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A b s t r a c t  

 

Geophysics is an extremely vast field of science that studies the physical processes tak-

ing place on Earth or other planets. One of such processes is fracturing of materials. To sup-

port these statesments two phenomena can be mentioned. Materials subjected to extreme 

external conditions, such as ice or rock masses, after exceeding their certain strength param-

eters, start to fracture, which is manifested by glaciers calving or catastrophic earthquakes. 

Despite the huge scientific progress made in recent decades, many issues in geophysics 

are still unexplained. The commonly used laboratory and field research methods have their 

limitations. Therefore, in recent years, a relatively new research technology, the numerical 

modelling, has raised the interest. The rapidly increasing power of computers allows to create 

more and more sophisticated models and study phenomena to which traditional research 

methods do not give access. 

In this work, the analysis of the issue of material fracturing in geophysical applications 

was undertaken. The Discrete Element Method was used, which is ideally suited for simulat-

ing the fracturing process, because it assumes a discrete model of matter (consisting of parti-

cles), and also allows to considerate all kinds of issues related to particle rotations and 

movements. The research consisted of two stages. In the first one, it was attempted to simulate 

material cracking during three different material tests: uniaxial compression, Brazilian test 

and uniaxial stretching. The aim was to obtain data that cannot be obtained during laboratory 

measurements. These include: particles energy – kinetic energies of linear and rotational mo-

tions, as well as, potential energies of bonds between particles; dependencies between micro-

scopic parameters of bonds and particles, and macroscopic parameters of the whole material, 

as well as the influence of particle size on material behaviour under the influence of external 

loading. 

In the second stage of the research, the transition to the extremely important and current 

problem of climate change was undertaken. As a result of global warming, glaciers lose more 

of their mass as a result of the so-called calving, i.e., the phenomena when the block of ice 

breaks off and falls into the water. Again, the essence of this process is the fracturing, and the 

DEM method can be very useful for analysing this process. As part of the research, a DEM 

model of calving glacier was created. Various scenarios were analysed when blocks of differ-

ent sizes fall from different heights. Inside glacier and water, a network of receivers was cre-

ated, measuring accelerations during the entire simulation. An attempt was made to determine 

how two parameters related to calving (the size of the falling down block of ice and the height 

from which the fall occurs) affect the acceleration of water and glacier particles. 

The obtained data provided information about materials fracturing. As part of the uniax-

ial compression simulation, it was found that the fracturing materials are characterized by a 

constant relationship between different potential energies of bonds between particles, regard-

less of their macroscopic parameters. The highest potential energies occurred during com-

pression and shearing between particles, the smallest in relation to bending and rotations. In 

the case of the Brazilian test, the linear relationship between the critical stress (at which the 

fracture occurs) and the inverse of the size of the smallest particles forming the material is 

probably the most interesting. In the uniaxial stretching test, three classes of material cracking 

were discovered, depending on the bonds parameters between the particles. Simulations of 

glacier calving provided information about the propagation of the signals in a material similar 

to water and ice. 
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ANALIZA PARAMETRÓW MIKROSKOPOWYCH  

PROCESU PĘKANIA MATERIAŁÓW KRUCHYCH  

PRZY POMOCY METODY ELEMENTÓW DYSKRETNYCH 

S t r e s z c z e n i e  

 

Geofizyka to niezwykle rozległa dziedzina, która zajmuje się badaniem Ziemi lub innych 

planet. Jednym z najczęstszych zjawisk, które leży u podstaw wielu procesów geofizycznych, 

jest pękanie materiałów. Dla poparcia tych słów wymienić można dwa takie procesy, niez-

wykle imponujące i przemawiające do wyobraźni, czyli trzęsienia ziemi oraz cielenie się 

lodowców. Poddane ekstremalnym warunkom zewnętrznym materiały, takie jak lód lub masy 

skalne, po przekroczeniu parametrów wytrzymałościowych zaczynają pękać, co przejawia się 

obrywaniem się mas lodu od czoła lodowca lub katastrofalnymi trzęsieniami ziemi. 

Mimo ogromnego postępu naukowego, dokonanego w ostatnich dziesięcioleciach, wiele 

zjawisk w geofizyce wciąż pozostaje niewyjaśnionych. Stosowane powszechnie badawcze 

metody laboratoryjne oraz terenowe mają swoje ograniczenia. Dlatego w ostatnich latach co-

raz większe zainteresowanie wzbudza stosunkowo nowa technologia badawcza, jaką jest 

modelowanie numeryczne. Wzrastająca w szybkim tempie moc obliczeniowa komputerów 

pozwala na tworzenie coraz bardziej wyrafinowanych modeli i badanie zjawisk, do których 

tradycyjne metody badawcze nie dawały dostępu. 

W niniejszej pracy podjęto się analizy zagadnienia pękania materiałów w zastosowani-

ach geofizycznych. Zastosowana zastała Metoda Elementów Dyskretnych, która idealnie 

nadaje się do symulowania procesu pękania, gdyż zakłada dyskretny model materii (składa-

jący się z cząstek), a także umożliwia rozpatrywanie wszelkiego rodzaju zagadnień związa-

nych z ruchem obrotowym i postępowym cząstek. Przeprowadzone prace badawcze składały 

się z dwóch etapów. W pierwszym, podjęto się symulacji pękania materiału podczas trzech 

różnych testów materiałowych: ściskania jednoosiowego, próby brazylijskiej oraz jednoosio-

wego rozciągania. Celem było uzyskanie danych, których nie da się otrzymać podczas pom-

iarów laboratoryjnych. Należą do nich: energie cząstek – kinetyczna ruchu liniowego i 

rotacyjnego oraz energia potencjalna wiązań między cząstkami; zależności pomiędzy para-

metrami mikroskopowymi wiązań i ziaren oraz parametrami makroskopowymi materiału 

jako całości, a także wpływ wielkości cząstek (ziaren) na zachowanie materiału pod wpływem 

obciążenia zewnętrznego. 

W drugim etapie badań podjęto się przejścia do niezwykle istotnego oraz bieżącego 

problemu, jakim są zmiany klimatyczne. Na wskutek ocieplenia klimatu lodowce tracą coraz 

większą część swojej masy w wyniku tzw. cielenia, czyli oberwania się bloku lodu i jego 

upadku do wody. Ponownie istotą tego procesu jest zjawisko pękania, a metoda DEM może 

być bardzo przydatna przy analizie tego procesu. W ramach przeprowadzonych badań stwo-

rzony został model lodowca, którego fragment pęka i spada do wody. Przeanalizowano róż-

norodne scenariusze, gdy bloki o różnych rozmiarach spadają z różnej wysokości. Wewnątrz 

lodowca i wody stworzono sieć odbiorników, mierzących przyspieszenia podczas całej symu-

lacji. Podjęto próbę określenia, jak dwa parametry związane z cieleniem (rozmiar odrywającej 

się bryły lodu oraz wysokość, z której ta bryła spada) wpływają na przyspieszenia cząstek 

wody i lodowca.  
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Uzyskane dane dostarczyły informacji o sposobie, w jaki pękają materiały. W ramach 

symulacji ściskania jednoosiowego udało się stwierdzić, między innymi, że pękające mate-

riały cechują się stałą zależnością pomiędzy różnymi energiami potencjalnymi wiązań po-

między cząstkami, niezależnie od ich parametrów makroskopowych. Największe energie po-

tencjalne występowały podczas ściskania i ścinania pomiędzy cząstkami, najmniejsze w 

związku ze zginaniem oraz obrotami. W przypadku wyników dotyczących próby bra-

zylijskiej, prawdopodobnie najbardziej interesująca jest liniowa zależność pomiędzy 

naprężeniem krytycznym (przy którym następuje pęknięcie) oraz odwrotnością rozmiaru 

najmniejszych cząstek tworzących materiał. W przypadku próby rozciągania jednoosiowego, 

odkryte zostały trzy klasy pękania materiału w zależności od parametrów wiązań pomiędzy 

cząstkami. Symulacje pękania lodowca dostarczyły informacje o propagacji sygnału w mate-

riale podobnym do wody i materiale podobnym do lodu. 
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1. INTRODUCTION 

Fragmentation of solid materials is an extremely complicated process that includes processes 

in scales from atomic (breaking intermolecular bonds) up to a scale of thousands of kilometers 

in the event of catastrophic earthquakes (Teisseyre 1995; Udias et al. 2014). Such a large range 

of the scales involved in the process raises numerous questions such as existence of factors 

determining the final size of the fractured area, existence of possible precursors, or scalability 

of cracking processes (Christensen 2013).  

The well-known fact is that cracking of solid bodies is determined by the structure of the 

given material, and the way of applying external forces leading eventually to its destruction and 

fragmentation (Jaeger et al. 2007; Carmona et al. 2008). The cracking process can be described 

at three different levels: macroscopic (typical engineering approach), mesoscopic – underlying 

statistical aspects of cracking, and finally microscopic – dealing directly with physical pro-

cesses at the crack tip. 

The macroscopic description of the cracking process has started after pioneering vision of 

Griffith (1921). According to this approach, the fragmentation of brittle materials can be un-

derstood as the development of a single crack in the material that finally leads to its splitting 

into parts. Depending on the external load, such a crack can be static, steady in time, or enter a 

dynamic regime when its length increases rapidly, which can finally lead to the fragmentation 

of the material. An accurate analysis of the complexity of the fracture process or/and interac-

tions of micro-cracks at large concentrations typical for the prefracture state is possible only in 

terms of statistical models. The kinetic model of the evolution of crack population was intro-

duced (Petrov et al. 1970; Czechowski 1991) and developed by (Czechowski 1993, 1995, 1997, 

1998, 2000). It lies at a level intermediate between the purely statistical approach and the fully 

microscopic approach. The elementary objects are microcracks which can nucleate, propagate 

and coalesce. The kinetic approach operates on the crack size distribution function whose evo-

lution is governed by the modified coagulation equation (mesoscopic level).  

Finally, breaking of solid materials can be analyzed at the microscopic level by knowing 

directly the physical processes in the crack tip area. This approach, depending on the formula-

tion can go down to the molecular dynamic (atomic) level and analyze conditions and processes 

of breaking chemical bonds between atoms, creating the given material. This approach requires 

fully quantum-mechanical description. An alternative microscopic approach does not deal with 

atoms but operates at the level of grains forming the material and describes their evolution as a 

set of rigid objects interacting according to the classical Newtonian principles. This approach 

is quite attractive from the geophysical point of view due to the typically observed grainy struc-

ture of all known geomaterials. Moreover, with such approach it is currently possible to simu-

late the numerical behaviour of quite realistic objects. This microscopic approach is adopted in 

this work. 

Classical engineering approach to the fracturing problem is rooted in continuum mechanics 

and is based mainly on the computer technique called Finite Element Method. As this technique 

allows simulations of both elastic and large deformation processes, it has become very popular 

in engineering applications. However, the final effect of cracking, that is, fragmentation of an 

object at hand, can hardly be described by this approach in a numerically efficient way, because 

it requires a solution to the problem of nontrivial evolving in time boundary conditions. Another 

proposed approach is the Discrete Element Method (DEM), which by definition implies “mo-

lecular” construction of matter. The basic concept underlying DEM is to represent an investi-

gated body as an assemblage of discrete particles interacting with each other. Breaking 

interaction bonds between particles induced by external forces immediately implies creation/ 

evolution of boundary conditions. Such simulations provide an alternative way of measuring 
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the properties of a material, as well as yield insight into its microscopic parameters (Kun and 

Herrmann 1996, 1999; Kun et al. 2013, 2014). 

Measurement of the characteristics and behaviour of substances under various conditions is 

a field of materials testing. The data obtained in this way can be used in specifying the suitability 

of materials for various applications, as well as to construct mathematical models that utilize 

known material characteristics and behaviour to predict capabilities of the structure. Within the 

scope of this book the DEM method was applied to analyse fracturing process during three most 

primary material tests – uniaxial compression, Brazilian test, uniaxial stretching. The research 

performed provided an insight into fragmentation of materials under external load. 

The most basic test is an uniaxial compression in which cylindrical specimen from drilled 

cores is loaded axially up to failure or any other prescribed level. Simulations of uniaxial com-

pression concerned the three groups of issues: dependency between microscopic and macro-

scopic parameters of samples, as well as changes in potential energy of bonds and average 

kinetic energy of particles. Especially interesting was considering potentials energies of bonds. 

It appeared that the average percentage contribution of different potential energies of bonds to 

the average overall potential energy of bonds during the breaking process is constant, regardless 

of macroscopic parameters of the sample. Subsequently, Brazilian test was considered as an 

indirect method for measurements of the tensile strength of solid materials. This method relies 

on a diametrical loading of a disk-shaped sample of the brittle material until it splits apart due 

to an induced tensile stress. The planned simulations were aimed at following the evolution of 

the total kinetic and potential energies during loading, and identification of stages in response 

of the samples to constant speed loading. It was also observed how the size of used particles 

influenced each of the above stages. The last part of materials testing were simulations of uni-

axial stretching, mainly focused on cracking of hypothetical three-dimensional materials sub-

jected to force stretching with constant velocity. An attempt was made to distinguish (by 

analyzing stress-strain curves) different types of cracking; it means, when multicracking occurs 

and the cracking is dispersed in time, when dominating macro-cracks accompanied by smaller 

micro-cracks develop; and when a single crack is created.  

Results received within the scope of material test simulations have become the basis for a 

large scale fracturing simulations, presented in the second part of this book. In this case, the 

DEM method was applied to simulate the fragmentation process in a glaciology – a branch of 

geophysics, which is now becoming one of the key research directions worldwide. The reason 

for this are current climate changes, which give a high priority to research on polar regions, 

particularly to glaciers. It turns out that the current scale of changes is unique in the scale of 

history. The World Glacier Monitoring Service reported in 2013 (basing on data from 100 glac-

iers around the world) that the mass balance for all reference glaciers is constantly decreasing 

(The World Glacier Monitoring Service, https://wgms.ch). This process has accelerated espe-

cially in the last 30 years. 

In the light of the abovementioned facts, the scientific research on glaciers has become cru-

cial for understanding these disquieting changes. Current climate changes cause that glaciers 

loss their mass especially due to calving. Very promising and interesting approach offers anal-

ysis of signals which are spread by calving glaciers. Głowacki et al. (2016) discovered that due 

to analysis of underwater sounds associated with calving glacier, it is possible to estimate how 

much of ice was detached. This relatively simple method can say not only when the glacier is 

calving, but also allows to discriminate different types of this phenomenon. Motivated by 

abovementioned approach, the second part of this work was devoted to the creation of a DEM 

model of the calving glacier. The DEM has a great potential in the area of glaciology. This 

model consisting of discrete particles is very suitable to simulate fracturing of ice, especially 

large masses of ice (glacier calving, glaciers surging), icebergs, ice floe, etc. A numerical 
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model, presented in this dissertation, represents the forehead of glacier and the water beneath 

it. Under the influence of the force of gravity, the fragment of the glacier cracks and fell into 

the water. Various possible scenarios were explored when a block of different size fell to water 

from different heights. The whole process was tracked and recorded by a network of receivers 

placed in a water reservoir, as well as inside the glacier. The results obtained in this way allowed 

to discover the dependence between different scenarios of calving and resulting wave propaga-

tion in the water. 

Fragmentation of solid materials is at the heart of many processes in geophysics. In order to 

visualize diversity of processes covered by geophysics, it is worth recalling a very vivid depic-

tion written by Morton (2002): “The earth stretches, it wiggles and breathes. Ocean floors begin 

to move and continents start to wander. Migrating continents and sliding oceans cause volcanic 

eruptions and earthquakes. Volcanos give birth to hot springs, geysers, and mineral waters. 

These dynamics contribute to and help drive the earth’s atmosphere, producing climatic change 

and ice ages. This is earth music: earth rhythms from earth processes”. As it appears from the 

above description, a significant part of the processes covered by the geophysics is the study of 

substances that form the Earth. Therefore, the main purpose of this study, which was to better 

understand what happens to materials when they break into fragments, fits in to the new trends 

in geophysical research. 

2. FRACTURING OF MATERIALS 

A fracture is the separation of a material into pieces under the action of stress (Hertzberg 1976; 

Tetelman and McEvily 1967). In case of a solid, the fracture usually occurs due to the develop-

ment of some displacement discontinuity surfaces inside the material. When the displacement 

develops perpendicular to the surface of displacement, it is called a crack or a normal tensile 

crack (Łuksza 2014; Neimitz 1998; Rymarz 1993). When the displacement develops tangen-

tially to the surface of displacement, it is called a shear crack, slip band or dislocation. Fractures 

may occur in two ways (Anderson 1991). Brittle fractures appear with no apparent deformation 

before the fractures, meanwhile, ductile fractures occur after visible deformation. A quite im-

portant factor linked with fracturing is the fracture strength or the breaking strength which de-

scribes the stress when a specimen fails or fractures. All aspects of how a fracture occurs in 

materials are covered by fracture mechanics (Derski et al. 1982). 

2.1 Types of deformation 

Deformation refers to any changes in the shape or size of an object due to an applied force or a 

change in temperature (Courtney 1990). In the first case, the deformation energy is transferred 

through work, whereas in the second case the deformation energy is transferred through heat 

(Garbarczyk 2000). It is feasible to distinguish different possible types of the applied force: 

tensile (pulling) forces, compressive (pushing) forces, shear, bending or torsion (twisting). The 

most significant factor, determined by the temperature, is the mobility of structural defects such 

as grain boundaries, point vacancies, line and screw dislocations, stacking faults and twins in 

both crystalline and non-crystalline solids (Elliott 1998, Garbarczyk 2000). The movement or 

displacement of such mobile defects is thermally activated, and thus limited by the rate of 

atomic diffusion. Another term for deformation is a strain. When deformation occurs, internal 

inter-molecular forces develope, to oppose the applied force. These forces may resist the ap-

plied force if the applied force is not too large. In such cases, the object may assume a new 

equilibrium state and return to its original state when the load is removed (Anderson 1991). In 

case of larger applied force, a permanent deformation may occur and even leads to the structural 

failure (Garbarczyk 2000). 
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Four basic types of deformation can be distinguished (Anderson 1991): elastic deformation, 

plastic deformation, metal fatigue and fracture. Elastic deformation is reversible type of defor-

mation, it means, when the forces are no longer applied, the object returns to its original shape. 

Normal metals, ceramics, and most crystals exhibit linear elasticity and smaller elastic range 

(Knott 1973). Linear elastic deformation is governed by Hooke’s Law  𝜎 = 𝐸𝜀, where σ is the 

applied stress, E is a material constant called Young’s modulus or elastic modulus, and ε is the 

resulting strain. This relationship applies in the elastic range and can be used to find Young’s 

modulus. The elastic range ends when the material reaches its yield strength. After this point, 

plastic deformation begins (Sochor 1998). Plastic deformation is an irreversible type of defor-

mation. Materials such as ductile metals – copper, silver, and gold – have rather large plastic 

deformation range. Crystals and ceramics have minimal plastic deformation range. Under ten-

sile stress, plastic deformation is characterized by a strain hardening region and a necking re-

gion and, finally, fracture. The material becomes stronger during strain hardening due to the 

movement of atomic dislocations. The necking phase is caused by a reduction in the cross-

sectional area of the specimen (Knott 1973). When the ultimate strength is achieved, the neck-

ing begins – this means that the material can no longer withstand the applied stress and the 

strain in the specimen rapidly increases. The final effect of the plastic deformation is the fracture 

of the material. Metal fatigue occurs mainly in ductile metals. It was originally thought that a 

material in elastic deformation range returns to its original state once the forces are removed. 

However, faults are introduced at the molecular level with each deformation (Knott 1973). As 

a result, after many deformations cycles cracks will begin to appear and, consequently, fracture, 

with no apparent plastic deformation in between. Depending on many factors, failure may occur 

even after millions, billions or trillions of deformations cycles. Fracture is an irreversible type 

of deformation. When a material reaches the end of the elastic and plastic deformation ranges, 

a break occurs. At the breaking point forces accumulate until they are sufficient to cause a 

fracture (Hertzberg 1976). If there is no dulling of the edge of the crack face, the local stress 

before breakage can reach very high values and can reach the theoretical strength of the mate-

rial. In this case it is large enough to disrupt the bonds between atoms in a specific area – the 

crack grows between a pair of atomic planes (Knott 1973). 

