom.msh", 

meshName = "meshBottom_wall" 

) 

 

sim.readMesh( 

fileName = "meshBottomBottom.msh", 

meshName = "meshBottomBottom_wall" 

) 

 

sim.readMesh( 

fileName = "meshRight.msh", 

meshName = "meshRight_wall" 

) 

 

 

 

#create rotational elastic-brittle bonds between particles: 

pp_bonds = sim.createInteractionGroup ( 

BrittleBeamPrms( 

name="pp_bonds", 

youngsModulus=ym, 

poissonsRatio=pr, 

cohesion=coh, 

tanAngle=ta, 

tag=0 #Connections which are tagged with tag will be created 

with these parameters. bondTag 

) 

) 

 

#initialise frictional interactions for unbonded particles: 

sim.createInteractionGroup ( 

FrictionPrms( 

name="friction", 

youngsModulus=ym, 

poissonsRatio=pr, 

dynamicMu=0.4, 

staticMu=0.6 

) 

) 

#create an exclusion between bonded and frictional interac-

tions: 
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sim.createExclusion ( 

interactionName1 = "pp_bonds", 

interactionName2 = "friction" 

) 

 

#initialise gravity in the domain: 

sim.createInteractionGroup( 

GravityPrms(name="earth-gravity", acceleration=Vec3(0,-

9.81,0)) 

) 

 

 

#specify elastic repulsion from the top wall: 

sim.createInteractionGroup ( 

NRotElasticWallPrms ( 

name = "right_wall_repel", 

wallName = "right_wall", 

normalK = ym 

) 

) 

 

#specify elastic repulsion from the top wall: 

sim.createInteractionGroup ( 

NRotElasticWallPrms ( 

name = "left_wall_repel", 

wallName = "left_wall", 

normalK = ym 

) 

) 

 

 

#specify elastic repulsion from the top wall: 

sim.createInteractionGroup ( 

NRotElasticWallPrms ( 

name = "back_wall_repel", 

wallName = "back_wall", 

normalK = ym 

) 

) 

 

#specify elastic repulsion from the top wall: 

sim.createInteractionGroup ( 

NRotElasticWallPrms ( 

name = "front_wall_repel", 
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wallName = "front_wall", 

normalK = ym 

) 

) 

 

 

 

sim.createInteractionGroup ( 

NRotElasticTriMeshPrms ( 

name = "meshBottom_repell", 

meshName = "meshBottom_wall", 

normalK = ym 

)) 

 

sim.createInteractionGroup ( 

NRotElasticTriMeshPrms ( 

name = "meshBottomBottom_repell", 

meshName = "meshBottomBottom_wall", 

normalK = ym 

)) 

 

sim.createInteractionGroup ( 

NRotElasticTriMeshPrms ( 

name = "meshRight_repell", 

meshName = "meshRight_wall", 

normalK = ym 

)) 

 

 

 

 

#add translational viscous damping: 

sim.createInteractionGroup ( 

LinDampingPrms( 

name="damping1", 

viscosity=0.002, 

maxIterations=50 

) 

) 

#add rotational viscous damping: 

sim.createInteractionGroup ( 

RotDampingPrms( 

name="damping2", 

viscosity=0.002, 
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maxIterations=50 

) 

) 

 

 

#total kinetic energy 

sim.createFieldSaver ( 

ParticleScalarFieldSaverPrms( 

fieldName="e_kin", 

fileName="ekin.dat", 

fileFormat="SUM", 

beginTimeStep=0, 

endTimeStep=time_steps, 

timeStepIncr=field_saver 

) 

) 

 

#linear kinetic energy 

sim.createFieldSaver ( 

ParticleScalarFieldSaverPrms( 

fieldName="e_kin_linear", 

fileName="ekin_linear.dat", 

fileFormat="SUM", 

beginTimeStep=0, 

endTimeStep=time_steps, 

timeStepIncr=field_saver 

) 

) 

 

#rotational kinetic energy 

sim.createFieldSaver ( 

ParticleScalarFieldSaverPrms( 

fieldName="e_kin_rot", 

fileName="ekin_rot.dat", 

fileFormat="SUM", 

beginTimeStep=0, 

endTimeStep=time_steps, 

timeStepIncr=field_saver 

) 

) 

 

#add a FieldSaver to store total potential energy: 

sim.createFieldSaver ( 

InteractionScalarFieldSaverPrms( 
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interactionName="pp_bonds", 

fieldName="potential_energy", 

fileName="epot.dat", 

fileFormat="SUM", 

beginTimeStep=0, 

endTimeStep=time_steps, 

timeStepIncr=field_saver 

) 