Propagation of cracks in materials is the domain of fracture mechanics. This science was 

started by aeronautical engineer A.A. Griffith (Griffith 1921; Courtney 1990), to explain the 

failure of brittle materials. Fracture mechanics applies the physics of stress and strain behaviour 

of materials, in particular the theories of elasticity and plasticity, to the microscopic crystallo-

graphic defects found in real materials in order to predict the macroscopic mechanical behav-

iour of those bodies (Hertzberg 1976). Because brittleness of materials is the main area of this 

work, in the next subchapter some basic assumptions of fracture mechanics are described. The 

content of the next subchapter is mostly based on (Roylance 2001b). 

2.2 Basics of the fracture mechanics 

2.2.1 The energy-balance approach 

Charles E. Inglis was famous for calculating the stress concentrations around elliptical holes 

and attempting to use them to predict fracture strengths (Courtney 1990). However, Inglis had 

a serious problem with the crack tip. In his solution, the stresses approach infinity at the crack 

tip in the limit of a perfectly sharp crack. Using such a result would predict that materials would 

have near-zero strength – even for very small applied loads, the stresses near crack tips would 

become infinite. Alan A. Griffith solved this problem and created one of the most famous de-

velopments in materials science, the energy-balance approach (Anderson 1991; Zehnder 2012). 

If a material is linear (𝜎 = 𝐸𝜀), then the strain energy per unit volume is given as follows: 
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Fig. 1. Idealization of unloaded region near crack flanks (from Roylance 2001b). 
 

𝑈∗ =
𝐸∈2

2
=
𝜎2

2𝐸
                                                           (1) 

 

Griffith, on the basis of Inglis solution, used a crack depth a inside a solid to compute how 

much strain energy is released. 

Two triangular regions near the crack flanks, illustrated in Fig. 1, of width a and height 𝛽𝑎, 

are regarded as being completely unloaded. The remaining material undergoes the full stress 𝜎. 

The parameter 𝛽 for plane stress loading is equal to 𝜋. Finally, the total strain energy U released 

is the strain energy per unit volume times the volume in both triangular regions: 
 

𝑈 = −
𝜎2

2𝐸
∙ 𝜋𝑎2                                                           (2) 

 

Because the dimension normal to the x-y plane is taken to be unity, U is the strain energy 

released per unit thickness of the specimen. This strain energy is liberated by crack growth. But 

in forming a crack, bonds must be broken, and as a result, the requisite bond energy is absorbed 

by the material. The surface energy S associated with a crack of length a (and unit depth) is 

given as follows: 
 

𝑆 = 2𝛾𝑎                                                           (3) 

 

where 𝛾 is the surface energy (e.g., joules/meter2) and the factor 2 is needed as two free surfaces 

have been formed. As shown in Fig. 2, the total energy associated with the crack is then the 

sum of the (positive) energy absorbed to create the new surfaces, and the (negative) strain en-

ergy liberated by allowing the regions near the crack flanks to become unloaded.  
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Fig. 2. The fracture energy balance (from Roylance 2001b). 

As the crack grows longer (a increases), the quadratic dependence of strain energy on a 

eventually dominates the surface energy, and beyond the critical crack length ac the system can 

lower its energy by allowing the crack grow still longer (Hertzberg 1976). Up to the point where 

𝑎 = 𝑎𝑐, the crack will grow only if the stress is increased. Beyond that point, the crack growth 

is spontaneous and limited only by size/shape of the body. 

The value of the critical crack length can be found by setting the derivative of the total 

energy S+U to zero, i.e.: 

 

 
𝜕(𝑆+𝑈)

𝜕𝑎
= 2𝛾 −

𝜎𝑓
2

𝐸
𝜋𝑎 = 0                                           (4) 

 

Because fracture is imminent when this condition is satisfied, the stress is written as 𝜎𝑓.  

 

 𝜎𝑓 = √
2𝐸𝛾

𝜋𝑎
                                                         (5) 

 

Griffith’s original work was devoted to brittle materials, specifically glass rods. When ma-

terial exhibits more ductility, consideration of the surface energy alone fails to provide an ac-

curate model for fracture (Åström et al. 2000). This drawback was later overcome, at least in 

part, independently by Irwin (1948) and Orowan (1949). They suggested that in a ductile ma-

terial a considerable amount – in fact the vast majority – of the released strain energy was 

absorbed not by creating new surfaces but by energy dissipation due to plastic flow in the ma-

terial near the crack tip (Hertzberg 1976). They suggested that catastrophic fracture occurs when 

the strain energy is released at a rate sufficient to satisfy the needs of all these energy “sinks” 

and denoted this critical strain energy release rate by the parameter 𝐺𝐶; the Griffith equation 

can then be rewritten in the following form: 
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 𝜎𝑓 = √
𝐸𝐺𝐶

𝜋𝑎
                                                           (6) 

 

This expression describes, in a very succinct way, the relationship among three important 

aspects of the fracture process: the material, as evidenced in the critical strain energy release 

rate 𝐺𝐶; the stress level 𝜎𝑓; and the size, a, of the flaw. In designing situation, one might choose 

the value of a based on the basis of the smallest crack that could be easily detected. Then for a 

given material with its associated value of 𝐺𝐶, the safe level of stress 𝜎𝑓 could be determined. 

The structure would then be sized so as to keep the working stress comfortably below this crit-

ical value (Barsom 1987). 

It is important to realize that the critical crack length is an absolute number, which does not 

depend on the size of the structure containing the crack. Each time the crack grows further, by 

a small increment 𝛿𝑎, an additional quantity of strain energy is released from the newly un-

loaded material near the crack (Landau and Lifshitz 1970; Landau and Lifshitz 1969; Landau 

and Lifszic 1958). Using simplistic picture of a triangular-shaped region that is at zero stress 

while the rest of the structure continues to feel the overall applied stress, it is possible to see in 

Fig. 3 that increasingly more energy is released due to the crack growth at position 2 than at 

position 1. This is why small objects tend to be stronger: they simply are not large enough to 

contain a critical crack length. 

There are three elementary cracking modes depending on orientation of external force with 

respect to a fracture plane (Hertzberg 1976). Mode I is an opening mode (a tensile stress normal 

to the plane of the crack), Mode II is a sliding mode (a shear stress acting parallel to the plane 

of the crack and perpendicular to the crack front) and Mode III is a tearing mode (a shear stress 

acting parallel to both the plane of the crack and the crack front). 

Fig. 3. Energy released during an increment of crack growth, for two different crack lengths (from  

Roylance 2001b). 
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Fig. 4. Fracture modes (from Roylance 2001b). 

These elementary modes are shown in Fig. 4. Mode I is a normal-opening mode, while 

modes II and III are shear sliding modes.  

Computer simulations are flexible and useful tool in the field of fracture mechanics (Gordon 

1976). With increasing power of computers, they offer increasingly more possibilities in ana-

lyzing fracturing process. The following chapter presents the overview of accessible numerical 

methods. 

3. THE DISCRETE ELEMENT METHOD  

3.1 Numerical modelling of physical processes 

Computer simulations of materials include two types of approaches – one of them assumes the 

continuity of the medium, and the other its discrete structure. Both have their advantages and 

disadvantages; thus, their applicability depends on the problem (Seweryn 2003). 

 

3.1.1 Continuum methods for numerical simulations 

One of the most common and popular numerical methods based on the continuum mechanics 

is the Finite Element Method (FEM), widely used in the engineering and in the science (Sew-

eryn 2003; Munjiza 2004). The idea underlying FEM is to divide the considered continuous 

area into a finite number of subareas (finite elements) connected to each other at nodes and to 

approximate the solution in the element area using interpolation functions (shape functions) and 

values in nodes. Equations of the FEM are obtained from the formulation of an integral (global) 

problem, by using the variational principle or the residual (weighted) method (Rojek 2007). 

The advantages of the FEM method are: simplicity of discretization of complex shapes, the ease 

of determining boundary conditions and an adaptive coarsening and refinement of the mesh 

(Rojek 2007). 

 

3.1.2 Discrete methods for numerical simulations 

The FEM, despite its versatility, also has serious limitations. In this approach, the discrete na-

ture of the granular medium and the relative displacements and rotation of particles inside the 

material are not considered. The FEM cannot be used for analysis of such phenomena as frag-

mentation, separation or mixing of materials. FEM is generally used for static or quasi-static 

problems in the field of small deformations (Balevičius et al. 2006; Rojek 2007). In the case of 

large strains or phenomena related to the flow of substances, the simulation often become un-

stable and, as a result, gives incorrect results. 
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Particle-based numerical methods offer an alternative approach which is being increasingly 

used for solving a variety of problems in engineering and applied science. Among the numerous 

particle-based methods, the Discrete Element Method (DEM) is one of the most popular (Rojek 

2007). It is used for simulating granular and particulate flows, tracks particle motions and de-

tects, and models collisions between particles and with their environment.  

For purposes of this work, the DEM method is particularly interesting. In comparison to 

other numerical modeling approaches, DEM describes better the evolution of fractures in brittle 

materials (Rojek 2007). It has been widely used to simulate a single fracture at the local scale 

or at the field scale of fractured rock masses that contain a huge number of fractures (Cundall 

and Strack 1979; Cundall 1971, 1974, 1978). The main advantage of DEM is explicitly depict-

ing the fracture geometry in relative details and considering the progressive degradation of ma-

terial integrity during the degradation process (Abe et al. 2002; Abe and Mair 2005). More 

detailed insight into DEM is presented in the following subchapter.  

3.2 Overview of Discrete Element Method 

3.2.1 Basic assumptions 

The DEM is a numerical method for simulating the dynamics of brittle-elastic or granular ma-

terials. Materials are represented as assemblies of particles, the so-called discrete elements, each 

of which may interact with neighbouring particles or other objects (such as external walls) 

through simplified force-displacement interactions. In DEM simulations, elements can move, 

rotate and interact with each other (Cundall and Strack 1979; Cundall 1971, 1974, 1978).  

The elements are not subject to deformation; however, they can partially overlap each other. 

When two particles overlap, they start to interact. The magnitude of this interaction depends on 

the contact forces (Kazerani 2013) by the force-displacement relation. At the point of contact, 

compressive and tensile forces (if bonds are present), as well as tangent forces perpendicular to 

forces in the normal direction to the plane of contact appear and are transferred from one to 

another element. 

The macroscopic behaviour of the material results from the movement and impact of indi-

vidual particles. Thus, the macroscopic material response during the simulation depends on the 

microparameters of the elements and models of contacts between them. It is possible to distin-

guish several types of microparameters such as geometrical and physical microparameters, like 

shape, size, density and constitutive microparameters, like contact stiffness and attenuation. 

The simulation by DEM is a dynamic process, and the equilibrium occurs only when all contact 

(internal) forces are balanced. Each discrete element moves and rotates, and contacts between 

elements are detected in every step of the simulation (Fraige and Langston 2004; Rojek 2007). 

One of the most important problems regarding DEM simulations is the proper selection of 

microparameters describing the elements and the interactions between them. There is a lack of 

close relationship between parameters describing interactions between simulation objects and 

those describing the sample as a whole. The selection of appropriate values of microparameters 

in order to obtain a macroscopic response of the system in accordance with the actual material 

is very difficult. Direct modelling, when the parameters are known in advance, is a rare situation 

(Fraige and Langston 2004; Rojek 2007; Freireich et al. 2015). The only solution to this prob-

lem is the iterative approach, so called inverse modelling, in which the selection of microparam-

eters takes place on the basis of macroscopic parameters. A commonly used approach is to 

perform laboratory tests of a material sample to determine the macroscopic characteristics, and 

then numerically reflect selected tests and iteratively change selected microparameters until the 

expected response is achieved (Kruggel-Emden et al. 2008, 2011). 

As mentioned above, particles building a sample can interact with one another and different 

types of contacts can be implemented (Johnson 1985; Kazerani et al. 2010). Namely, the contact 
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force can have two components: a normal component operating in the normal direction to the 

contact plane and a tangent component acting in the tangent plane. Three components describ-

ing properties of a contact can be described: contact stiffness (which provides a flexible rela-

tionship between the contact force and the relative displacement of elements), slip and 

separation conditions. It is possible to use different contact models depending on the needs of 

a given simulation, but in general, the two most commonly used models are the linear model 

and the Hertz-Mindlin model. In the linear model, the force and relative displacement are re-

lated linearly through constant contact stiffness. On the other hand, in the Hertz-Mindlin model, 

the force and relative displacement are related in a nonlinear way through variable contact stiff-

ness.  

Another important issue is generating the packing of elements (Cundall and Strack 1979; 

Cundall 1971, 1974, 1978). Two basic ways of packaging can be distinguished: dynamic and 

geometric algorithms. In a dynamic algorithm, a sample is created, for example, by a free fall 

of subsequent layers of elements. The advantage is that a predetermined size distribution of 

elements is obtained. In the case of a geometric model, elements are placed according to geo-

metric relationships, often using pre-prepared grids (Rojek 2007). 

The algorithm of the DEM (Fig. 5) can be divided into two main parts: the first one is related 

to the creation of a contact model and the calculation of forces acting on the elements, and in 

the second part, the second Newton’s law of dynamics is applied to each element to calculate 

changes of position and velocity as a result of unbalanced action forces (Cundall and Strack 

1979; Cundall 1971, 1974, 1978). Motion equations are solved separately for each particle. The 

solving algorithm is based on an explicit scheme of integration of motion equations. To main-

tain the numerical stability of the simulation, it is necessary to use small time steps so that the 

elements do not move too much in a time interval. This means that the selected time step value 

should be small enough to make the element movement small enough to affect only the imme-

diate surroundings of the element. 

The DEM method has one big disadvantage – it requires huge computing power. The heavy 

computational burden of the DEM relative to other numerical methods is often the single most 

limiting factor determining the quality and utility of simulation results. Nearly 40 years ago, 

when this method was developed, it was only a theoretical tool that could be used only for small 

and simplified scientific problems. Even now, modeling large-scale problems is still extremely 

time consuming and requires numerous simplifications. This is due to the fact that during sim-

ulation a huge amount of data are processed and collected (Cundall and Strack 1979; Cundall 

1971, 1974, 1978). 

Fig. 5. The scheme of DEM simulation (O’Sullivan 2011). 
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Summarizing, the DEM method has extremely wide applications – it allows the description 

of dynamic and static phenomena related to materials. Using DEM, it is possible to model flows, 

separation, fragmentation, mixing, segregation, compression, stretching, cracking and many 

other phenomena (O’Sullivan 2011; O’Sullivan and Bray 2004). DEM also has a number of 

common applications, namely: ideal gas dynamics involving collisions between indivisible par-

ticles, gravitational acceleration of individual particles or bonded particles, sandpiles and land-

slides, hopper (or silo) flow, brittle failure of solids under uniaxial compression, and shear of 

granular media within an annular shear cell apparatus. 

3.3 ESyS-Particle  

In the presented research, an open-source DEM software has been used, named ESyS-Particle. 

The reasons behind this choice and the description of this software are presented below. 

 

3.3.1 General description 

ESyS-Particle is an open source software developed by the Earth Systems Science Computa-

tional Centre (ESSCC), the University of Queensland (Abe et al. 2014). It was designed to 

provide a basis to study the physics of rocks and the nonlinear dynamics of earthquakes, and to 

address the computational limits of existing DEM software. The major feature that distinguishes 

ESyS-Particle from other existing DEM codes is an explicit representation of particle orienta-

tions using unit quaternion, which allows a new way of decomposing the relative rotations be-

tween two rigid particles so that torques and forces accompanying such relative rotations can 

be uniquely determined.  

The development of the ESyS-Particle software consists of a few major stages (Wang et al. 

2012; Place et al. 2002; Potyondy and Cundall 2004). The first one was in the early 1990s, 

when the early version of Atomic Lattice Solid Model appeared. This was a 2D implementation 

of molecular dynamics principles written in Fortran. In the simplified model, there was inter-

action between particles only in the radial direction, and no intrinsic friction between existing 

particles. The next stage was extended to 3D, object-oriented approach LSMearth written in 

C++, with easily added or removed micro-physics. Further steps were as follows (Wang et al. 

2012): parallel code using MPI; incorporation of intrinsic friction between particles; thermal 

effect; particle rotation and full rigidity between particles; Python script interface; theoretical 

analysis on particle parameter calibration; hydro-effect and Darcy flow; fully solid-fluid cou-

pling based on DEM and Lattice Boltzman Method. 

ESyS-Particle is written in C++ and designed for execution on parallel supercomputers, 

clusters or multi-core PCs (Abe et al. 2014). The simulation engine implements spatial domain 

decomposition through the Message Passing Interface (MPI) (Wang et al. 2012). A Verlet list 

neighbour search algorithm (Verlet 1967) is implemented for detecting neighbouring particles 

and a variety of particle interaction models are implemented. Particles building a sample may 

have up to three translational and three rotational degrees of freedom. An explicit first-order 

finite difference time integration scheme is employed. Provision is made for file storage of both 

the entire model state or specific field variables during simulations as the applications for the 

DEM are broad and varied (Abe et al. 2014). 

ESyS-Particle provides an Application Programming Interface (API) allowing users to de-

sign simulations by scripts written in the Python programming language (Abe et al. 2014). For 

numerous applications, there is no need to modify the C++ simulation engine or recompile the 

software. Before running the code, the initial conditions, physical parameters, integration steps, 

types of particles (simple or rotational particles), types of loading walls, the contact properties 

(elastic, frictional, bonded contacts), artificial viscosity, ways of loading (force controlled or 

displacement controlled) and output fields are specified in the script. The Python API allows 
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users to specify the initial locations and properties of particles and walls, define the types of 

interactions acting on these objects, select the types and frequency of data output during simu-

lations, and perform user-defined computations at regular intervals. Preprocessing includes a 

particle generation package, which can generate regular or random-sized particles. Aggregates 

or grains, gouges and faults can also be made. Postprocessing includes Povray and VTK visu-

alization packages, which can visualize particles and fields (velocity, displacements). 

The current version of ESyS-Particle stands out with two features. They were described by 

Weatherley et al. (2010) and Weatherley (2015) from the University of Queensland, one of the 

lead developers: “ESyS-Particle has two main advantages. The first is that its MPI parallel en-

gine has been demonstrated to scale (weakly) to in excess 30 000 CPU cores and hence is def-

initely well suited for HPC DEM simulations. The second advantage is the BrittleBeamPrms 

particle-pair interactions that has been specifically designed for rock fracture and fragmentation 

simulations. This interactions correctly simulates Griffith crack propagation and, in particular, 

the formation of wing cracks. Credit to Dr. Yucang Wang for the mathematical formulation. 

Aside from the BrittleBeam interactions, ESyS-Particle provides a range of other interaction 

types.” 
 

3.3.2 Micromechanical model implemented in the ESyS-Particle 

ESyS-Particle provides different types of interactions (bonds) between particles. In this re-

search, two types of interactions were used. The first one “BrittleBeamPrms” (which has been 

designed for simulating brittle fracturing) was used in the simulations of uniaxial compression, 

Brazilian test and glacier calving. The second type of interaction called “NRotBondPrms” (de-

signed for simulating material behaviour under tensional condition) was used here for uniaxial 

stretching simulations. In the following section are presented basics of the both models.  

Bonded particles – “BrittleBeamPrms” type of bonds 

The “BrittleBeamPrms” interaction model is actually the most advanced model the software 

uses and supports and involves all six degrees of freedom of each interacting particle (Li 2012). 

For each particle, three parameters x, y, z are used to represent the position of centre of the mass 

of the particle, and three other parameters ϕ, θ, ψ (such as Euler angles) to represent rotations 

around the centre of the mass.  

Assuming small deformations, the relationship between interactions (forces or torques) and 

relative displacements between two bonded particles could be written in the linear form as: 

 
𝐹𝑟 = 𝐾𝑟∆𝑟 

𝐹𝑠1 = 𝐾𝑠1∆𝑠1 

𝐹𝑠2 = 𝐾𝑠2∆𝑠2                                                           (7) 

𝑀𝑡 = 𝐾𝑡∆𝛼𝑡 

𝑀𝑏1 = 𝐾𝑏1∆𝛼𝑏1 

𝑀𝑏2 = 𝐾𝑏2∆𝛼𝑏2 

 

where: F represents forces, M – torques, K – rigidity constant, ∆𝑟 and ∆𝑠 – relative translational 

displacement, ∆𝛼 – relative angular displacement. The meaning of the symbols r, s, t and b is 

as follows: r – radial component, s – shearing component, t – twisting component, b – bending 

component. In the isotropic case, 𝐾𝑠 = 𝐾𝑠1 = 𝐾𝑠2  and  𝐾𝑏 = 𝐾𝑏1 = 𝐾𝑏2. Therefore, only four 

rigidity parameters are required. 

Particle motion can be decomposed into two completely independent parts, translational 

motion of the centre of the mass and rotation about the centre of the mass. The translational 
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motion of the center of the mass is governed by the Newtonian equations and integrated using 

a conventional Molecular Dynamic scheme (Mora et al. 1993, 1994).  

 

�̈⃗�(𝑡) =
�⃗�(𝑡)

𝑀
                                                               (8) 

 

where: 𝒙(𝑡) and M are position of the particle and the particle mass, respectively. 𝑭(𝑡) is the 

total force acting on the particle, which may include the spring forces by the neighbouring par-

ticles, the forces by the walls, viscous force and gravitational force. The above equation can be 

integrated using the velocity Verlet scheme (Rougier et al. 2004).  

 

�⃗�(𝑡 + ∆𝑡) = �⃗�(𝑡) + �⃗�(𝑡)∆𝑡 +
1

2
�⃗�(𝑡)∆𝑡2 

�⃗�(𝑡 + ∆𝑡) = �⃗�(𝑡) +
�⃗⃗�(𝑡)+�⃗⃗�(𝑡+∆𝑡)

2
∆𝑡                                       

(9)
 

 

The standard implementation scheme of this algorithm is: 

Step 1: Calculate  �⃗� (𝑡 +
1

2
∆𝑡) = �⃗�(𝑡) + �⃗�(𝑡)∆𝑡 +

1

2
�⃗�(𝑡)∆𝑡 

Step 2: Calculate  �⃗�(𝑡 + ∆𝑡) = �⃗�(𝑡) + �⃗� (𝑡 +
1

2
∆𝑡) ∆𝑡 

Step 3: Derive  �⃗�(𝑡 + ∆𝑡)  from the interaction potential using  �⃗�(𝑡 + ∆𝑡) 

Step 4: Calculate  �⃗�(𝑡 + ∆𝑡) = �⃗� (𝑡 +
1

2
∆𝑡) +

1

2
�⃗�(𝑡 + ∆𝑡)∆𝑡 

 

Eliminating the half-step velocity, this algorithm may be shortened to 

Step 1: Calculate  �⃗�(𝑡 + ∆𝑡) = �⃗�(𝑡) + �⃗�(𝑡)∆𝑡 +
1

2
�⃗�(𝑡)∆𝑡2 

Step 2: Derive  �⃗�(𝑡 + ∆𝑡)  from the interaction potential using  �⃗�(𝑡 + ∆𝑡) 

Step 3: Calculate  �⃗�(𝑡 + ∆𝑡) = �⃗�(𝑡) +
1

2
(�⃗�(𝑡) + �⃗�(𝑡 + ∆𝑡))∆𝑡 

 

This algorithm assumes that acceleration  �⃗�(𝑡 + ∆𝑡)  only depends on position  �⃗�(𝑡 + ∆𝑡), 
and does not depend on velocity  �⃗�(𝑡 + ∆𝑡). 

The particle rotation depends on the total applied torque and its description within the used 

software usually involves two coordinate frames: one is fixed in space, called the space-fixed 

frame, in which Eq. (8) is applied, and the other is attached to the principal axis of the body 

rotation, referred to the body-fixed frame. The particle rotation is governed by the Euler’s equa-

tions (in the body-fixed frame). 

 

𝜏𝑥
𝑏 = 𝐼𝑥𝑥�̇�𝑥

𝑏 −𝜔𝑦
𝑏𝜔𝑧

𝑏(𝐼𝑦𝑦 − 𝐼𝑧𝑧) 

𝜏𝑦
𝑏 = 𝐼𝑦𝑦�̇�𝑦

𝑏 − 𝜔𝑧
𝑏𝜔𝑥

𝑏(𝐼𝑧𝑧 − 𝐼𝑥𝑥)                                     (10) 

𝜏𝑧
𝑏 = 𝐼𝑧𝑧�̇�𝑧

𝑏 −𝜔𝑥
𝑏𝜔𝑦

𝑏(𝐼𝑥𝑥 − 𝐼𝑦𝑦) 

 

where 𝜏𝑥
𝑏,  𝜏𝑦

𝑏,  𝜏𝑧
𝑏 are the components of total torque 𝝉𝑏 expressed in the body-fixed frame, 

𝜔𝑥
𝑏,  𝜔𝑦

𝑏,  𝜔𝑧
𝑏 are the components of angular velocity 𝝎𝑏 measured in the body-fixed frame, and 

𝐼𝑥
𝑏,  𝐼𝑦

𝑏,  𝐼𝑧
𝑏 are the three principal moments of inertia in the body-fixed frame in which the inertia 

tensor is diagonal. In case of 3D spheres, 𝐼 = 𝐼𝑥𝑥 = 𝐼𝑦𝑦 = 𝐼𝑧𝑧. 

In this model, the unit quaternion 𝑞 = 𝑞0 + 𝑞1𝑖 + 𝑞2𝑗 + 𝑞3𝑘 is used to explicitly describe 

the orientation of each particle. The physical meaning of a quaternion is that it represents a one-



P.A. KLEJMENT 

 

20 

step rotation around the vector 𝑞1𝑖̂ + 𝑞2𝑗̂ + 𝑞3�̂� with a rotation angle of 2𝒂𝒓𝒄𝒄𝒐𝒔(𝑞0). A qua-

ternion for each particle satisfies the following equation: 

 

 �̇� =
1

2
𝑸0(𝑞)𝛺                                            (11) 

where 

 

 �̇� = (

�̇�0
�̇�1
�̇�2
�̇�3

) , 𝑸0(𝑞) = (

𝑞0 −𝑞1 −𝑞2 −𝑞3
𝑞1 𝑞0 −𝑞3 𝑞2
𝑞2 𝑞3 𝑞0 −𝑞1
𝑞3 −𝑞2 𝑞1 𝑞0

),  𝛺 =

(

 
 

0
𝜔𝑥
𝑏

𝜔𝑦
𝑏

𝜔𝑧
𝑏
)

 
 

 .              (12) 

 

Equations (10) and (11) can be solved according to the algorithm outlined below. The qua-

ternion  𝑞(𝑡 + 𝑑𝑡)  is obtained at the next time step using: 

 
𝑞(𝑡 + 𝑑𝑡) = 𝑞(𝑡) + 𝑑𝑡�̇�(𝑡 + 𝑑𝑡/2) + 𝑂(𝑑𝑡3)                        (13) 

 

Hence, the quaternion derivative at mid-step  𝑞 ̇ (𝑡 + 𝑑𝑡/2)  is required. Equation (11) indi-

cates that  𝑞(𝑡 + 𝑑𝑡)  and  𝜔𝑏(𝑡 + 𝑑𝑡)  are also required, where the former can be easily calcu-

lated using: 

 
 𝑞(𝑡 + 𝑑𝑡/2) = 𝑞(𝑡) + �̇�(𝑡)𝑑𝑡/2                                 (14) 

 

where �̇�(𝑡) again is obtained from Eq. (11) and  𝝎𝑏(𝑡 + 𝑑𝑡)  can be calculated using 

 

𝝎𝑏(𝑡) = 𝝎𝑏(𝑡 − 𝑑𝑡/2) + 𝐼−1𝝉𝑏(𝑡)𝑑𝑡                                       (15) 

 

and  𝝎𝑏(𝑡 + 𝑑𝑡/2)  can be obtained, using 

 

𝝎𝑏(𝑡 + 𝑑𝑡/2) = 𝝎𝑏(𝑡 − 𝑑𝑡/2) + 𝐼−1𝜏𝑏(𝑡)𝑑𝑡                                 (16) 

 

The algorithm for calculating particle motion, presented in this section, was developed by 

Wang et al. (2012). To avoid the buildup errors during temporal evolution, it is a common 

practice to renormalize quaternions at frequent intervals (usually done every step). Thus, the 

algorithm of time evolution is as follows: 

 

Step 1: calculate torque 𝜏𝑏(𝑡) at time t 

Step 2: using the stored 𝜔 (𝑡 −
𝑑𝑡

2
), update 𝜔(𝑡) using Eq. (8) 

Step 3: gain �̇�(𝑡) using (5) 

Step 4: using the stored 𝜔 (𝑡 −
𝑑𝑡

2
), calculate 𝜔 (𝑡 +

𝑑𝑡

2
) using Eq. (9) 

Step 5: compute 𝑞 (𝑡 +
𝑑𝑡

2
) using Eq. (7) 

Step 6: evaluate �̇� (𝑡 +
𝑑𝑡

2
) using Eq. (5) 

Step 7: calculate 𝑞(𝑡 + 𝑑𝑡) using Eq. (6) 

Step 8: renormalize the quaternion 𝑞(𝑡 + 𝑑𝑡) 
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Given the position and orientation for each particle, the calculation of interactions between 

neighbouring ones due to relative motion involves a unique decomposition of the relative mo-

tions in such a way that interactions can be uniquely calculated. Decomposition of the relative 

translation can be found in Wang et al. (2004), decomposition of relative rotation in Wang 

(2009). 

Particles can have bonds between each other. The key issue is a threshold criterion of bonds 

breaking. A bond is permitted to break under purely extension if the force exceeds certain 

threshold 𝐹𝑟0, but it does not break under compression. Similarly, a bond breaks under pure 

shear load when shear force reaches 𝐹𝑠0, or under pure twisting load if twisting torque exceeds 

𝑀𝑡0, or under pure bending load if bending torque exceeds value 𝑀𝑏0. When all the interactions 

exist at the same time, the following criterion is used to judge whether or not a bond is going to 

break 

 
𝐹𝑟

𝐹𝑟0
+
|𝐹𝑠|

𝐹𝑠0
+
|𝑀𝑡|

𝑀𝑡0
+
|𝑀𝑏|

𝑀𝑏0
≥ 1                                       (17) 

 

where 𝐹𝑠⃗⃗⃗⃗ = 𝐹𝑠1⃗⃗ ⃗⃗ ⃗⃗ + 𝐹𝑠2⃗⃗ ⃗⃗ ⃗⃗ , 𝑀𝑏⃗⃗ ⃗⃗ ⃗⃗ = 𝑀𝑏1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑀𝑏2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . 𝐹𝑟 is set positive under extension and negative under 

compression, therefore the effects of normal force on breakage of the bond has been taken into 

account. Input parameters of the presented model include the particle mass m, radius R, rigidity 

parameters 𝐾𝑟, 𝐾𝑠, 𝐾𝑏 and 𝐾𝑡 and fracture parameters 𝐹𝑟0, 𝐹𝑠0, 𝑀𝑡0 and 𝑀𝑏0.  

Presented rotational interactions, created by Wang (2009), are generalised 3D rotational 

bonded interactions, which requires specification of eight model parameters, namely: normalK 

(elastic stiffness for compression/tension), shearK (elastic stiffness for shear), bendingK (elas-

tic stiffness for bending), torsionK (elastic stiffness for torsion), normalBreakForce (maximum 

tensile/compressive force), shearBreakForce (maximum shear force), bendingBreakForce 

(maximum bending moment), torsionBreakForce (maximum torsion moment). The first four 

model parameters determine the elastic properties of the interaction between two particles. The 

second four parameters determine when a bond will break via a generalised Mohr-Coloumb 

failure criterion (Weatherley et al. 2010). 

This formulation (Wang 2009) is quite general in the sense that one can explore quite a 

broad (eight-dimensional) parameter space for the relative impact of normal/shear/bending/ tor-

sion components of deformation between two particles. However, this formulation is mostly 

applicable for models built of spheres of equal size. For models comprised of spheres with a 

range of sizes (the usual case for ESyS-Particle simulations) the general formulation (based on 

elastic stiffnesses) is not scale-invariant (Weatherley et al. 2010), it means, this formulation 

does change if scales of length, energy, or other variables, are multiplied by a certain factor. 

Interactions that use a constant elastic stiffness (e.g. normalK in Newtons/metre) to bind 

particles of differing radii, result in a macroscopic particle-size dependency of the elastic prop-

erties (e.g. Young’s modulus) of the particle assembly. By contrast, a linear elastic material 

does not have such a size-dependency (elastic properties are scale-invariant). 

The particle-size dependency can be eliminated from DEM models by assigning a constant 

bond Young’s modulus between bonded particles, and then assigning the elastic stiffness (such 

as normalK) as a function of the constant bond modulus and geometrical properties that depend 

on the radii of the two bonded particles (Weatherley et al. 2010). More specifically, it is neces-

sary to assume that bonded interaction between the two particles has a particular shape (i.e. an 

equilibrium length, L and a cross-sectional area, A). For BrittleBeamPrms interaction model, it 

is assumed that the interaction between two particles is a cylindrical beam whose equilibrium 

length is  𝐿 = 𝑅1 + 𝑅2  and cross-sectional area is  𝐴 =
𝜋(𝑅1+𝑅2)

2

4
 , i.e. the effective radius of 

the cylindrical beam is the arithmetic mean of the two particle radii 𝑅1, 𝑅2. 
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Particle-pair interactions can include both translational and rotational degrees of freedom. 

Two bonded particles may undergo normal and shear forces, as well as bending and twisting 

moments (Fig. 6). Bonds designed to import such forces and moments are known as cementi-

tious bonds (in ESyS-Particle, BrittleBeamPrms interaction). Unlike the non-rotational equiv-

alent, rotational frictional interactions impart a torque to both particles, causing the particles to 

rotate relative to each other when in frictional contact. The physical interpretation of rotational 

bonds is that two particles are connected to one another with a cylindrical elastic beam whose 

radius is the mean of the radii of the bonded particles and whose equilibrium length is the sum 

of the radii of those particles. The elasticity of bonds is determined by a microscopic Young’s 

modulus (youngsModulus parameter) and a microscopic Poisson’s ratio (poissonsRatio param-

eter). It should be emphasized that the macroscopic elastic properties of an assembly of bonded 

particles do not necessarily match the microscopic elastic properties of the bonds themselves 

(Weatherley et al. 2010).  

Applying these assumptions and linear elastic beam theory, permits to define the four elastic 

stiffness parameters as functions of two elastic properties - the bond Young’s modulus and bond 

Poisson’s ratio (Weatherley et al. 2010). These beam interactions break according to a Mohr-

Coulomb failure criterion (governed by two model parameters: cohesive strength C and internal 

friction angle ψ – Eq. (1), so, the four breakage forces can be computed as functions of C and 

ψ. A bond will fail (or break) if the shear stress within the bond exceeds its shear strength (τ) 

given by: 

𝜏 = 𝐶 + 𝜎𝑁 𝑡𝑎𝑛 (𝜑𝑓)                                                   (18) 

 

where C is the cohesive strength of the bond for zero normal stress (𝜎𝑁) and 𝜑𝑓 is the internal 

angle of friction of the bond. The cohesion and tanAngle parameters, respectively, define the 

cohesive strength and friction angle of bonds. 

 

In this model the near-neighbourhood parti-

cles interact with each other with repulsive/ 

cohesive radial forces and nonradial “shearing” 

ones. If interacting particles separate by fixed 

distance (in terms of percentage of their radii) 

the interacting bond is broken and interaction is 

reset to zero. Breaking of shearing forces is 

based on the Coulomb-Mohr criterion (Abe et 

al. 2014). Under these assumptions a specimen 

represents a medium which for small external 

loading behaves as an ideal elastic body. For 

larger loads, when some inter-particles bonds 

break and particles can significantly move away 

from their initial location the material exhibits 

some plasticity. Finally, in large stress concen-

tration regions, the particles can separate due to 

a significant stress redistribution when interac-

tion bonds break (a similar effect is observed in 

soft-clamp Fiber Bundle Model; Hansen et al. 

2015) which finally leads to an initiation and de-

velopment of cracks. This way, with this simple 

setup the behaviour of a variety of solid materi-

als can be simulated. 

Fig. 6. Forces and moments between parti-

cles bonded through rotational elastic-brit-

tle bonds (from Abe et al. 2014). 
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Consequently, only four model parameters must be specified for BrittleBeamPrms. They 

are as follows: youngsModulus (Young’s modulus of bonds – stress units), poissonsRatio (Pois-

son’s ratio for bonds – dimensionless), cohesion (Mohr-Coulomb cohesion factor – stress units), 

tanAngle – (tangent of angle of internal friction for Mohr-Coulomb failure criterion – dimen-

sionless). Two parameters are set by default: meanR_scaling (determines how the effective ra-

dius of bonds between two particles is calculated), truncated (factor by which to truncate tensile 

strength).  

The last argument (truncated) is a number between 0.0 and 1.0 defining the factor by which 

to reduce the tensile strength. If truncated = 1.0, the Mohr-Coulomb envelope is not truncated 

under tension. It truncated = 0.0, bonds have no tensile strength. The meanR_scaling argument 

determines how the effective radius of bonds between two particles is calculated. By default, 

the effective bond radius is 𝑅𝑏 =
𝑅1+𝑅2

2
 , where 𝑅1, 𝑅2 are the radii of the two particles to be 

bonded together. 

The bond parameters used by the code to influence and control bonded particle motion are 

𝐾𝑛, 𝐾𝑠, 𝐾𝑏, 𝐾𝑡. These are calculated from E (Young’s modulus) and ν (Poisson’s ratio), as well 

as the length and cross-sectional area of the bond. These formulae may be written in this way: 

 

𝐾𝑛 =
𝐸𝐴

𝐿
 

𝐾𝑠 =
𝐺𝐴

𝐿
                                                           

(19)
 

𝐾𝑏 =
𝐸𝐼

𝐿
 

𝐾𝑡 =
𝐺𝐽

𝐿
 

where 

𝐺 =
𝐸

2∗(1+𝜈)
  is the shear modulus, 

𝐴 = 𝜋𝑅𝑏
2   is the cross-sectional area of the cylindrical beam (with radius 𝑅𝑏) 

𝐿 = 𝑅1 + 𝑅2  is the equilibrium length of the beam 

𝐼 =
𝜋𝑅𝑏

4

4
  is the cross-sectional moment of inertia, and 

𝐽 =
𝜋𝑅𝑏

4

2
  is the polar moment of inertia. 

 

Some general rules between mechanical properties of bonds and macroscopic properties of 

the material are as follows: macroscopic Young’s modulus is proportional to microscopic bond 

modulus and weakly depends on bond Poisson’s ratio; peak strength (unconfined compressive 

strength) is proportional to bond cohesion and weakly depends on bond internal friction angle; 

the elastic properties of bonds do not impact macroscopic strength and the breakage properties 

of bonds do not impact macroscopic elasticity; the constants of proportionality depend on 

choice of particle packing parameters, particularly the ratio of Rmin:Rmax (Weatherley et al. 

2010). 

Bonded particles – NRotBondPrms type of bonds 

NRotBondPrms is one of the simplest particle interactions incorporated to ESyS-Particle. Ac-

cording to this model, neighbouring particles are initially connected via a linear elastic spring 

whose spring constant is given by the value of normalK parameter if parameter called scal-

ing==False. If scaling==True, normalK defines a Young’s modulus for the spring and its 

spring constant is determined based upon the radii (R1, R2) of the two interacting particles. 
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Parameter breakDistance determines when the bonded interaction “breaks” under tension. 