) 

 

 

 

#create a FieldSaver to store number of bonds: 

sim.createFieldSaver ( 

InteractionScalarFieldSaverPrms( 

interactionName="pp_bonds", 

fieldName="count", 

fileName="nbonds.dat", 

fileFormat="SUM", 

beginTimeStep=0, 

endTimeStep=time_steps, 

timeStepIncr=field_saver 

) 

) 

 

 

#add a CheckPointer to store simulation data: 

sim.createCheckPointer ( 

CheckPointPrms ( 

fileNamePrefix = "snapshot", 

beginTimeStep = 0, 

endTimeStep = time_steps, 

timeStepIncr = check_pointer 

) 

) 

 

nr=sim.getNumParticles() 

print(nr) 

 

#execute the simulation: 

sim.run() 
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Mesh file generating bottom wall for glacier 

Triangle 

3D-Nodes 4 

0 0 0 -5000.0 10000.0 0.0 

1 1 0 30000.0 10000.0 0.0  

2 2 0 30000.0 10000.0 2000.0 

3 3 0 -5000.0 10000.0 2000.0 

 

 

Tri3 2 

0 0 0 1 2 

1 0 0 2 3 

 

 

Mesh file generating bottom wall for water 

Triangle 

3D-Nodes 4 

0 0 0 -5000.0 -20000.0 0.0 

1 1 0 -5000.0 -20000.0 2000.0  

2 2 0 -40000.0 -20000.0 2000.0 

3 3 0 -40000.0 -20000.0 0.0 

 

 

Tri3 2 

0 0 0 1 2 

1 0 0 2 3 

 

 

Mesh file generating left wall for water 

Triangle 

3D-Nodes 4 

0 0 0 -40000.0 10000.0 0.0 

1 1 0 -40000.0 10000.0 2000.0  

2 2 0 -40000.0 -20000.0 2000.0 

3 3 0 -40000.0 -20000.0 0.0 

 

 

Tri3 2 

0 0 0 2 1 

1 0 0 3 2 
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Mesh file generating right wall for water 

Triangle 

3D-Nodes 4 

0 0 0 -5000.0 10000.0 0.0 

1 1 0 -5000.0 10000.0 2000.0  

2 2 0 -5000.0 -20000.0 2000.0 

3 3 0 -5000.0 -20000.0 0.0 

 

 

Tri3 2 

0 0 0 1 2 

1 0 0 2 3 

 

 

Explanation of ESyS-Particle script 

The main components of any ESyS-Particle simulation are: initialization of an ESyS-Particle 

simulation object, specification of the spatial domain, particle creation and initialization, defi-

nition of inter-particle interactions, and execution of time integration. To use the ESyS-Particle 

simulation libraries in Python, it is necessary to import the modules, which will be used. The 

following statements are required: 

 
from esys.lsm import * 

from esys.lsm.util import * 

from esys.lsm.geometry import * 

from WallLoader import WallLoaderRunnable 

from WallLoaderMod import WallLoaderRunnableMod 

from math import * 

 

These statements load a number of relevant classes and subroutines required for all ESyS-

Particle simulations. These statements also import the Vec3 and BoundingBox classes. Objects 

of the Vec3 class are 3-component vectors, which are useful for specifying position, velocity 

or acceleration vectors in 3D.  

Every ESyS-Particle simulation commences with the creation of an ESyS-Particle simula-

tion object called LsmMpi. This object provides a means to define and run a simulation and can 

be thought of as a container to which simulation components are added, such as a list of parti-

cles, walls, different types of interactions and data output components. The following code-

fragment creates a simulation object: 

 
#instantiate a simulation object: 

sim = LsmMpi (numWorkerProcesses = 1, mpiDimList = [1,1,1]) 

 

The statement creates an LsmMpi object and takes two arguments. The numWorkerPro-

cesses argument specifies the number of MPI processes to use for calculations. However, this 

argument can be set to a larger value for an MPI-parallel simulation (in the case of access to a 

computer with multiple processor cores/CPUs). The second argument (mpiDimList) specifies 
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the manner in which the domain will be divided among the worker processes. The first coordi-

nate refers to the number of subdivisions in the x-direction, while the second and third coordi-

nates specify the number of subdivisions in the y- and z-directions respectively. It is important 

that numWorkerProcesses should be equal to the total number of subdomains specified by the 

mpiDimList. 

 
#initialise the neighbour search algorithm: 

sim.initNeighbourSearch ( 

particleType = "RotSphere", 

gridSpacing = 2*maxR+0.2*minR, 

verletDist = 0.2*minR 

) 

 

The statement (sim.initNeighbourSearch) specifies the type of particles used in the simula-

tion. The two most common particle types are NRotSphere and RotSphere. sim.initNeighbour-

Search also sets two parameters for the contact detection algorithm. The gridSpacing parameter 

defines the size of cubic cells used to identify contacting particles. This parameter needs to be 

larger than the maximum particle diameter. The verletDist parameter determines the frequency 

with which the contact lists are updated. If any particle moves a distance greater than verletDist 

the lists are updated. Optimal values for these two parameters satisfy the inequality gridSpacing 

> 2 x maxRadius + verletDist.  

Reducing the verletDist will result in more accurate force calculations (because new con-

tacts will be detected earlier) but the lists will be updated more frequently, which is computa-

tionally expensive. In most cases, the gridSpacing should be set to approximately 2.5 x the 

maximum particle radius and the verletDist should be approximately 0.2 x the minimum parti-

cle radius. These two statements result in the construction of a suitable ESyS-Particle simula-

tion object called sim. The simulation object now becomes a container to which particles can 

be added, as well as walls, and various types of interactions. Before it is done, it is necessary to 

specify how many timesteps to compute during the simulation and the timestep increment (in 

seconds): 

 
#set the number of timesteps and timestep increment: 

sim.setNumTimeSteps (time_steps) 

sim.setTimeStepSize (dt) 

 

These two statements can be described as follows: the total number of timesteps will be 

computed, with a time increment of dt seconds between each timestep. It is usually a good idea 

to set the timestep increment before creating particles or interactions. In some cases, the 

timestep increment is needed internally to correctly initialize interactions. 

Prior to addition of particles, the simulation object must be assigned a valid spatial domain. 

Any particles or walls residing outside this domain are eliminated from force calculations and 

time integration. The following code-fragment specifies the spatial domain for a simulation, 

which was defined by the GenGeo script.  

 
sim.readGeometry("berg_meshBezKlastrow2.geo") 
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Having added particles to the simulation object, it is necessary to specify the type of inter-

actions between the particles if they should come into contact (which they will due to the care-

fully selected initial positions and velocities above). There are a number of different types of 

particle-particle interactions that may be used, but in this code rotational elastic-brittle bonds 

were used.  

For particle-pair interactions that incorporate both translational and rotational degrees of 

freedom, this is achieved in the following manner. Two bonded particles may undergo normal 

and shear forces, as well as bending and twisting moments. Bonds designed to import such 

forces and moments are known as cementitious bonds (or, in ESyS-Particle, BrittleBeamPrms 

interactions). Unlike the non-rotational equivalent, rotational frictional interactions impart a 

torque to both particles, causing the particles to rotate relative to each other when they are in 

frictional contact. The detailed description of inter-particle interactions can be found in the Sec-

tion 3.3.2, together with a schematic picture (Fig. 6). 

Because a broken bond represents a fracture surface, it is appropriate to specify frictional 

interactions between unbonded particles. The following code fragment implements frictional 

interactions between unbonded, touching particles: 

 
#initialise frictional interactions for unbonded particles: 

sim.createInteractionGroup ( 

FrictionPrms( 

name="friction", 

youngsModulus=ym, 

poissonsRatio=pr, 

dynamicMu=0.4, 

staticMu=0.6 

) 

) 

 

Rotational frictional interactions are defined by a microscopic Young’s modulus (youngs 

Modulus) and Poisson’s ratio (poissonsRatio) and two microscopic coefficients of friction. 

Typically the Young’s modulus and Poisson’s ratio for FrictionPrms interactions are set equal 

to their BrittleBeamPrms counterparts. The staticMu coefficient of friction is applied when two 

particles are in static frictional contact, i.e., prior to the first time the frictional sliding criterion 

is met. Thereafter the dynamicMu coefficient of friction is applied. By setting dynamicMu < 

staticMu, one can simulate the physical observation that the frictional force required to maintain 

sliding is less than the force necessary to initiate sliding. 