When the separation of the two particles exceeds breakDistance*(R1+R2), the bonded interac-

tion is destroyed (Weatherley et al. 2010).  

 
NRotBondPrms( 

name = "sphereBonds", 

normalK = 10000.0, 

breakDistance = 0.5, 

tag = 1, 

scaling = True 

) 

Fig. 7. Parameters of NRotBondPrms type of bonds. 

Interaction NRotBondPrms contains five parameters (Fig. 7): a bond tag specifying which 

bonded particles will undergo this interaction, a unique name for the interaction group, the elas-

tic stiffness (normalK) of the bonds, a Boolean variable (scaling) to specify whether to scale 

the stiffness with particle size, and a breakDistance specifying the separation distance that must 

be exceeded in order to break a bond between two particles. When the distance between a pair 

of bonded particles exceeds breakDistance, the bond is broken and finally removed. The parti-

cles thereafter interact according to the interactions specified for unbonded particle-pairs (Abe 

et al. 2014). 

Unbonded particles 

Particles can undergo bonded interactions or frictional (unbonded) interactions but not both. 

This is achieved by specifying an exclusion between the two interaction groups. Because a 

broken bond represents a fracture surface, it is appropriate to specify frictional interactions be-

tween unbonded particles. In the ESyS-Particle, the function responsible for this has four pa-

rameters: youngsModulus, poissonsRatio, dynamicMu, staticMu.  

Rotational frictional interactions are defined by a microscopic Young’s modulus (youngs 

Modulus) and Poisson’s ratio (poissonsRatio) and two microscopic coefficients of friction. Typ-

ically the Young’s modulus and Poisson’s ratio for FrictionPrms interactions are set equal to 

their BrittleBeamPrms counterparts. The staticMu coefficient of friction is applied when two 

particles are in static frictional contact, i.e., prior to the first time the frictional sliding criterion 

is met. Thereafter the dynamicMu coefficient of friction is applied. By setting dynamicMu < 

staticMu, it is possible to simulate the physical observation that the frictional force required to 

maintain sliding is smaller than the force necessary to initiate sliding. The friction coefficients 

(dynamicMu and staticMu) are dimensionless and for real materials, are typically in the range 

0.2-0.8. Parameter dynamicMu should be less than or equal to staticMu (Abe et al. 2014).  

Other important parameters – viscosity, damping, numerical stability and time step 

Any acoustic emissions generated during fracturing should dissipate rapidly compared with the 

duration of the simulation. To achieve these conditions, it is necessary to incorporate two body 

forces designed to attenuate translational (called LinDampingPrms) and rotational oscillations 

(RotDampingPrms). The purpose of this artificial viscosity is to attenuate kinetic energy of 

particles and avoid unphysical buildup of kinetic energy. The viscosity coefficients are chosen 

to be small so that damping has little effect on the elastic response of the simulated rock sample 

but sufficient to attenuate unwanted oscillations.  
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In this software, these two damping forces have two basic parameters: viscosity and maxIt-

erations. The viscosity coefficient can take any value. It is in units of [1/time]. In order to com-

pute the net force on a particle in the presence of such a viscous term, it is necessary to use a 

convergence loop controlled by the second parameter (Weatherley et al. 2010). Such iteration 

is necessary to compute the correct viscous forces. Parameter maxIterations determines the 

maximum number of iterations of this convergence loop. In most cases the loop converges very 

quickly (<10 iterations). 

The LinDampingPrms and RotDampingPrms interactions are “body forces” that act on par-

ticles individually (Weatherley et al. 2010). They are proportional to the current velocity of the 

particle. For linear damping, a bulk viscosity force acting on particle i is: 

 
𝐹𝑖 = −1 ∗ 𝑣𝑖𝑠𝑐 ∗ 𝑣𝑖 ∗ 𝑚𝑖                                                     (20) 

 

where 𝑣𝑖𝑠𝑐 is the coefficient of viscosity (supplied as an argument to LinDampingPrms), 𝑣 is 

the current velocity of the particle. A similar damping moment calculation (proportional to the 

angular velocity of the particle) is applied when using RotDamping.  

Another key parameter of the ESyS-Particle simulations is the size of the time step, respon-

sible for numerical stability of the simulation (Weatherley et al. 2010). The following formula 

is usually used to verify the numerical stability by checking the Courant condition during the 

time step increment: 

 

∆𝑡 ≤ √
4

3
𝜋𝜌∗𝑅min

3

𝐸max∗𝑅max
                                                         (21) 

 

where: 𝜌 is the particle density, 𝐸max ∗ 𝑅max is the the maximum stiffness approximately equal 

to Young’s modulus (E) multiplied by the maximum radius of the particles Rmax, and  
4

3
𝜋𝜌 ∗

𝑅min
3  is the minimum particle mass.  

The DEM and its open source implementation, ESyS-Particle, are specially designed for 

simulating brittle fracturing. In the next two chapters are presented results of efforts in simulat-

ing fracturing processes. The first chapter of these two shows simulations of geomechanical 

laboratory tests of materials. The second one is devoted to glacier calving. 

4. DISCRETE ELEMENT SIMULATIONS OF SOLID MATERIALS UNDER 

EXTERNAL LOAD 

4.1 Introduction 

The numerical analysis of cracking processes requires an appropriate numerical technique (Gor-

don 1976; Rong et al. 2013). Classical engineering approach to the problem has its roots in the 

continuum mechanics and is based mainly on the FEM (Di Renzo and Di Maio 2004; Egholm 

2007). This technique allows simulations of both elastic and large deformation processes; there-

fore, it is very popular in the engineering applications. However, a final effect of cracking – 

fragmentation of an object at hand can hardly be described by this approach in a numerically 

efficient way as it requires a solution of a problem of nontrivial evolving in time boundary 

conditions (Cook et al. 1964).  

For this reason, this research was focused on the DEM, which by definition implies the 

“molecular” construction of the matter (Williams et al. 1985; Wolff et al. 2013). Consequence 

of that is that DEM includes an evolution of boundary conditions treating them as yet another 

particle-particle interaction. The DEM is widely recognized as an efficient method for granular 
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and brittle material modelling (Bidgoli et al. 2013; Kwapinska et al. 2006). The material model 

built using discrete elements can be treated as physically compatible with the structure that 

characterizes the real one. For example, it can consider the existing discontinuities and other 

defects of solid bodies. The unique feature of this approach is that it explicitly considers the 

individual particles in the material and their interactions. DEM presents an alternative to the 

typical approach adopted when simulating the mechanical behavior of materials, which uses a 

continuum mechanics framework (Fakhimi and Gharahbagh 2011; Lambert and Coll 2014; Lis-

jak and Grasselli 2014). In a continuum model material is assumed to behave as a continuous 

and the relative movements and rotations of the particles inside the material are not considered. 

Sophisticated constitutive models (i.e., equations related to the stress and strain in a material) 

are then needed to capture the complexity of the material behaviour that arises owing to the 

particulate nature of the material (Carmona et al. 2014, Collins 1981). 

Fig. 8. Uniaxial 

compression – 

laboratory  

experiment. 
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It is well known that not all aspects of the fracturing process can be analysed by experi-

mental methods (Nouguier-Lehon et al. 2003; Pál et al. 2014; Zhao 2017). Thus, computer 

modelling can be a complement solution, since it provides additional useful tool for studying 

the microscopic aspects of fracturing – especially, particles interactions, rotations and move-

ments (Klejment and Dębski 2017, 2018; Klejment et al. 2016, 2018a, b). In this chapter are 

presented the results of DEM application to three different material tests: uniaxial compression, 

Brazilian Test and uniaxial stretching. Such tests are extremely important in many areas of 

science and engineering and provide an effective way to characterize a material’s response to 

loading (Gordon 1976). Presented DEM models are still only the simplifications and do not 

capture all aspects related to a real material’s structure. However, numerical simulations have 

a lot to offer and in the future can partially replace expensive and arduous laboratory experi-

ments (Figs. 8 and 9). 

 

Fig. 9. Brazilian 

Test – laboratory 

experiment. 
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4.2 Uniaxial compression 

Simulations of the uniaxial compression were the first part of the research.  

 

4.2.1 Motivation and outline  

Uniaxial compression is a common laboratory test in which cylindrical sample is compressed 

from the top and the bottom (Fig. 10) and it provides a simple and effective way to characterize 

a material’s response to loading (Rojek 2007; Jing et al. 2013). Specimens from drilled cores 

are prepared by cutting them to the specified dimensions. The recommended ratio of height/ 

diameter of the specimens is between 2 and 3 (Rojek 2007; International Society for Rock Me-

chanics, Commission on Standardization of Laboratory and Field Tests (1978). By subjecting 

a sample to a controlled tensile or compressive displacement along a single axis, the change in 

dimensions and resulting load can be recorded to calculate the stress-strain profile. From the 

obtained curve, elastic and plastic material properties can then be determined. Two material 

features measured in this way are especially important: the Young’s modulus and the Poisson’s 

ratio (Rojek 2007). The movement of plates is typically held at a constant rate, and the displace-

ment and resulting load are recorded (Sochor 1998). The following relations are used to calcu-

late various quantities in this type of experiment. 

Strain can be calculated as follows: 
 

𝜀𝑒 =
∆𝐿

𝐿0
                                                           (22) 

 

where ΔL is the measured displacement and L0 is initial sample length along a single axis. Stress 

is defined as follows: 
 

𝜎𝑒 =
𝑃

𝐴0
                                                          (23) 

 

where P is the applied load and A0 is the initial cross-sectional area of the sample normal to the 

loading direction. 

The material subjected to loading initially behaves in a linear elastic manner, i.e., stress and 

strain are linearly related, and on unloading, the deformation is recoverable. The slope of the 

strain-stress curve within the linear elastic regime is equal to Young’s modulus, which is the 

ratio of the stress to axial strain (Sochor 1998): 
 

𝐸 =
𝜎𝑒

𝜀𝑒
                                                           (24) 

 

Poisson’s ratio can be calculated as a value of Young’s modulus divided by the ratio be-

tween the stress to diametric strain. 

The DEM is very popular in studying uniaxial compression. There are two reasons behind 

this fact. The first one is the importance of uniaxial compression itself, which is very popular 

and very basic laboratory test. The second one is that modelling of uniaxial compression is an 

initial part of the most of the DEM simulations, because this is a primary way to calibrate pa-

rameters of modelled material (Strawley et al. 1965).  

Numerous papers about the DEM modelling of the uniaxial compression have been pub-

lished in recent years. Duan et al. (2016) proposed a new numerical approach to model the 

mechanical behaviors of inherently anisotropic rocks in which the rock matrix is represented as 

a bonded particle model, and the intrinsic anisotropy is imposed by replacing any parallel bonds 

dipping within a certain angle range with smooth‐joint contacts. The radial strain control 

method for uniaxial compression tests was introduced by Shimizu et al. (2010) in the distinct 
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Fig. 10. An exemplary sample before (top) and after (bottom) uniaxial compression. View of bonds. 

Colour stands for the radius of the particle that is set in this place – red means the largest particles, blue 

– the smallest particles. 
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element method codes and the Class II behavior of rocks was simulated. Wiącek et al. (2012) 

numerically showed that an increase in the particle aspect ratio strongly affected the mechanical 

response of a specimen under uniaxial compression. Nitka (Nitka and Tejchman 2015) has fo-

cused on the DEM modelling of the behaviour of plain concrete under uniaxial compression 

and uniaxial tension using the discrete element method. Vesga et al. (2008) used DEM to study 

how cracks propagate in a continuum material (clay) subjected to a uniaxial compressive stress. 

The DEM proved to be a very successful approach for the visualization of secondary crack 

formations and their propagation in the simulated samples. Yang et al. (2014) adopted the par-

ticle flow code (PFC2D) to carry out a discrete element modelling for the fracture coalescence 

behavior of red sandstone specimens containing two unparallel fissures under uniaxial com-

pression. Ergenzinger et al. (2011) investigated a bonded-particle model using extended Dis-

crete Element Method with respect to failure of strong rock under uniaxial compression. 

Scholtes and Donze (2012) discovered that instabilities in rock structures involve coupled 

mechanisms related to both deformations along existing discontinuities and brittle fracture of 

intact rocks.  

In comparison to the abovementioned studies, this research is focused mainly on the changes 

in microscopic structure of the material during applying compressive force. Such analysis in-

volves relationship between the microscopic parameters of bonds and macroscopic parameters 

of the whole sample, especially different aspects related to rotational and linear movements of 

material’s particles.  
 

4.2.2 Simulation settings  

In this subsection the details of performed uniaxial compression simulations are described. 

A model of the cylindrical sample was constructed of approximately 100 000 particles with 

radii from 0.3 to 3.0 mm. Two types of samples were prepared: with density of 940 kg/m3 

corresponding to an ice-like material (Riikilä 2017), and with density of 2260 kg/m3 corre-

sponding to a sandstone-like material (Hertzberg 1976). Particles inside the samples were con-

nected by bonds created to simulate behaviour of brittle materials called in ESyS-Particle the 

BrittleBeamPrms as described in Section 3.3.2. Modeled cylindrical sample was compressed 

by two walls, both moving with a constant velocity 0.5 mm/s (an exemplary view of the sample 

before and after the fracture is shown in Fig. 10). Although this rate is significantly higher than 

that typically used in laboratory uniaxial compression experiments, it is sufficiently small to 

maintain quasi-static conditions in the simulations. The initial acceleration of the walls from 

zero to the desired speed (during the first 50 000 timesteps) also helps to ensure thta the sample 

is loaded quasi-statically without generating an acoustic waves. The full set of used parameters 

is shown in Table 1. 

 

4.2.3 Simulation results 

Presented simulations were mainly focused on the relationship between four microscopic pa-

rameters of bonds and two macroscopic parameters of the sample. These microscopic parame-

ters were, namely, Young’s modulus, Poisson ratio, cohesion, and friction angle of bonds, as 

described in Section 3.3.2. The considered macroscopic parameters of the samples were 

Young’s modulus (stiffness of the sample in the linear elasticity regime) and Poisson’s ratio. 

The full list of used parameters and obtained results are shown in Table 2 and 4. 

Young’s modulus and Poisson’s ratio were calculated according to the scheme presented in 

the diagram from Fig. 11. Young’s modulus is calculated as a slope of the curve axial stress – 

axial strain, for an initial (linear) part of the strain-stress curve. Poisson’s ratio is calculated as 

the ratio between the value of Young’s modulus and slope of axial stress – diametral strain 

curve (also linear part). 
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Table 1 

Uniaxial compression simulations – parameter settings 

 

Particles size from 0.3 to 3.0 mm  

Time step 5.0e-06s 

Time steps 2000 000 

Particles density 940 kg/m3 or 2240 kg/m3 

Type of bonds 

 

 

 

Name: BrittleBeamPrms 

Parameters: 

name = “pp_bonds”, 

youngsModulus = in according with Table 2 and Table 4, 

poissonsRatio = in according with Table 2 and Table 4, 

cohesion = in according with Table 2 and Table 4, 

tanAngle = in according with Table 2 and Table 4, 

tag=0 

Unbonded particles 

 

 

 

Name: FrictionPrms 

Parameters: 

name =“friction”, 

youngsModulus = the same as youngsModulus in  

Brittle BeamPrms interaction, 

poissonsRatio = the same as poissonsRatio in  

Brittle BeamPrms interaction, 

dynamicMu = 0.4, 

staticMu = 0.6 

Elastic repulsion with the walls 

 

Name: NRotElasticWallPrms 

Parameters: 

normalK = the same as youngsModulus  

in BrittleBeamPrms interaction 

Translational viscous damping 

 

Name: LinDampingPrms 

Parameters: 

viscosity = 0.002, 

maxIterations = 50 

 

Name: RotDampingPrms 

Parameters: 

viscosity = 0.002, 

maxIterations = 50 

Compressing rate 

Velocity 0.5 mm/s 

rampTime 50 000 time steps 

 

 

The analysis of the obtained results concerned three main groups of issues: dependencies 

between microscopic and macroscopic parameters of samples with different densities; changes 

of components of potential energy of bonds during the fragmentation process; changes of com-

ponents of kinetic energy of particles during the fragmentation process. 
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Fig. 11. Macroscopic parameters of the sample (Young’s modulus and Poisson’s ratio) were calculated 

from the stress-strain curves. Young’s modulus as a slope of axial stress – axial strain curve, and Pois-

son’s ratio as a Young’s modulus divided by the slope of the axial stress – diametral strain curve.  

Microscopic and macroscopic parameters of samples 

Table 2 

The relationship between microscopic and macroscopic parameters of a sample of density 940 kg/m3 

under uniaxial compression 

 

Microscopic parameters Macroscopic parameters 

Young’s mod-

ulus 

[MPa] 

Poisson ratio 

[dimension-

less] 

Cohesion 

[dimension-

less] 

Tangent 

of the 

friction 

angle 

Young’s 

modulus 

[GPa] 

Poisson ratio 

[dimension-

less] 

Uniaxial Test 1 1.00E+03 0.25 10 000 1.0 5.21E+00 0.13 

Uniaxial Test 2 1.00E+03 0.25 1000 1.0 5.21E+00 0.13 

Uniaxial Test 3 1.00E+03 0.34 100 1.0 5.12E+00 0.14 

Uniaxial Test 4 1.00E+03 0.34 1000 1.0 5.12E+00 0.14 

Uniaxial Test 5 1.00E+04 0.25 1 1.0 4.67E+01 0.14 

Uniaxial Test 6 1.00E+04 0.34 100 1.0 4.85E+01 0.16 

Uniaxial Test 7 1.00E+05 0.50 100 1.0 4.63E+02 0.17 

Uniaxial Test 8 1.00E+05 0.15 10 000 0.5 5.07E+02 0.14 

Uniaxial Test 9 1.00E+05 0.50 10 000 1.0 4.66E+02 0.17 

Uniaxial Test 10 1.00E+05 0.40 10 000 0.0 4.75E+02 0.17 

Uniaxial Test 11 1.00E+05 0.25 100 0.0 4.92E+02 0.15 

Uniaxial Test 12 1.00E+05 0.25 100 000 1.0 4.83E+02 0.13 

Uniaxial Test 13 1.00E+05 0.25 1000 1.0 4.92E+02 0.15 

Uniaxial Test 14 1.00E+05 0.34 100 1.0 4.82E+02 0.16 

Uniaxial Test 15 1.00E+05 0.34 1000 1.0 4.80E+02 0.16 

Uniaxial Test 16 1.00E+05 0.25 100 1.0 4.92E+02 0.15 

Uniaxial Test 17 1.00E+05 0.20 100 1.0 5.00E+02 0.15 
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Table 2 presents the dependence between four microscopic parameters and two macroscopic 

parameters of the whole sample. The study of this relationships was carried out for a whole 

series of parameters selected in a possibly wide and cross-sectional way (however, with the 

greatest emphasis on microscopic Young’s modulus and cohesion).  

One of the most visible results is a clear relationship between the microscopic Young’s 

modulus and the macroscopic Young’s modulus. A higher value of the first parameter corre-

sponds to a higher value of the second parameter. Another conclusions came from the observa-

tion of a parameter such as cohesion. When keeping the remaining three parameters fixed, the 

change in cohesion does not affect macroscopic parameters Young’s modulus and Poisson’s 

ratio (cases Uniaxial Test 1 and Uniaxial Test 2, as well as Uniaxial Test 3 and Uniaxial Test 

4) or an effect is minor (Uniaxial Test 12 and Uniaxial Test 13 or Uniaxial Test 14 and Uniaxial  

 

Table 3 

Samples that broke apart under considered loading selected from the samples from Table 2.  

On the horizontal axis, axial strain [%]; on the vertical axis, axial stress [MPa] 

Uniaxial Test 1 Uniaxial Test 5 Uniaxial Test 6 

   
Uniaxial Test 7 Uniaxial Test 11 Uniaxial Test 13 

   
Uniaxial Test 14 Uniaxial Test 15 Uniaxial Test 16 

   
Uniaxial Test 17 
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Test 15). The last two pairs of results suggest that the higher microscopic cohesion corresponds 

to the lower macroscopic Young’s modulus. However, it was observed that the cohesion pa-

rameter is crucial for defining the sample “brittleness” and breaking moment. From the tests 

Uniaxial Test 13 and Uniaxial Test 15, and also from three tests Uniaxial Tests, 14, 16, and 17, 

it can be concluded that the lower microscopic Poisson’s ratio translates into a higher macro-

scopic Young’s modulus.  