Any given particle-pair undergoes either bonded interactions or frictional interactions but 

not both. This is achieved by specifying an exclusion between the two interaction groups: 

 
#create an exclusion between bonded and frictional interac-

tions: 

sim.createExclusion ( 

interactionName1 = "pp_bonds", 

interactionName2 = "friction" 

) 
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Any acoustic emissions generated during fracturing should dissipate rapidly compared with 

the duration of the experiment. To simulate these conditions, it is necessary to incorporate two 

body forces designed to attenuate translational and rotational oscillations. In this case are used 

both LinDamping (designed to attenuate translational oscillations) and RotDamping (designed 

to attenuate rotational oscillations). The two damping forces are implemented as follows: 

 
#add translational viscous damping: 

sim.createInteractionGroup ( 

LinDampingPrms( 

name="damping1", 

viscosity=0.002, 

maxIterations=50 

) 

) 

#add rotational viscous damping: 

sim.createInteractionGroup ( 

RotDampingPrms( 

name="damping2", 

viscosity=0.002, 

maxIterations=50 

) 

) 

 

The viscosity coefficients are chosen to be small so that damping has little effect on the 

elastic response of the simulated material, but sufficient to attenuate unwanted oscillations. 

Frequently, it may be useful to incorporate fixed or movable walls in particle simulations. 

Walls may be planar, piecewise planar, or perhaps an arbitrary shape. ESyS-Particle imple-

ments three types of walls: Planar walls (infinite planar walls specified by a point and a normal 

vector), Linear meshes (a piece-wise linear mesh of line segments for arbitrarily shaped walls 

in 2D simulations), and Triangular meshes (a mesh of triangles used to define surfaces in 3D 

simulations). All three types of walls have an active side and an inactive side. For the case of 

an infinite wall, the normal vector points to the active side of the wall. Particles impinging on 

a wall from the active side will bounce off the wall. However, particles impinging on a wall 

from the inactive side will accelerate through the wall in an unphysical manner. Both types of 

mesh walls have an active side determined by the order in which vertices are specified for line-

segments or triangles.  

An infinite planar wall can be inserted as follows: 

 
sim.createWall ( 

name = "right_wall", 

posn = Vec3(30000.0, 0.0, 0.0), 

normal = Vec3(-1.0, 0.0, 0.0) 

) 

 

The second argument (posn) is a Vec3 vector specifying a point lying in the plane of the 

wall. Finally the normal argument specifies a Vec3 normal vector for the wall.  
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Simply inserting a wall into a simulation object is insufficient. The type of interactions must 

also be defined between particles and walls. There are two common types of interactions: elastic 

repulsion and bonded interactions. In this code, only elastic repulsion is considered.  

 
#specify elastic repulsion from the top wall: 

sim.createInteractionGroup ( 

NRotElasticWallPrms ( 

name = "right_wall_repel", 

wallName = "right_wall", 

normalK = ym 

) 

) 

 

Particle-wall interactions are also implemented through an InteractionGroup. The wallName 

argument specifies to which wall this particle-wall interaction refers. The last argument (nor-

malK) specifies the elastic stiffness of the particle-wall interaction. The choice of elastic stiff-

ness is not arbitrary. An elastic stiffness should be assigned sufficiently large that the wall can 

support the weight of the particle with a relatively small indentation (or overlap). If the elastic 

stiffness is too small the particle will continue to fall through the wall and eventually fall out 

on the other side. 

Planar walls, by their definition, are infinite in length, making it difficult to simulate prob-

lems that require complex wall shapes or walls with holes. Mesh walls overcome this problem 

but are slightly more complicated to implement in simulations. ESyS-Particle uses a triangu-

lated mesh format to define piecewise segments of a wall (Fig. B.2).  

 
sim.readMesh( 

fileName = "meshBottom.msh", 

meshName = "meshBottom_wall" 

) 

 

Mesh walls are a powerful and flexible feature of ESyS-Particle that allow complex shapes 

and interactions to be simulated.  

ESyS-Particle includes a group of modules called FieldSavers designed to store specific 

simulation data to disk. FieldSavers are closely related to the CheckPointer, with the main dif-

ference being that FieldSavers store only specific data rather than all of the state variables of 

the particles. FieldSavers can also be used to store data on particles (such as position or kinetic 

energy), interactions (such as potential energy and the number of broken bonds), and walls 

(such as the position of a wall and the net force acting on the wall).  

 

 

 

 

 

 

Fig. B.2. Triangulated piece of mesh wall. 
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#add a CheckPointer to store simulation data: 

sim.createCheckPointer ( 

CheckPointPrms ( 

fileNamePrefix = "snapshot", 

beginTimeStep = 0, 

endTimeStep = time_steps, 

timeStepIncr = check_pointer 

) 

) 

 

#total kinetic energy 

sim.createFieldSaver ( 

ParticleScalarFieldSaverPrms( 

fieldName="e_kin", 

fileName="ekin.dat", 

fileFormat="SUM", 

beginTimeStep=0, 

endTimeStep=time_steps, 

timeStepIncr=field_saver 

) 

) 
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