For assumed simulation parameters (Table 2), not every sample broke apart under consid-

ered loading. Sometimes this was due to the characteristics of the sample itself, and sometimes 

due to the limited simulation time. The samples for which breaking occurred are shown in  

Table 3, together with their stress-strain curves. The specific noisy shape of the curve for the 

Uniaxial Test 1 is most likely due to numerical dispersion. 

Table 4 

The relationship between microscopic and macroscopic parameters of a sample of density 2260 kg/m3  

under uniaxial compression 

 

Microscopic parameters Macroscopic parameters 

Young’s  

modulus 

[MPa] 

Poisson ratio 

[dimension-

less] 

Cohesion 

[dimension-

less] 

Tangent 

of the 

friction 

angle 

Young’s 

modulus 

[GPa] 

Poisson ratio 

[dimension-

less] 

Uniaxial Test 1 1.00E+03 0.25 1000 1.0 5.42E+00 0.14 

Uniaxial Test 2 1.00E+03 0.34 100 1.0 5.29E+00 0.14 

Uniaxial Test 3 1.00E+04 0.34 100 1.0 4.91E+01 0.15 

Uniaxial Test 4 1.00E+05 0.25 10 000 1.0 4.93E+02 0.15 

Uniaxial Test 5 1.00E+05 0.34 100 1.0 4.82E+02 0.16 

Uniaxial Test 6 1.00E+05 0.34 1000 1.0 4.81E+02 0.16 

Uniaxial Test 7 1.00E+05 0.25 100 1.0 4.93E+02 0.15 

Uniaxial Test 8 1.00E+05 0.20 100 1.0 5.01E+02 0.15 

Uniaxial Test 9 1.00E+06 0.30 10 000 1.0 1.30E+02 0.06 

Uniaxial Test 10 1.00E+06 0.25 100 1.0 1.28E+03 0.16 

Uniaxial Test 11 1.00E+06 0.25 10 000 1.0 4.84E+03 0.24 

Uniaxial Test 12 1.00E+06 0.20 10 000 1.0 4.95E+03 0.15 

Uniaxial Test 13 1.00E+06 0.25 100 1.0 4.90E+03 0.14 

Uniaxial Test 14 1.00E+06 0.30 10 000 1.0 4.88E+03 0.06 

Uniaxial Test 15 1.00E+06 0.25 100 1.0 4.51E+03 0.15 

Uniaxial Test 16 1.00E+06 0.25 1000 1.0 4.84E+03 0.16 

Uniaxial Test 17 1.00E+06 0.25 10 000 0.8 4.73E+03 0.10 

Uniaxial Test 18 1.00E+06 0.25 10 000 1.2 4.75E+03 0.19 

Uniaxial Test 19 1.00E+06 0.15 10 000 0.7 4.95E+03 0.16 

Uniaxial Test 20 1.00E+06 0.35 10 000 0.7 4.71E+03 -0.01 

Uniaxial Test 21 1.00E+06 0.35 10 000 1.5 4.61E+03 0.15 

Uniaxial Test 22 1.00E+06 0.35 10 000 1.5 4.77E+03 0.15 
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Table 5 

Samples that broke apart under considered loading selected from the samples from Table 4.  

On the horizontal axis, axial strain [%]; on the vertical axis, axial stress [MPa] 

Uniaxial Test 3 Uniaxial Test 5 Uniaxial Test 6 

   
Uniaxial Test 7 Uniaxial Test 8 Uniaxial Test 11 

   
Uniaxial Test 12 Uniaxial Test 13 Uniaxial Test 14 

   
Uniaxial Test 15 Uniaxial Test 16 Uniaxial Test 17 

   
Uniaxial Test 18 Uniaxial Test 19 Uniaxial Test 20 

   
   

Uniaxial Test 21 Uniaxial Test 22  
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Analogously to the abovementioned results regarding the material with a density of 

940 km/m3, the results for material with a density of 2260 km/m3 were considered in a similar 

manner. First, Table 4 presents the relationship between microscopic and macroscopic param-

eters. The results, segregated according the microscopic Young’s modulus, have been given 

names from Uniaxial Test 1 to Uniaxial Test 22. Again the microscopic Young’s modulus is a 

key parameter affecting macroscopic Young’s modulus and this is a very strong influence. The 

lower value of the microscopic Poisson’s ratio corresponds to the higher macroscopic Young’s 

modulus (e.g., Uniaxial Test 1 and 2). The effect of microscopic parameters on macroscopic 

Poisson’s ratio is definitely less visible. From the Uniaxial Test 17 – Uniaxial Test 22 (for 

which the microscopic value of Young’s modulus and cohesion was fixed, while microscopic 

Poisson’s ratio and tangent of the friction angle were changed) it can be seen that microscopic 

Poisson’s ratio and tangent of the friction angle have a significant effect on macroscopic Pois-

son’s ratio, while the effect on macroscopic Young’s modulus is much weaker. 

The stress-strain curves for the samples that broke apart are presented in Table 5. 

In the next step, the obtained results were used for analysis of potential energy of bonds and 

kinetic energy of particles. The dependence between particular components of potential energy 

(bending, normal, shearing and twisting) and kinetic energy (linear and rotational) was consid-

ered. These calculations were carried out only for the samples that broke apart during simulated 

compression, for both densities, 940 kg/m3 and 2260 kg/m3. Such samples are listed in Table 3 

and 5 together with their stress-strain curves, and detailed data on microscopic and macroscopic 

parameters of simulated materials can be found in Table 2 and 4. Samples for which compres-

sion simulations ended only in the linear part of the stress-strain curve, without breaking, were 

not taken into account in these considerations.  

Importantly, it was observed that the breaking process occurred for different samples in 

different ways. Therefore, to obtain comparable results, the following procedure was imple-

mented: 

 Step 1: in equal, regular time intervals the sum of all types of rotational energy of all 

bonds and all types of kinetic energy of all particles was recorded. 

 Step 2: for each sample the breaking range was extracted (Fig. 12). In this range, 

values obtained in the first step were added to each other and then averaged over a 

time intervals mentioned in the first step. 

 Step 3: the percentage share was calculated of particular types of different kinetic 

and potential energies in average kinetic and potential energies, which values were 

calculated in the previous step. 

 

 

 

 

 

Fig. 12. The breaking 

range considered during 

calculating the compo-

nents of potential energy 

of bonds and the compo-

nents of kinetic energy 

of particles. 
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Components of potential energy of bonds  

At the beginning, the potential energies of bonds were considered. The bending energy, normal 

energy, shearing energy and twisting energy as a percentage of the total average potential en-

ergy of all bonds are shown as columns at Fig. 13 respectively. The exact numerical values are 

listed also in Table 6. 

Fig. 13. Visual representation of potential energies of the bonds (bending, normal, shearing and twisting 

energy) as a percentage of total potential energy for the data from Table 6.  
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Table 6 

Potential energies of the bonds (bending, normal, shearing and twisting energy) as a percentage  

of total potential energy for the samples from Table 3 and 5. Average value per time step 

 

Components of the potential energy of bonds 

Bending  

energy 

Normal  

energy 

Shearing  

energy 

Twisting  

energy 

Uniaxial Test 1, density 940 kg/m3 1.70% 42.96% 32.69% 22.66% 

Uniaxial Test 5, density 940 kg/m3 1.94% 61.91% 35.17% 0.98% 

Uniaxial Test 6, density 940 kg/m3 0.86% 60.75% 37.79% 0.60% 

Uniaxial Test 7, density 940 kg/m3 1.02% 61.08% 37.27% 0.63% 

Uniaxial Test 11, density 940 kg/m3 1.64% 63.44% 34.05% 0.87% 

Uniaxial Test 13, density 940 kg/m3 0.84% 60.60% 37.94% 0.62% 

Uniaxial Test 14, density 940 kg/m3 1.03% 60.95% 37.35% 0.67% 

Uniaxial Test 15, density 940 kg/m3 0.84% 60.73% 37.84% 0.59% 

Uniaxial Test 16, density 940 kg/m3 1.04% 60.86% 37.40% 0.70% 

Uniaxial Test 17, density 940 kg/m3 1.04% 60.84% 37.41% 0.71% 

Uniaxial Test 3, density 2260 kg/m3 0.88% 60.72% 37.80% 0.60% 

Uniaxial Test 5, density 2260 kg/m3 1.10% 60.97% 37.80% 0.60% 

Uniaxial Test 6, density 2260 kg/m3 0.84% 60.77% 37.80% 0.59% 

Uniaxial Test 7, density 2260 kg/m3 1.10% 60.94% 37.25% 0.71% 

Uniaxial Test 8, density 2260 kg/m3 1.10% 60.93% 37.25% 0.73% 

Uniaxial Test 11, density 2260 kg/m3 0.82% 60.60% 37.97% 0.61% 

Uniaxial Test 12, density 2260 kg/m3 0.82% 60.50% 38.05% 0.63% 

Uniaxial Test 13, density 2260 kg/m3 1.35% 60.94% 36.89% 0.82% 

Uniaxial Test 14, density 2260 kg/m3 0.83% 60.68% 37.90% 0.59% 

Uniaxial Test 15, density 2260 kg/m3 1.20% 60.72% 37.29% 0.78% 

Uniaxial Test 16, density 2260 kg/m3 0.94% 60.83% 37.57% 0.67% 

Uniaxial Test 17, density 2260 kg/m3 0.84% 60.70% 37.84% 0.62% 

Uniaxial Test 18, density 2260 kg/m3 0.82% 60.51% 38.06% 0.61% 

Uniaxial Test 19, density 2260 kg/m3 0.85% 60.57% 37.92% 0.66% 

Uniaxial Test 20, density 2260 kg/m3 0.84% 60.98% 37.59% 0.59% 

Uniaxial Test 21, density 2260 kg/m3 0.83% 60.50% 38.08% 0.59% 

Uniaxial Test 22, density 2260 kg/m3 0.84% 60.52% 38.06% 0.58% 

 

Interestingly, almost identical results and dependencies were obtained for all samples, re-

gardless of their microscopic and macroscopic parameters. The only one exception was the 

Uniaxial Test 1 for a density 940 km/m3. This exception fully reflected the results from Table 

3 and 5. Only Uniaxial Test 1 is distinguished by a different shape of the stress-strain curve. 

Probably, this was the result of numerical dispersion, as mentioned earlier. The remaining sam-

ples had similar stress-strain diagrams, in which the stress linearly increases in the function of 
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the strain, followed by one main break and then a rapid decrease in stress to zero. The main 

difference lies in different stress and strains values corresponding to breaking. As mentioned 

above, virtually all samples showed identical relationships between different types of potential 

energies. Normal potential energy was fixed around 61%, shearing potential energy around 

38%. The smallest share belonged to bending potential energy and twisting potential energy, 

both of these energies were generally less than 1%. Detailed values are presented in Table 6. 

Table 7 

Kinetic energies of the bonds (linear and rotational) as a percentage of total kinetic energy  

for the samples from Table 3 and 5. Average value per time step 

Components of the kinetic energy of particles 

 Linear kinetic energy Rotational kinetic energy 

Uniaxial Test 1, density 940 kg/m3 3.77% 96.23% 

Uniaxial Test 5, density 940 kg/m3 96.00% 4.00% 

Uniaxial Test 6, density 940 kg/m3 90.58% 9.42% 

Uniaxial Test 7, density 940 kg/m3 92.69% 7.04% 

Uniaxial Test 11, density 940 kg/m3 87.91% 12.09% 

Uniaxial Test 13, density 940 kg/m3 84.39% 15.61% 

Uniaxial Test 14, density 940 kg/m3 93.03% 6.97% 

Uniaxial Test 15, density 940 kg/m3 84.51% 15.49% 

Uniaxial Test 16, density 940 kg/m3 92.90% 7.10% 

Uniaxial Test 17, density 940 kg/m3 92.90% 7.10% 

Uniaxial Test 3, density 2260 kg/m3 92.38% 7.62% 

Uniaxial Test 5, density 2260 kg/m3 94.00% 6.00% 

Uniaxial Test 6, density 2260 kg/m3 87.63% 12.37% 

Uniaxial Test 7, density 2260 kg/m3 94.00% 6.00% 

Uniaxial Test 8, density 2260 kg/m3 94.28% 5.72% 

Uniaxial Test 11, density 2260 kg/m3 80.28% 19.72% 

Uniaxial Test 12, density 2260 kg/m3 78.50% 21.50% 

Uniaxial Test 13, density 2260 kg/m3 94.68% 5.32% 

Uniaxial Test 14, density 2260 kg/m3 80.28% 19.72% 

Uniaxial Test 15, density 2260 kg/m3 91.07% 8.93% 

Uniaxial Test 16, density 2260 kg/m3 89.22% 10.78% 

Uniaxial Test 17, density 2260 kg/m3 78.14% 21.86% 

Uniaxial Test 18, density 2260 kg/m3 79.05% 20.95% 

Uniaxial Test 19, density 2260 kg/m3 75.73% 24.27% 

Uniaxial Test 20, density 2260 kg/m3 78.26% 21.74% 

Uniaxial Test 21, density 2260 kg/m3 80.99% 19.01% 

Uniaxial Test 22, density 2260 kg/m3 81.31% 18.69% 
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Fig. 14. Visual representation of kinetic energies of the particles (linear and rotational energy) as a per-

centage of the total kinetic energy for the data from Table 7. 

The results presented above are average values for all existing bonds. For the results ex-

tracted in this way, a certain regularity was found between different types of potential energy 

of bonds. Normal potential energy of bonds, associated with approaching or moving away of 

particles, is the largest part, the second one the most important potential energy is this connected 
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with shearing between particles. All movements connected with bending or twisting make a 

very small contribution. Especially interesting is the fact that the ratio between particular po-

tential energies of bonds is always constant, despite very various microscopic and macroscopic 

parameters of considered samples. 

Components of kinetic energy of particles  

Further, the kinetic energies of particles were taken into account. The individual columns pre-

sent the linear kinetic energy and the rotational kinetic energy as a percentage of total kinetic 

energy of all particles (Fig. 14, Table 7). 

The relationship between kinetic energies of particles is not as obvious at first glance as in 

the case of energy of potential bonds. Again, Uniaxial Test 1 stands out, for which 96% is 

rotational kinetic energy. For the remaining samples, linear kinetic energy prevails, ranging 

from about 80% to 96%. It is possible to distinguish between two groups of results for which 

the ratio between linear kinetic energy and rotational kinetic energy is about 80% to 20% or 

about 94% to 6%. A comparison with Table 2 and Table 4 leads to the conclusion that for the 

higher proportion of rotational kinetic energy during the breaking process is responsible the 

microscopic parameter – cohesion. 

 

4.2.4 Conclusions 

The simulations of uniaxial compression provided results in three groups of issues: dependen-

cies between microscopic (Young’s modulus, Poisson’s ratio, cohesion, tangent of the friction 

angle) and macroscopic (Young’s modulus, Poisson’s ratio) parameters of samples with densi-

ties of 940 kg/m3 and 2260 kg/m3, average potential energy of bonds, average kinetic energy of 

particles.  

One of the clearest relationships between microscopic and macroscopic parameters was this 

between the microscopic Young’s modulus and the macroscopic Young’s modulus. A higher 

value of the first parameter corresponds to a higher value of the second parameter. Another 

conclusions came from the observation of a parameter such as cohesion. When keeping the 

remaining three microscopic parameters fixed, the change in cohesion does not affect macro-

scopic parameters, Young’s modulus and Poisson’s ratio, or affects it slightly. In some cases, 

the higher microscopic cohesion corresponds to the lower macroscopic Young’s modulus. On 

the other hand, the cohesion parameter is crucial for defining the sample brittleness and break-

ing moment. It can be also concluded that the lower microscopic Poisson’s ratio translates into 

a higher macroscopic Young’s modulus. Additionally, microscopic Poisson’s ratio and tangent 

of the friction affect significantly macroscopic Poisson’s ratio, while much smaller macroscopic 

Young’s modulus. 

Interesting results were obtained while considering potential energies of bonds. The average 

percentage contribution of different potential energies of bonds to the average overall potential 

energy of bonds during the breaking process was always constant. Normal energy was fixed 

around 61%, shearing energy around 38%. The smallest share belonged to bending energy and 

twisting energy, both of these energies being generally less than 1%. The relationship between 

kinetic energies of particles was not as clear as in the case of potential energy of bonds. Linear 

kinetic energy prevailed, ranging from about 80% to 96%. It was possible to distinguish be-

tween two groups of results for which the ratio between linear kinetic energy and rotational 

kinetic energy was about 80% to 20% or about 94% to 6%. A comparison with microscopic 

parameters of bonds led to the conclusion that the microscopic parameter – cohesion – was 

mainly responsible for this difference. 
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4.3 Brazilian test  

Simulations of the Brazilian test were the second part of the research. These results were pre-

sented at V International Conference on Particle-based Methods in Hannover, September 2017 

(Klejment and Dębski 2017). 

 

4.3.1 Motivation and outline 

The tensile strength of solid materials is one of the most important parameter that describes 

the behaviour of materials under mechanical load and thus its knowledge is of great practical 

importance (Lavrov and Vervoort 2002). However, the direct measurement of tensile strength, 

especially for brittle materials is quite difficult and thus only limited results are available. To 

cope with this situation, Akazawa (1943) has proposed an indirect method of estimation of the 

tensile strength known as the Brazilian test (Fig. 15). The method relies on diametrically load-

ing of a disk-like sample of a brittle material until it splits apart due to induced tensile stress as 

shown in Fig. 16. The justification of the method comes from the theory of elasticity which 

predicts that for an ideal homogeneous elastic cylinder of radius R and length L subjected to a 

diametrically linear loading P the stress inside the body reads (Hobs 1964; Zhang and Eckert 

2005):  

 

𝜎𝑥 =
𝑃

𝜋𝑅𝐿
−
2𝑃

𝜋𝐿
(

𝑥2(𝑅 − 𝑦)

[𝑥2 + (𝑅 − 𝑦)2]2
+

𝑥2(𝑅 + 𝑦)

[𝑥2 + (𝑅 + 𝑦)2]2
) 

 

𝜎𝑦 = −
𝑃

𝜋𝑅𝐿
−
2𝑃

𝜋𝐿
(

(𝑅 − 𝑦)3

[𝑥2 + (𝑅 − 𝑦)2]2
+

𝑥(𝑅 + 𝑦)2

[𝑥2 + (𝑅 + 𝑦)2]2
) 

 

𝜏𝑥𝑦 =
2𝑃

𝜋𝐿
(

𝑥(𝑅 − 𝑦)2

[𝑥2 + (𝑅 − 𝑦)2]2
−

𝑥(𝑅 + 𝑦)2

[𝑥2 + (𝑅 + 𝑦)2]2
) 

 

where x and y refer to coordinates, as shown in Fig. 16. As it follows from above, at the loading 

plane (x = 0) the σx and σy are normal stresses (σxy = 0) perpendicular and parallel to the loading 

plane, respectively, and the tensile stress σx is constant and reads 

 
 

  

Fig. 15. A sample before (left) and after experiment (right). 

(25) 
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Fig. 16. Sketch of the simulation setup used in numerical simulations. The horizontal loading plates are 

assumed to be perfectly rigid. The lower plate is fixed while the upper one moves downward with con-

stant velocity V providing the diameter loading of the disk (after Klejment and Dębski 2017). 

 

𝜎𝑇 =
𝑃

𝜋𝑅𝐿
                                                         (26) 

 

while the compressional stress σy increases from 3σx at the centre of the disk to infinity at the 

loading point. 

These formulas have been extended to a more realistic laboratory situations considering 

loading over a finite, bended surface, and nonhomogeneity and anisotropy of the material, to 

name a few extensions. The usefulness and simplicity of the Brazilian test follow directly from 

Eq. (26), which predicts that tensile is proportional to the loading. Thus, assuming that splitting 

of the samples occurs when tensile stress reaches the material tensile strength, it can easily be 

estimated from Eq. (26) by recording the loading force when the sample is crushed (Sator and 

Hietala 2010; Sator et al. 2008). 

The Brazilian test method has gained considerable popularity not only because of the sim-

plicity of its application but also due to more fundamental concepts concerning mechanisms of 

creation and development of the tensile fractures under simple initial and boundary conditions 

(Behera et al. 2005). However, it has also received considerable criticism because of the lack 

of robustness and proximity. These disadvantages are due to the fact that the Brazilian test 

results show a systematic overestimation of the tensile toughness with respect to values ob-

tained in direct measurements. Thus, there is a considerable ongoing discussion on reasons of 

these discrepancies. 

There remains an open question on the dynamics of nucleation and the development of the 

main tensile and secondary cracks resulting in a final breaking apart of the specimen. The clas-

sical theory predicts the creation of such crack in the centre of the sample where the compress-

ing stress is the smallest. After nucleation, the crack is expected to propagate along the loading 

plane outwards. However, in many experiments the crack was observed to nucleate not in centre 

but close to the sample surface (Hudson et al. 1972). Wing-type and secondary cracks were also 

observed (Cai 2013). Another open question is which criterion should be used for the estimation 

of the tensile strength. The most popular approach is based on the stress criterion according to 

which the material breaking occurs when tensile stress reaches the critical value and Eq. (26) is 

then directly used to calculate the tensile strength. However, this is fully an arbitrary choice. 

Another, physically justified strain criterion was proposed by Stacey (1981). Both criteria are 

equivalent (at least from the mathematical point of view) for perfectly elastic media but not if 

large deformation effects are considered. 
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Theoretical analysis of the Brazilian test method are based mainly on the classical contin-

uum mechanics (Claesson and Bohloli 2002; Exadaktylos and Kaklis 2001; Kundu et al. 2016) 

and is limited to the simplest cases. Analysis of more realistic cases can be done only numeri-

cally. Authors of such studies most often use different variants of the Finite and/or Boundary 

Element Methods (Onate and Rojek 2004; Cai and Kaiser 2004; Zhu and Tang 2006). Only 

recently, a simple but very interesting analysis based on the Fiber Bundle Method has been 

presented (Kundu et al. 2016). In this chapter, some of the abovementioned issues were ana-

lysed from a “molecular” point of view using the DEM (Abe et al. 2014).  

 

4.3.2 Simulation settings 

A number of numerical simulations of Brazilian test (Fig. 18) were performed considering the 

specimen in the form of disk (cylinder) of diameter 10 mm and thickness 5 mm and diametri-

cally loaded as shown in Fig. 16. The sample was built of spherical particles of varying sizes 

within predefined ranges. The maximum radius of used particles was always kept fixed and 

equal to Rmax = 0.2 mm. The minimum radius varies among simulations in the range of 0.027 

up to 0.1 mm. An external load was supplied by two perfectly rigid plates. The lower plate was 

fixed while the upper one moved downward with a constant velocity V = 4 mm/sec. Simulations 

ended when the vertical displacement of the upper plate reached the predefined level of 

 

Fig. 17. Example of facial views of a sample before loading (left) and after the creation of a tensile crack 

(right) in the middle of the sample (after Klejment and Dębski 2017). 

 

 

 

 

 

 

 

 

 

Fig. 18. The relationship between the maximum 

and minimum particle radii analyzed in simula-

tions. 
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0.2 mm, selected as large enough to induce the sample breaking and a beginning of the postfail-

ure stage. Fig. 17 shows facial views of one of the samples before and after the creation of a 

main tensile crack (but still before complete breaking of the sample) are shown. During loading, 

the vertical position of the upper plate and the total vertical force acting on it were recorded at 

each step; therefore, a stress-strain relation was continuously monitored. Besides, the total ki-

netic energy of particles and the total potential energy of inter-particle interactions were also 

recorded. 

The most nontrivial element of any DEM simulation is defining the particle interactions and 

breaking conditions. The model of “elastic-brittle interactions” supported by ESyS-Particle was 

used (BrittleBeamPrms). Full description of this kind of interactions can be found in the Sec-

tion 3.3.2. 

 

Table 8 

Brazilian Test simulations – parameter settings 

Particles size in accordance with Fig. 18 

Time step 2.0e-06 s 

Time steps 1000000 

Type of bonds 

Name: BrittleBeamPrms 

Parameters: 

name = “pp_bonds”, 

youngsModulus = 100000.0, 

poissonsRatio = 0.25, 

cohesion = 1000.0, 

tanAngle = 1.0, 

tag = 1 

Unbonded particles 

Name: FrictionPrms 

Parameters: 

name = “friction”, 

youngsModulus = 100000.0, 

poissonsRatio = 0.25, 

dynamicMu = 0.4, 

staticMu = 0.6 

Elastic repulsion with the walls 

Name: NRotElasticWallPrms 
Parameters: 

normalK = 1.0e+06 

Translational viscous damping 

Name: LinDampingPrms 

Parameters: 

viscosity = 0.002, 

maxIterations = 50 

Name: RotDampingPrms 

Parameters: 

viscosity = 0.002, 

maxIterations = 50 

Compressing rate 

Velocity 0.2 mm/s 

rampTime 500 time steps 

 



P.A. KLEJMENT 

 

46 

In the current simulations, a question was raised how the size of particles building the sam-

ple influences simulation results. For this reason, particle interactions were fixed, and the load-

ing rate was also kept constant. The built disk samples consisted from about  5·104  up to almost  

2·106  particles and typical  5·104  time steps were required to break the samples apart. The time 

step which was used for the temporal integration (evolution) was fixed and reads  dt = 5·10–6 

(and was always smaller than time step calculated from the stability criterion Eq. (21) for all 

parameters sets). With this simulation setup computational time on 10 cores CPU workstation 

ranged between 6 and 90 hours. The full set of used parameters is presented in Table 8. 

 

4.3.3 Simulation results 

The first step of discussion about the obtained results starts from an analysis of the relation 

between the applied load and vertical displacement (strain) of the sample. The scaled together 

(for presentation purpose) strain-stress relations for five simulations are shown in Fig. 19 and 

few particular features are clearly visible in this figure. 

First, the maximum attained values of load Pmax, at which the samples break apart, strongly 

depend on the minimum size Rmin of particles building the sample. On the contrary, the critical 

strain dc at which fmax becomes weak depends on Rmin ranging from approximately 0.1 mm up 

to 0.12 mm. Consequently, the slope of the initial part of the strain-stress curves also signifi-

cantly varies with Rmin. Second, for small strains, the response of the sample to the load is 

essentially elastic, manifesting itself in an almost linear strain-stress dependence. The visible 

undulation of the curve is partially due to an acoustic wave generated at the beginning of loading 

when the upper plate “hits” the sample with a constant speed and partially due to a numerical 

noise. Only for very small strains (less than 0.01 mm) this linearity is broken and a “flattening” 

of the stress-strain curves is observed. This is a purely numerical effect linked to a non-optimum 

initial packing of particles in the samples. Third, the elastic behaviour vanishes at larger strains 

and manifests itself as a flattening of the curves. This plastic regime starts earlier for samples 

built of larger particles. In case of samples with Rmin  = 0.03 mm, the plastic regime appears just 

before reaching the maximum withstand load, while in samples built of particles with Rmin ~ 

 

Fig. 19. Load against the vertical displacement (strain) for five different samples composed of particles 

with different minimum radii Rmin. The maximum radius was fixed for all samples Rmax = 0.2 mm. The 

weak undulation in first part of curve is mainly due to acoustic waves generated by the abrupt beginning 

of loading of the samples in the beginning (after Klejment and Dębski 2017). 
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Fig. 20. Number of broken inter-particle bonds as a function of the vertical deformation of a sample 

(after Klejment and Dębski 2017). 

 

0.1–0.06 mm it starts almost in half of the strain value at given sample breaks. Finally, in the 

postfailure stage the stress drop rate is smaller for samples built of larger particles. It is inter-

esting to note that the postfailure stress reaches the minimum (complete breakage of the sample) 

for similar values of strain in all cases. To summarize, a significant mechanical strengthen-ing 

was observed for samples composed of smaller particles with respect to softer samples build of 

larger particles. However, the vertical deformation at which samples break apart only weakly 

depends on Rmin. 

In the next step the variation in the number of broken inter-particle bonds was analysed with 

the increase in load. The results are shown in Fig. 20 where separately scaled numbers of broken 

bonds for five considered samples are shown together. The behaviour of plotted curves is very 

similar in a narrow vicinity of critical strain dc when samples start to break for all but one case. 

An abrupt increase in bond breaking starts just around reaching the critical load Pmax and con-

tinues until the sample fully breaks and the load reaches the minimum value. Only for the very 

soft sample (Rmin = 0.1) inter-particle bonds start to break massively earlier and the process goes 

smoother with larger range of sample deformations. 

The particle composition of the samples influences significantly the initial part of curves 

corresponding to the elastic behaviour of samples. For deformations less than 0.1 mm (visible 

in Fig. 20), the smaller are particles inside the sample, the sooner inter-particle bonds start to 

break. Simultaneously, the smaller the Rmin, the larger the hardening of a sample before the final 

breakage is observed. This effect manifests itself by flattening of curves when the strain ap-

proaches 0.1 mm. Because during the simulations interaction bonds were not allowed to re-heal 

after breaking, the observed initial increase of bond breaking can be interpreted as beginning of 

a viscoplastic deformation of the samples. It should be noted that this effect is quite feeble and 

can hardly be visible in the strain-stress curves in Fig. 19. The degree of this induced viscosity 

significantly depends on the particle size. From a physical point of view this observation sug-

gests that at intermediate values of loading, some dislocations are induced in the samples. In-

deed, such dislocations are more probable for smaller particles and, for this reason, viscous 

behaviour would start earlier for samples with smaller Rmin. Moreover, the particle rearrange-

ment by dislocations very soon leads to denser particle packing and consequently to the hard-

ening of samples. Finally, for a very small deformation, no particle bond breaking was 

observed. This is a perfectly elastic regime. 
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Fig. 21. The absolute value of the kinetic (left) and potential energies of particle interactions (right) 

scaled to the maximum value obtained in all simulations (after Klejment and Dębski 2017). 

Next, the change in the potential energy of particle interaction and the particle kinetic energy 

was considered (without rotational energy) with progressing vertical deformation. The results 

are shown in Fig. 21. In the first approximation one can assume that an external compressional 

load induces harmonic repulsive forces between interacting particles. Consequently, a change 

in the total potential energy should be proportional to the squared sample deformation. Such a 

behavior is indeed visible in the right panel in Fig. 21 for small and intermediate deformations. 

For larger deformations, when the rupture process nucleates, the potential energy starts to be 

released and diminishes. Besides, these changes of the potential energy with deformation are 

different for samples with different Rmin. The potential energy increases most rapidly for sam-

ples build of smaller particles and reaches larger values, as expected. The samples built of 

smaller particle can accumulate larger elastic deformation (potential) energy. As a result, con-

sidering that the breaking (critical) strain dc only slightly increases with the decrease in Rmin and 

deformation at which the samples break apart is almost the same for all samples bacause the 

potential energy released is more abrupt for samples with smaller Rmin. Thus, it can be expected 

that the breaking process will be faster for samples build of smaller particles. 

As far as the kinetic energy Ekin is concerned, it is visible in the left panel of Fig. 21 that it 

is quite stable in the first phase of loading. Some increase and variations in Ekin at the interme-

diate loading can be attributed to the dislocation processes discussed above. During the break-

ing stage, the kinetic energy increases significantly due to the release of potential energy. The 

changes (mostly decrease) of Ekin in the postfailure stage are more complex due to a possible 

secondary cracking of the samples (Cai 2013). However, at this stage, the behavior of Ekin is 

also strongly influenced by a numerical dumping implemented in the used code and thus include 

a non-physical component. For this reason this stage is not analysed any more. 

Considering energy transformations during the loading and breaking stages of the process 

the difference was analysed between the work of the external load and the sum of the kinetic 

and potential energies. The obtained results are shown in Fig. 22. 

For small, elastic deformations the work of the loading force (ΔW) fully converts into the 

elastic (ET = Ekin + Epot) energy. Consequently, Γ = ΔW − ET  vanishes. At the intermediate 

loading stage a monotonic increase of Γ with the sample deformation can be observed. This is 

a signature of non-elastic transfer of external energy. This can be attributed to the breaking of 

inter-particle interaction bonds and particle dislocations. In real materials at this stage the ex-

ternal energy is also efficiently transformed into the heat energy. However, in performed sim-

ulations, the thermal effects were not considered. It is interesting to observe that at this stage Γ 

exhibits a strong dependence on particle size (Rmin). During the breaking stage (0.11 < dl < 

0.14) Γ further increases and finally saturates, as expected. 
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Fig. 22. The difference between external load work (ΔW) and the sum of kinetic and potential energies. 

The obtained values were scaled by the largest value obtained in all simulations (after Klejment and 

Dębski 2017). 

Fig. 23. The maximum critical load, critical strain dc and potential energy at dc strain as the function of 

= Rmax/Rmin (after Klejment and Dębski 2017). 

 

From the results shown in Fig. 19 it was noticed that the maximum load the sample can 

withstand depends significantly on Rmin. To analyze this issue deeper, the maximum loads Pmax, 

dc, and the potential energy at the dc strain for all considered samples were plotted, as shown in 

Fig. 23. 

The obtained results show that the dependence of Pmax on inverse of Rmin is almost perfectly 

linear. A quite similar behaviour is exhibited by the potential energy calculated for the strain 

when the load reaches its maximum value. The critical strain dc is also almost linearly dependent 

(but, much weaker) on the Rmax/Rmin ratio. Presently, no explanation of this observed Pmax (po-

tential energy) scaling was found. Indeed, a preliminary analysis carried out for a larger set of 

samples with different Rmax confirmed with a quite good approximation that Pmax depends only 

on the Rmax/Rmin ratio and thus the reported scaling holds. 
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4.3.4 Conclusions 

With the performed numerical simulations a few goals were attained. From the technical point 

of view, it was proved that ESyS-Particle software works correctly with this type of problems, 

providing the most advanced particle interaction model is used. The obtained results are in full 

agreement with similar results obtained both analytically and by a more traditional FEM meth-

ods (Cohen et al. 2009; Kundu et al. 2016; Li and Wong 2013). Moreover, exceptional abilities 

of the DEM method with solving problems including sample fragmentation was demonstrated. 

The method has allowed a detailed monitoring of internal microscopic state of loaded sam-

ples including changes in kinetic and potential energies of particles. From the physical point of 

view, an insight into the creation of the tensile cracks under the simulated laboratory conditions 

was obtained. It was able to monitor the nucleation and temporal evolution of a tensile crack 

which finally led to the breaking apart of Brazilian test samples. Following the evolution of the 

total kinetic and potential energies during loading it was possible to identify a few stages in a 

response of the samples to constant speed loading. At the beginning of loading, the elastic re-

sponse of the samples was clearly visible. For the intermediate loading, the samples exhibited 

a viscoelastic property due to the induced particle dislocations. At the end of this stage, large 

dislocation occurring in block resulted in a visible plastic behaviour of the samples and finally 

led to crack nucleation and breaking the samples apart. 

The most interesting was, however, observing how size of used particles influenced each of 

the above stage. Although relatively small range of particle sizes was used, the obtained results 

clearly showed that the most sensitive to the material composition is the intermediate loading 

stage when dislocations start to change the properties of materials and lead to crack nucleation. 

On the other hand, the rather weak dependence of the critical strain and the strain when the 

crack fully breaks the sample into two pieces shows that this failure stage is rather insensitive 

to the material composition. However, it seems that the most important result of the performed 

simulations is reporting of the scaling of the critical load which the sample can withstand with 

the inverse of the size of the smallest particles building the sample. At present, no physical 

explanation of the observed scaling can be given. 

4.4 Uniaxial stretching 

Simulations of the uniaxial stretching are the third case of this part of the dissertation. Some of 

these results were presented at 17th International Fatigue Congress in Poitiers, 2018 (Klejment 

and Dębski 2018). 

4.4.1 Motivation and outline 

In contrast to the theory of elasticity, which deals with materials that have a capacity to store 

mechanical energy, the theory of viscoelasticity is associated with those materials that are ca-

pable of dissipating mechanical energy as well as storing it (Pestel and Leckie 1963, Sadd 

2009). If a load is suddenly applied – but not impulsively so as to excite a dynamic response – 

an elastic material will respond instantaneously and reach a final state of deformation. There 

are materials for which a suddenly applied and maintained state of uniform stress induces an 

instantaneous deformation followed by a flow process that may or may not be limited in mag-

nitude as time elapses (Christensen 2010; Ferry 1965). This is the behaviour that is referred to 

as viscoelastic. The governing differential equations in viscoelasticity are linear if infinitesimal 

strains are considered, whereas they become nonlinear if large strains are involved. Viscoelastic 

materials can be modeled in order to determine their stress and strain or force and displacement 

relations as well as their temporal dependencies. Viscoelastic behavior has elastic and viscous 

components modeled as linear combinations of springs and dashpots, respectively (Eringen 

1962; Mavko et al. 1998). 
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The elastic components, as previously mentioned, can be modeled as springs of elastic con-

stant E, given the formula: 

 

 𝜎 = 𝐸𝜀   (27) 

 

where σ is the stress, E is the elastic modulus of the material, and ε is the strain that occurs 

under the given stress, similar to Hooke’s law. 

The viscous components can be modeled as dashpots such that the stress-strain rate rela-

tionship can be given as 

 

 𝜎 = 𝜂
𝑑𝜀

𝑑𝑡
 (28) 

 

where σ is the stress, η is the viscosity of the material, and dε/dt is the time derivative of strain. 

(Roylance 2001a). 

The most important viscoelastic models are, namely, the Maxwell model, the Kelvin–Voigt 

model, the standard linear solid model, and the Burgers model. They are used to predict a ma-

terial's response under different loading conditions. 

The Maxwell model can be represented by a purely viscous damper and a purely elastic 

spring connected in series (Fig. 24). The model can be represented by the following equation 

𝜎 +
𝜂

𝐸
�̇� = 𝜂𝜀̇. Under this model, if the material is put under a constant strain, the stresses grad-

ually relax. When a material is put under a constant stress, the strain has two components. First, 

an elastic component occurs instantaneously, corresponding to the spring, and relaxes immedi-

ately upon release of the stress. The second is a viscous component that grows with time as long 

as the stress is applied (Lakes 2009; Roylance 2001a; Tanner 2000; McCrum et al. 1997; Mey-

ers and Chawla 2008). The Maxwell model predicts that stress decays exponentially with time. 

One limitation of this model is that it does not predict creep accurately. The Maxwell model for 

creep or constant-stress conditions postulates that strain will increase linearly with time. 

The Kelvin–Voigt model, also known as the Voigt model, consists of a Newtonian damper 

and Hookean elastic spring connected in parallel (Fig. 25). The constitutive relation is expressed 

as a linear first-order differential equation  𝜎 = 𝐸+ 𝜂̇. This model represents a solid under-

going reversible, viscoelastic strain (Lakes 2009; Roylance 2001a; Tanner 2000; McCrum et 

al. 1997; Meyers and Chawla 2008). Upon application of a constant stress, the material deforms 

at a decreasing rate, asymptotically approaching the steady-state strain. When the stress is re-

leased, the material gradually relaxes to its undeformed state. At constant stress (creep), the 

model is quite realistic as it predicts strain to tend to σ/E as time continues to infinity. Similar 

to the Maxwell model, the Kelvin–Voigt model also has limitations. The model is extremely 

good with modelling creep in materials, but with regards to relaxation the model is much less 

accurate. 

 

Fig. 24. Schematic representation of the viscoelastic Maxwell model (Roylance 2001a). 
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Fig. 25. Schematic representation of the viscoelastic Kelvin–Voigt model (Roylance 2001a). 

The standard linear solid model, also known as the Zener model, consists of two springs and 

a dashpot. It is the simplest model that describes both the creep and stress relaxation behaviors 

of a viscoelastic material properly. For this model, the governing constitutive relations are: 𝜎 +
𝜂

𝐸2
�̇� = 𝐸1𝜖 +

𝜂(𝐸1+𝐸2)

𝐸2
𝜀̇ (Maxwell representation, Fig. 26), 𝜎 +

𝜂

𝐸1+𝐸2
�̇� =

𝐸1𝐸2

𝐸1+𝐸2
𝜖 +

𝐸1𝜂

𝐸1+𝐸2
𝜖̇ 

(Kelvin representation, Fig. 26). Under a constant stress, the modeled material will instantane-

ously deform to some strain, which is the instantaneous elastic portion of the strain. After that 

it will continue to deform and asymptotically approach a steady-state strain, which is the re-

tarded elastic portion of the strain (Lakes 2009; Roylance 2001a; Tanner 2000; McCrum et al. 

1997; Meyers and Chawla 2008). Although the Standard Linear Solid Model is more accurate 

than the Maxwell and Kelvin–Voigt models in predicting material responses, mathematically it 

returns inaccurate results for strain under specific loading conditions. 

The Burgers model combines the Maxwell and Kelvin–Voigt models in series (Fig. 27). The 

constitutive relation is expressed as follows: 𝜎 + (
𝜂1

𝐸1
+
𝜂2

𝐸2
+
𝜂3

𝐸3
) �̇� +

𝜂1𝜂2

𝐸1𝐸2
�̈� = 𝜂2𝜖̇ +

𝜂1𝜂2

𝐸1
𝜖̈. 

This model incorporates viscous flow into the standard linear solid model, giving a linearly 

increasing asymptote for strain under fixed loading conditions. 

 

 
 

Fig. 26. Schematic representation of the viscoelastic standard linear solid model. On the left is the Max-

well representation, on the right the Kelvin representation (Roylance 2001a). 

Fig. 27. Schematic representation of the viscoelastic Burgers model (Roylance 2001a). 
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Fig. 28. Schematic representation of the viscoelastic Wiechert model (Roylance 2001a). 

The Generalized Maxwell model, also known as the Wiechert model (Fig. 28), is the most 

general form of the linear model for viscoelasticity (Tanner 2000; McCrum et al. 1997; Meyers 

and Chawla 2008). It takes into account that the relaxation does not occur at a single time, but 

at a distribution of times. Due to molecular segments of different lengths, with shorter ones 

contributing less than longer ones, there is a varying time distribution. The Wiechert model 

shows this by having as many spring–dashpot Maxwell elements as are necessary to accurately 

represent the distribution (Mavko et al. 1998; Roderic 2019). 

 

 

 

 
 

  

Fig. 29. Crack nucleation in a three-dimensional elastic material – a sequence of snapshots of the sample 

state. Intensity of colours stands for kinetic energy of particles (grey – the lowest, red and black – the 

highest). 
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Fig. 30. Crack nucleation in a two-dimensional elastic material – a sequence of snapshots of the sample 

state. Intensity of colours stands for kinetic energy of particles (grey – the lowest, red and black – the 

highest). 

The aim of this research was to examine the cracking processes on a scale typical for engi-

neering and seismology (millimeters to meters) using micro-physics methods. The research was 

mainly focused on cracking hypothetical 3D materials subjected to uniaxial stretching with 

constant velocity and sample deformation. The proposed DEM model was related to the above-

mentioned viscoelastic materials models, because in the model particles are connected with 
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each other by springs with implemented damping. Examples of cracks nucleation in two- or 

three-dimensional material in such a DEM model are presented in Fig. 29 and 30 with boundary 

conditions as in Fig. 31. This simulation setup can be used to analyse the behaviour of cracking 

structures such as thin films (e.g., biological structures), metal coverings (e.g., aircraft fuse-

lages) or tailoring materials. Additionally, viscoelastic behaviour is also very common in geo-

physics. 

According to Brennan (1981) the anelastic behavior of rocks and the consequences of this 

anelasticity are topics of considerable interest. Problems involving anelasticity are naturally 

more tractable if the anelastic behaviour is linear, in which case it is described by the theory of 

linear viscoelasticity (Timár et al. 2010). For geophysicists one of the most significant results 

in the theory of linear viscoelasticity is an existence of dispersion relations which relate the 

frequency dependences of the phase velocity and the attenuation coefficient. Carcione (1990) 

observed that the anisotropic linear viscoelastic rheological relation constitutes a suitable model 

for describing the variety of phenomena which occur in seismic wavefields. Additionally, Car-

cione (1993) proposed two‐dimensional (2-D) and three‐dimensional (3-D) forward modeling 

in linear viscoelastic media. Yang et al. (2015) noticed that energy is absorbed and attenuated 

when seismic waves propagate in real earth media. Hence, the viscoelastic medium needs to be 

considered. Farrington et al. (2014) found that subduction of tectonic plates into Earth’s mantle 

occurs when one plate bends beneath another at convergent plate boundaries. The characteristic 

time of deformation at these convergent boundaries approximates the Maxwell relaxation time 

for olivine at lithospheric temperatures and pressures, it is therefore by definition a viscoelastic 

process. While this is widely acknowledged, the large‐scale features of subduction can, and 

have been, successfully reproduced assuming the plate deforms by a viscous mechanism alone. 

The presented research has focused mainly on analyzing the process of cracks nucleation in 

materials similar to viscoelastic, with different intrinsic parameters and subjected to various 

external loads. Simulated processes were considered with regards to energy changes inside the 

material during the loading, as well as deformations in the material structure. 

 

 

Fig. 31. The sample used in the simulations which consists of 3,587 randomly distributed particles with 

radii of 0.1–0.3 mm. 
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4.4.2 Simulation settings 

Simulations were conducted assuming that the tested materials can be described as a collection 

of “tight” packed spherical particles with different radii (statistical inhomogeneity of materials) 

in a given area interacting with each other by harmonic forces that can be represented as springs 

that connect the “molecules”. The simulations were performed by a relatively simple mecha-

nism of cracking solids under the influence of uniaxial stretching.  

Despite the simplicity of the used model, such simulations have already provided valuable 

information on the characteristics of the area around the tip of the developing cohesive zone. In 

performed simulations, the block of particles (Fig. 31) was inserted into the simulation object. 

Non-rotational elastic bonds between bonded particles were created as specified in the NRot-

BondPrms (Abe et al. 2014) parameter set. Detailed description of this kind of interaction can 

be find in the Section 3.3.2. The full set of used parameters is presented in Table 9. 

Table 9 

Uniaxial stretching simulations – parameter settings 

Particles size from 0.1 to 0.3 mm  

Time step 1.0e-05s 

Time steps 200000 

Type of bonds 

 

 

Name: NRotBondPrms 

Parameters: 

youngsModulus = 1.0e+06, 

poissonsRatio = 0.25, 

cohesion = 1000.0, 

tanAngle = 1.0 

Unbonded particles 

 

 

Name: NRotFrictionPrms 

Parameters: 

name = “pp_friction”, 

normalK = in accordance with Table 10, 

dynamicMu = 0.6, 

shearK = 100.0, 

scaling = True 

Elastic repulsion with the walls 

 

Name: NRotElasticWallPrms 

Parameters: 

normalK = the same as normalK  

in NRotFrictionPrms 

Translational viscous damping 

 

Name: LinDampingPrms 

Parameters: 

viscosity = 1.0, 

maxIterations = 100 

Stretching rate 

Velocity 5, 10 or 50 mm/s 

rampTime 1000 time steps 

 

4.4.3 Simulation results 

As it is shown in Table 10, various samples with different elastic stiffness of the bonds between 

particles were prepared. Samples (Fig. 31) had 3576 particles with radii from 0.1 to 0.3 mm and 

dimensions 10 mm × 10 mm × 1 mm. Firstly, a series of measurements of uniaxial stretching 
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were conducted with clamps velocity equal to 1 mm/s. The aim was to calculate the macro-

scopic Young’s modulus of the samples. In this way it was possible to recognize what type of 

real elastic material the checked samples correspond to.  

Then, after calibration, a series of measurements with three uniaxial stretching velocities: 5, 

10, and 50 mm/s were carried out. For each value the maximum stress when the main crack 

occurs was calculated. It was interesting to note that the maximum stress weakly depends on 

elastic stiffness for smaller values of this parameter (500–20000 for velocities 10 and 50 mm/s, 

500–10000 for velocity 5 mm/s). In this range, the character of cracking seemed to be similar. 

However, for higher values of elastic stiffness there was significant increase in the maximum 

value of stress. At the same time, for the same value of elastic stiffness, different uniaxial 

stretching velocities weakly influenced the maximum stress.  

Table 10 

Micro- and macro-parameters of models used in further analyses.  

The parameter k defines the strength of inter-particle interactions  

and E stands for Young’s modulus 

Model A B C D E F G 

k 500 1000 5000 10000 20000 50000 200000 

E [GPa] 1.57 2.56 10.81 20.41 39.54 95.01 363.89 

 

During the main part of the numerical experiment, the samples A–G were vertically 

stretched with three velocities: 5, 10 and 50 mm/s, until the samples completely split into two 

separate parts. The dragging force and the vertical strain of the samples were being monitored 

throughout the experiment. A special attention was paid to the strength of the samples – the 

maximum stress the samples can withstand. Because it was measured at a relatively large ver-

tical deformation rate, it was referred as the dynamical strength. At this point it should be re-

called that the classical laboratory strength measurements are quasi-static, i.e. performed with 

much lower dragging/compression as in presented experiments. The results are shown in  

Table 11. 

Table 11 

Maximum uniaxial strength of the considered samples in MPa  

for three considered dragging velocities 

Model A B C D E F G 

5 mm/s 732 733 742 814 1578 3890 14852 

10 mm/s 1465 1467 1483 1503 1634 4034 15176 

50 mm/s 7325 7335 7414 7510 7696 8209 16302 

 

Two conclusions can be drawn from the obtained results. First, for the relatively weak ma-

terials (models A–C) a weak dependence of the sample strength on its elastic stiffness is ob-

served, independent of the used dragging velocity. Moreover, this strength almost linearly 

increases with the dragging velocity. Thus, almost linear dynamic strengthening of the material 

is observed. Situation changes if harder materials are considered (models E–G). In such cases, 

for the lowest dragging velocity, 5 mm/s, the strength of the sample increases almost linearly 

with E. For intermediate velocity, 10 mm/s, some deviation from this linearity is observed, 

which finally leads to breaking down of the sample for the highest dragging velocity. For these 
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models, velocity-dependent strengthening of the materials can be also seen, which decreases, 

however, for more stiff samples, almost vanishing for the sample G. 

Three types of cracking 

By analysing the stress-strain curves, three different types of cracking were distinguished:  

1. Type I: when multicracking occurs and, as a result, the cracking disperses in time. For this 

type of cracking, it is impossible to determine the main breaking event at a specific time. An 

example of the stress-strain curve for this type of cracking and a snapshot of crack development 

are shown in Fig. 32. 

 

 
 

Fig. 32. An example of the stress-strain curve (right) and snapshot of the fracturing process for the type 

I of cracking. 

2. Type II when dominating “macro-cracks” accompanied by smaller micro-cracks are devel-

oping. An example of the stress-strain curve for this type of cracking and a snapshot of cracks 

development is shown in Fig. 33. 

Fig. 33. An example of the stress-strain curve (right) and snapshot of a fracturing process for the type II 

of cracking. 
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3. Type III when a single crack is created. An example of the stress-strain curve for this type of 

cracking and a snapshot of crack development are shown in Fig. 34. 
 

 

 

Fig. 34. An example of the stress-strain curve (right) and snapshot of a fracturing process for the type 

III of cracking. 

In fact, the difference between cracking types I and II is quite visible, while the difference 

between types II and III is much less pronounced and manifests itself in a “noisy” linear (elastic) 

part of the stress-strain curve (type II) due to a development of secondary micro-cracks. 

The observed type of cracking appears with a certain regularity depending on the experiment 

setup, as follows from Table 12. Type I is observed for the weakest materials only. Moreover, 

when the dragging velocity is high, stronger materials break by type I cracking. Type II and III 

are observed for stronger materials only with a tendency to fracturing according to type II rather 

than type III. 

Table 12 

Types of observed cracking 

Model A B C D E F G 

5 mm/s I I II III II II II 

10 mm/s I I I III II II II 

50 mm/s I I I I III III II 

 

Kinetic and elastic energy 

The kinetic energy refers here to the total kinetic energy of all particles at every time step. This 

energy is related only with the linear movement of the particles because rotational ones are not 

considered in performed simulations. On the x-axis, the strain (right) and the strain scaled to 

the maximum value (left) during simulation are presented. 

The higher the elastic stiffness of the bonds, the higher the kinetic energy during uniaxial 

stretching (Fig. 35). It is interesting to note that for the same velocity, 5 mm/s, all curves have 

almost the same shape and the maximum occurs for the same strain. 
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Fig. 35. Kinetic energy of all particles as a function of scaled strain (left) and strain (right) for uniaxial 

stretching with 5 mm/s velocity. 

  

Fig. 36. Kinetic energy of all particles as a function of scaled strain (left) and strain (right) for uniaxial 

stretching with 10 mm/s velocity. 

  

Fig. 37. Kinetic energy of all particles as a function of scaled strain (left) and strain (right) for uniaxial 

stretching with 50 mm/s velocity. 

Figure 36 shows the dependence for 10 mm/s velocity. The energy of the cracking process 

is higher; however, it is not two times as one would expect on the basis of velocity change from 

5 to 10 mm/s. It is interesting, as shown in Figs. 35–37, that the strain, when the peak of the 

kinetic energy occurs, seems not to depend on the stretching velocity and elastic stiffness of 

bonds. In the abovementioned figures, the strain is scaled to the maximum value; however, in 

real numbers, the strain is almost the same for all simulations. 
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Potential energy 

Potential energy describes all kinds of interactions connected with bonds between particles. As 

in case of kinetic energy, this is total value in every time step. Results are shown in Figs. 38–

40. Two interesting results can be observed. First, as in the case of kinetic energy, the strain for 

which peak of energy occurs seems not to depend on the stretching velocity and elastic stiffness 

of bonds. Additionally, the maximum value of potential energy strongly depends on elastic  

 

  

Fig. 38. Potential energy of all bonds between particles as a function of strain (left) and scaled strain 

(right) for uniaxial stretching with 5 mm/s velocity. 

  
Fig. 39. Potential energy of all bonds between particles as a function of strain (left) and scaled strain 

(right) for uniaxial stretching with 10 mm/s velocity. 

  
Fig. 40. Potential energy of all bonds between particles as a function of strain (left) and scaled strain 

(right) for uniaxial stretching with 50 mm/s velocity. 
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stiffness; however, it does not depend much on velocity. For instance, for an elastic stiffness of 

200 000 N/mm, the total maximum potential energy is equal to about 80 000 J and only slightly 

changes when the velocity increases from 5 to 50 mm/s. 

Number of bonds 

The initial number of bonds between particles inside the material was about 9700. The relation-

ship between the number of bonds as well as elastic stiffness and velocity is shown in Figs. 41–

43. For velocity of 5 mm/s, paradoxically, the highest loss of bonds occurred for elastic stiffness 

1,000. This clearly shows that there is no clear relationship between these parameters. For 
 

  

Fig. 41. Number of bonds between particles as a function of scaled strain (left) and strain (right) for 

uniaxial stretching with 5 mm/s velocity. 

  
Fig. 42. Number of bonds between particles as a function of scaled strain (left) and strain (right) for 

uniaxial stretching with 10 mm/s velocity. 

  
Fig. 43. Number of bonds between particles as a function of scaled strain (left) and strain (right) for 

uniaxial stretching with 50 mm/s velocity. 
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v = 5 mm/s v = 10 mm/s v = 50 mm/s 

   

   

   

   

   

   

   

 Fig. 44. Dynamics of changes in the number of bonds for dragging velocities: 5, 10, 50 mm/s and 

different elastic stiffness of bonds. 
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velocity of 10 mm/s, a similar result is observed, as shown in Fig. 42. The result for 50 mm/s 

velocityis quite interesting, which is shown in Fig. 43. For this type of stretching, the change in 

the number of bonds is the most rapid and after cracking quickly becomes constant. 

Dynamics of changes in the number of bonds 

In Fig. 44 the results of investigation on the number of broken bonds with time are presented. 

It was checked how many bonds disappear in every time step for stretching velocities of 5, 10 

and 50 mm/s for different elastic stiffness of bonds. For higher values of K and for larger ve-

locities, bonds disappear significantly faster.  

Maximum kinetic and potential energy 

Almost linear dependence was observed between the maximum kinetic energy during the entire 

simulation and stretching velocity, for different values of elastic stiffness of bonds (Fig. 45). 

Meanwhile, the maximum potential energy was almost constant as a function of stretching ve-

locity (Fig. 46).  
 

 

 

 

 

 

Fig. 45. The relation-

ship between the max-

imum kinetic energy 

during the entire simu-

lation and stretching 

velocity for different 

elastic stiffness of 

bonds. 

 

 

 

 

 

 
 

Fig. 46. The relation-

ship between the max-

imum potential energy 

(of bonds) during the 

entire simulation and 

stretching velocity for 

different elastic stiff-

ness of bonds. 
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4.4.4 Summary 

In the presented research, numerous parameters related with uniaxial stretching of sample were 

investigated for different elastic stiffness of the bonds between particles and stretching velocity. 

It was possible to distinguish three different types of cracking for materials and the macroscopic 

Young’s modulus of the whole sample and the maximum stress when the main crack occurs 

were calculated. Additionally, the relationship between the kinetic energy of particles due to 

linear movement, potential energy of bonds between particles, and the number of bonds be-

tween particles as a function of stretching velocity and elastic stiffness of the bonds were ana-

lysed. 

4.5 Conclusions 

DEM modelling was applied in this chapter to simulate fracturing of different materials during 

three basic material tests: uniaxial compression, Brazilian test and uniaxial stretching. This re-

search was mainly related to analysis of parameters describing particles of the matter and bonds 

between them during a growing external load. 

Considerations were started with probably the most common and popular material test – 

uniaxial compression. These simulations provided results in three groups of issues: dependen-

cies between microscopic and macroscopic parameters of samples with different densities, as 

well as average potential energy of bonds and average kinetic energy of particles as a function 

of increasing external load. One of the clearest relationships between microscopic and macro-

scopic parameters was this between the microscopic Young’s modulus and the macroscopic 

Young’s modulus. A higher value of the first parameter corresponds very clearly to a higher 

value of the second parameter. Another conclusions came from the observation of a parameter 

such as cohesion. When keeping the remaining microscopic parameters fixed, the change in 

cohesion did not affect macroscopic parameters, Young’s modulus and Poisson’s ratio, or af-

fects them slightly. For some of the results, the higher microscopic cohesion corresponds to the 

lower macroscopic Young’s modulus. It was also concluded that the lower microscopic Pois-

son’s ratio translates straightly into a higher macroscopic Young’s modulus. Additionally, mi-

croscopic Poisson’s ratio and tangent of the friction significantly affect macroscopic Poisson’s 

ratio, while their influence on macroscopic Young’s modulus is much weaker. 

Interesting results were obtained when considering potentials energies of bonds as a func-

tion of external load. It appeared that the average percentage contribution of different potential 

energies of bonds to the average overall potential energy of bonds during the breaking process 

is always constant. Namely, the share of particular energies was 61% for the normal energy, 

38% for shearing energy, bending energy and twisting energy were generally less than 1%. 

Similar analysis of average kinetic energies of particles in a function of external load was not 

as clear as in the case of potential energy of bonds. Results showed that linear kinetic energy 

prevails, ranging from about 80% to 96%. Within these data it was possible to distinguish two 

separated groups of results for which the ratio between linear kinetic energy and rotational ki-

netic energy was about 80% to 20% or about 94% to 6%. After a comparison with relevant 

microscopic parameters of bonds it appeared that the microscopic parameter of cohesion was 

responsible for these different ratios.  

In the next step, the issue of Brazilian test was taken, popular geotechnical laboratory test 

for indirect measurement of tensile strength of materials. By performing these kind of numerical 

simulations a few goals were attended. The DEM method allowed a detailed monitoring of the 

internal microscopic state of a loaded sample including changes in particle kinetic and potential 

energies, to name a few. From the physical point of view, an insight was obtained into creation 

of the tensile crack under the simulated laboratory conditions. It was possible to monitor the 
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nucleation and temporal evolution of tensile crack which finally lead to breaking apart of Bra-

zilian test samples. Following an evolution of the total kinetic and potential energies during 

loading, a few stages were identified in a response of the samples to constant speed loading. At 

the beginning of loading, the elastic response of the samples was clearly visible. During the 

intermediate loading, the samples exhibited a viscoelastic properties due to inducing particles 

dislocations. At the end of this stage, large dislocation occurring in block resulted in a visible 

plastic behaviour of the samples and finally lead to crack nucleation and breaking the sample 

apart. 

Moreover, it was very interesting to observe how size of the used particles influenced each 

of the abovementioned stages. Although relatively small range of particle sizes was used, the 

obtained results clearly show that the stage most sensitive to the material composition was the 

intermediate loading stage when dislocations start to change the properties of materials and lead 

to a crack nucleation. On the other hand, the rather weak relationship of the critical strain and 

the strain when the crack fully breaks the sample into two pieces shows that this failure stage 

is rather insensitive to the material composition. However, it can be concluded that the most 

important result of the performed simulations was reporting of the scaling of the critical load 

that the sample could withstand as a function of the inverse of the size of the smallest particles 

building the sample.  

The third and final stage of this part of the research were DEM simulations of uniaxial 

stretching. The performed simulations were related to a relatively simple mechanism of crack-

ing of solids under the influence of uniaxial stretching force. A series of measurements were 

carried out with different stretching velocities. For each of them, the maximum value of stress 

when the main crack occurs was calculated. An interesting point was that the maximum stress 

weakly depends on elastic stiffness for smaller values of this parameter. In this range, the char-

acter of cracking seemed to be similar. However, for higher values of elastic stiffness there was 

a significant increase in the maximum value of stress. At the same time, for the same values of 

elastic stiffness different uniaxial stretching velocities weakly influenced the maximum stress. 

Additionally, due to analysing stress-strain curves, it was possible to distinguishe three different 

types of cracking: type I, when multicracking occurs and the cracking is dispersed in time; for 

this class of process it was impossible to extract the main breaking event at its specific time; 

type II, when dominating “macro-cracks” accompanied with smaller micro-cracks were devel-

oping; type III, when a single crack was created.  

Furthermore, the kinetic energy and potential energy of the bonds were analysed. Two in-

teresting issues could be observed. First, it was interesting to note that the peak of the kinetic 

energy occurred always for the same value of strain, and did not depend on stretching velocity 

or elastic stiffness of bonds. Second, the maximum value of potential energy strongly depended 

on elastic stiffness, but it did not depend very much on velocity. Another observation concerned 

an almost linear relationship between the maximum kinetic energy during entire simulation and 

stretching velocity, for different values of elastic stiffness of bonds. At the same time, the max-

imum potential energy was almost constant as a function of stretching velocity. 

Summarizing, in this chapter there was presented the DEM modelling of different basic 

material tests. In laboratory conditions, such experiments are aimed at measurement of the char-

acteristics and behaviour of different substances under various conditions. The data obtained in 

this way can be used in specifying the suitability of materials for various applications. However, 

not every aspect of the fracturing process can be analysed by experimental methods. The aim 

of this research was applying computer modelling to obtain a complementary data, not available 

experimentally. DEM models were created to study the microscopic aspects of fracturing, es-

pecially all issues connected with particles interactions, rotations and movements as a function 
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of external load. Performed simulations can be useful in predicting capabilities of the different 

structures and its intrinsic response to applied external load. 

5. DISCRETE ELEMENT SIMULATIONS OF GLACIER CALVING 

5.1 Introduction 

DEM simulations presented in the previous part of the dissertation concerned the fracturing 

process of materials in a relatively small, laboratory scale (order of millimeters). Meanwhile, 

the second part of the dissertation is devoted to DEM simulations of real fracturing phenomenon 

– glacier calving. The motivation to take up this subject are current climate changes, which give 

a high priority to research on polar regions, particularly to glaciers. Application of numerical 

methods for uncovering the mysteries of glaciers is a quite new and promising approach. 

The mass of glaciers and their thermal inertia are very large, so it takes many years to ob-

serve the effect of temperature changes on melting and retreating of glaciers (Schulson and 

Duval 2009; Timco and Frederking 1996; Timco and Weeks 2010). However, it turns out that 

the current scale of changes is unique in the scale of history. For instance, Strzelecki et al. 

(2018) presented the results of several years research on the coasts of Spitsbergen. It appeared 

that the forehead of concerned glacier retreated 1,600 meters compared to the 1930s and lost 

60% of its area. Such processes have accelerated especially in the last 30 years. The accelerated 

pace of glaciers melting is one of the most important symptoms of current climate changes. The 

World Glacier Monitoring Service reported in 2013 (basing on data from 100 glaciers around 

the world) that the mass balance for all reference glaciers is constantly decreasing (The World 

Glacier Monitoring Service, https://wgms.ch). The mass loss of glaciers occurs due to various 

processes, among which one of the most significant is calving, still poorly understood.  

The term “glacier calving” covers the wide range of processes through which intact chunks 

of ice are discharged to the seas and the oceans from the termini of glaciers or the margins of 

ice shelves (Benn et al. 2007a, Jania 1997). Examples of a water-terminating glaciers are pre-

sented in Figs. 47–49. Calving of such glaciers is normally caused by the expansion of the glac-

ier, and it occurs as a sudden release and breaking away of a mass of ice from a forehead 

(Burgess et al. 2005, Jania 1997). The ice that breaks away can be classified as an iceberg, but 

may also be a growler, bergy bit, or a crevasse wall breakaway. Calving of glaciers is often 

accompanied by a loud cracking or booming sound before blocks of ice up to 60 meters high 

break loose and crash into the water. The entry of the ice into the water causes large, and often 

hazardous waves (Andrews 1985; Bahr 1996; Benn et al. 2007b; Chaplin 2016). 

A detailed description of the mechanisms controlling the calving is essential for the reliable 

estimation and prediction of mass loss from glaciers. However, collecting the relevant data is a 

demanding task. On-site measurements are often difficult and dangerous (Górski 2014; Górski 

and Teisseyre 2006). The research used so far focused mainly on the satellite data, but the res-

olution of commonly available photos is relatively small, so, the quality of results is conse-

quently low. Quite new and promising method is gathering the relevant information about 

glaciers by analysing signals, which are spread by glacier. Many various signals are associated 

with glaciers, and they result from internal, as well as external factors. Glaciers vibrate under 

the influence of external factors, such as wind, and the sound they emit is called the “singing” 

of glaciers. Analyzing “singing” can help monitor changes inside the glacier. Chaput et al. 

(2018) carried out detailed research on the Ross Ice Shelf. The ice vibrated differently when 

strong winds moved large amounts of snow or when the air temperatures on the surface grew 

or decreased, which influenced the speed of seismic waves moving in the snow. Analysis of 

these vibrations can give clues how the glacier reacts on the changing climate conditions, and 

changes in the “melody” may be a warning signal that the glacier is in danger of disintegration. 

Glaciers also emit signals due to the internal factors. Glowacki et al. (2015) contributed to the 
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Fig. 47. Nordenskiöld Glacier and Tuna Glacier (in the middle), Spitsbergen. Photos by Piotr Klejment 

(top and middle) and Anders Stordal Fjeldsbø (bottom). 
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Fig. 48. Nordenskiöld Glacier, Spitsbergen. Photos by Anders Stordal Fjeldsbø. 



P.A. KLEJMENT 

 

70 

 

 

Fig. 49. Nordenskiöld Glacier (bottom) and Tuna Glacier (top), Spitsbergen. Photos by Piotr Klejment 

(top) and Giuseppe Matera (bottom). 
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development of a new method of glacier mass loss estimation. It turns out that thanks to the 

analysis of underwater sounds associated with the calving of glaciers, it is possible to estimate 

how much ice was detached. A relatively simple method – recording the underwater sounds – 

can say not only when the glacier is calving, but also allows to discriminate different types of 

this phenomenon.  

Motivated by abovementioned research, this chapter is devoted for describing the DEM ap-

plication to glacier calving process. DEM was used to simulate fracturing of the glacier during 

calving, and then, to analyse signals propagating inside the glacier and in water after the frac-

turing occured. 

In general, the DEM has a great potential in the area of glaciology. A model consisting of 

discrete particles fits ideally for simulating brittle behaviour of ice, especially in the case of 

glaciers (glacier calving, glaciers surging), icebergs, ice floe, etc. Numerical modelling offers 

a new approach to study the mentioned phenomena and can be a complementary tool for field 

and laboratory efforts in discovering the secrets of glaciers (Jarosch 2008, Gagliardini et al. 

2013, Jouvet et al. 2011, Le Meur 2004; Zwinger and Moore 2009).  

The history of DEM applications in glaciology is relatively short due to the heavy compu-

tational burden of this method (Nick et al. 2010). Most of the research papers on DEM appeared 

in recent several years, usually with two-dimensional approach. It is worth to mention a few of 

these papers. Robel (2017) analyzed thinning sea ice that weakens buttressing force of iceberg 

mélange. In this research a discrete element model was used to simulate explicitly mélange as 

a cohesive granular material. Åström et al. (2014) worked on termini of calving glaciers as self-

organized critical systems. This work focuses on the discrete nature of calving and the under-

standing of the process itself. On the basis of the calving data obtained from small events on 

glaciers up to the size of ice-shelves, the authors give strong arguments that calving fronts be-

have as self-organized critical systems that switch from subcritical stable to supercritical calv-

ing modes. DEM was also used (Damsgaard et al. 2013) to model subglacial sediment 

deformation and to investigate the highly nonlinear dynamics of a granular bed when exposed 

to stress conditions comparable to those at the bed of warm-based glaciers. Herman (2016) 

proposed a discrete-element-bonded-particle sea ice model. In this model, sea ice was repre-

sented as an assemblage of objects of two types: disk-shaped “grains” and semi-elastic bonds 

connecting them. The grains move on the sea surface under the influence of forces from the 

atmosphere and the ocean, as well as interactions with surrounding grains. Riikilä (2017) used 

the DEM model to simulate various ice-specific applications with resulting flow rates that were 

compatible with Glen’s law, and produced under fragmentation fragment-size distributions that 

agreed with the known analytical and experimental results. Riikilä et al. (2015) also developed 

simulations of calving of an ice block partially supported in water, which was similar to a 

grounded marine glacier terminus, and fracturing of an ice block on an inclined plane of varying 

basal friction, which could represent transition to fast flow or surging.  

In comparison to the abovementioned research, the application of DEM to glaciology pre-

sented here is a little bit different. A numerical model, presented in this dissertation, represents 

the glacier’s forehead and the water beneath it. Under the influence of the force of gravity, the 

fragment of the glacier took off and fell into the water. Various possible scenarios of such frac-

turing were explored when a block of different sizes fell to water from different heights. The 

whole process was tracked and recorded by a network of receivers placed in a water reservoir, 

as well as inside the glacier. The results obtained in this way allowed to describe the dependence 

between different scenarios of calving and resulting signal propagation in the water and inside 

the glacier.  
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5.2 Simulation settings 

Simulating glacier behaviour requires a thorough knowledge of ice properties. From the numer-

ical point of view, the insight into ice structure is necessary to know what simplifications should 

be adopted. Ice is an extremely complicated structure (Dobrowolski 1923; Hobbs 1974) and 

full 3D simulations of large-scale glacier including all parameters, for example, mechanical, 

thermal, electric, etc., are simply impossible. In fact, ice has 18 different crystal structures and 

three amorphous states (Chaplin 2016). The form that exists under the typical temperature and 

pressure conditions of glaciers and ice sheets is termed as ice Ih (Greve and Blatter 2009). The 

letter h stands for hexagonal because water molecules in this type of crystalline form are ar-

ranged in layers of hexagonal rings. The hexagonal plane is referred to as the basal plane and 

perpendicular to this plane is the optic axis or c-axis (see Fig. 50a). 

 

Fig. 50. Ice at different scales: (a) crystal hexagonal structure of ice Ih, and (b) polycrystalline ice formed 

from distinct ice crystals. In (a) the circles represent oxygen atoms of H2O molecules, and in (b) the lines 

represent directions of c-axes (from Riikilä 2017). 

The elastic and brittle properties of the hexagonal crystal structure are highly anisotropic 

(Jania 1997; Weeks and Assur 1967). Fortunately, large ice masses do not occur in single crys-

tals but as an aggregate of them, i.e., as polycrystalline ice (Fig. 50b). Inside a single crystal of 

polycrystalline ice the c-axes are more or less oriented in the same direction (variations occur 

due to crystallographic defects) but in a large collection of randomly oriented crystals the ani-

sotropy of single crystals is averaged out and the material becomes effectively isotropic (Walter 

et al. 2010; Cuffey and Paterson 2010; Glen 1955). The typical size of crystals or grains is in 

the submillimeter scale in freshly formed or highly deformed ice, to tens of centimeters in very 

old or slowly moving ice (Greve and Blatter 2009). In a glacier measured in hundreds of meters 

or kilometres, the isotropy assumption is well justified; hence, this assumption was adopted in 

presented DEM model. 

Within the scope of this part of the work two main issues were undertaken: creation of a 

DEM model that can mimic a glacier calving and a measurement of parameters linked with this 

process, and, subsequently, an attempt to find a relationship between two parameters character-

izing calving (the size of an ice block falling to the water and the height from which the fall 

occured) and accelerations of the glacier and water particles. Created DEM model consists of 

two blocks of particles. One block contains bonded particles and represents glacier. The second 

block consists of unbonded particles that undergo frictional interactions and represents water. 

The 2D cross-section of the model is presented in Fig. 51. Ice-like block of particles is 2 meters 

in depth, 10 meters in height, and maximally 45 meters in length. One of the dimensions is  
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Fig. 51. The 2D cross-section of DEM model of calving glacier. 

much smaller than the other dimensions; the idea underlying this simplification was to save 

computational time. The length of the glacier is changeable because the falling down part of 

the ice to the water could be 9, 10 or 11 meters long. The ice block that enters the water could 

have dimensions of 180 m3 (9 m × 10 m × 2 m), 200 m3 (10 m × 10 m × 2 m), or 220 m3 (11 m 

× 10 m × 2 m). Water-like block of particles has dimensions of 35 m × 20 m × 2 m. Particles 

were connected by BrittleBeamPrms interaction, described wider in the Section 3.3.2.  

The preparation of an appropriate model was complicated due to the fact that a glacier is 

not a uniform mass consisting of ice with the same properties, but is a mixture of different types 

of ice and snow. Glacial ice is a grain-shaped ice, which is the result of several transformations 

under the influence of the accumulation of successive layers of snow. Multiple melting leads to  

 

  
 

Fig. 52. Part of the glacier goes down due to gravity force – a snapshot from the simulation. In the right 

bottom corner – a view of breaking bonds. 
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a change in the structure of snow from fine crystalline (snowflakes) to “ice porridge”, called a 

firn. Subsequent melting and freezing remove most of the air remaining between the ice grains, 

resulting in formation of the firn ice, much more dense than the density of snow. Under the 

influence of the weight generated by snow, the bottom layer of ice transforms into a blue ice 

made of large (up to a few centimetres in diameter) ice grains. Taking into account the above-

mentioned information, some simplifications had to be adopted when choosing appropriate mi-

croscopic parameters for a DEM model. 

The purpose of the presented research was not to test the properties or breaking process of 

ice itself, so the following simplifications have been made. Model parameters were selected to 

fulfil the three basic assumptions: to obtain the effect of brittle fracturing of the hanging part of 

the glacier under the influence of gravity; to obtain the effect of breaking into pieces of ice 

block during the contact with the water surface; and to prevent collapsing of glacier main body 

under influence of the gravity force (Fig. 52). The full set of parameters used in simulations is 

presented in Table 13. 

Table 13 

The set of parameters used during DEM glacier simulations 

Particles size from 200 to 800 mm inside the glacier 

from 67 mm to 267 mm inside the water 

Time step dt = 1.0e-04 s 

Time steps time_steps = 2000000 

Density of particles 940 kg/m3 in a glacier 

1000 kg/m3 in a water 

Type of bonds 

 

 

Name: BrittleBeamPrms 

Parameters: 

youngsModulus = 1.0e+06, 

poissonsRatio = 0.25, 

cohesion = 1000.0, 

tanAngle = 1.0 

  

Unbonded particles 

 

 

Name: FrictionPrms 

Parameters: 

youngsModulus = 1.0e+06, 

poissonsRatio = 0.25, 

dynamicMu = 0.4, 

staticMu = 0.6 

Elastic repulsion with the walls 

Name: NRotElasticWallPrms Parameters: 

normalK = 1.0e+06 

Translational and rotational viscous damping 

 

Name: LinDampingPrms 

Parameters: 

viscosity = 0.002, 

maxIterations=50 

 

Name: RotDampingPrms 

Parameters: 

viscosity = 0.002, 

maxIterations = 50 
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Fig. 53. Examples of the selected snapshots from the glacier calving process simulated with DEM.  

On the scale color means ice particles (white) or water partciles (blue). 
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An important limiting factor for the simulation was a computational time. Due to it, particles 

inside the modelled glacier were taken much bigger than in reality (several times), and particles 

creating the water were also large to reduce the number of particles involved in the simulation. 

As mentioned earlier, the parameters of bonds between glacier particles were chosen to obtain 

the effect of brittle fracturing. Very challenging issue was to imitate liquid (water) in the pre-

sented model. It has been decided to model the water below the glacier as a collection of un-

bonded particles. Very important property of fluids is a viscosity that characterizes their internal 

friction resulting from the shifting of fluid layers during the flow. In the presented model, vis-

cosity was taken into account by applying frictional interactions between particles.  

The selected snapshots of simulated calving process are presented in Fig. 53. 

The aim of the presented simulations was the analysis of the calving process. For this pur-

pose, some particles were selected as “receivers” and their accelerations along x-, y-, and z-axis 

were recorded. There were six receivers inside the water and four receivers inside the glacier 

(Fig. 54).  

 

 

Fig. 54. Network of receivers during glacier calving simulations with receivers numbers (cross-section 

of the model). 

The contact time (time when a falling down block of ice hits the surface of a water) of the 

height of 10 m was approximately 55 s; of 5 m, approximately 41 s; and of 3 m, approximately 

36 s. 

5.3 Simulations results 

Results are divided into two main categories with respect to analysed signals, water-located 

receivers and glacier-located receivers.  

5.3.1 Water-located receivers 

This section includes data recorded by six receivers placed in water (see Fig. 54). Nine different 

combinations of parameters were analysed, for the volume of ice 180, 200, 220 m3 falling down 

from height of 3, 5, and 10 m. On the basis of obtained results, it was attempted to draw con-

clusions about the characteristics of waves generated in water by falling mass. 
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Fig. 55. Simulated acoustic signals generated by 180 m3 of ice falling from the height of 3 m: accelera-

tion readings from receivers 1 to 6 placed in water. 

Figure 55 shows the accelerations of the six receivers placed in the water, when 180 m3 of 

ice falls from the height of 3 m. Receiver 1 has rerecorded high accelerations peaks around the 

impact time – just after the 36th second. Duration of the signal was approximately less than 10 

seconds. Receiver 2 started to accelerate later than receiver 1. It has recorded the biggest accel-

eration between 55 and 110 second. Relatively long duration of these vibrations was probably 

caused by reflections of the waves inside the tank and their superposition, as experienced by 

receiver 2. Interestingly, receiver 3 noted only small disturbances during the whole simulation; 

probably, at this distance, signals have been already dumped. For the receivers placed in depths, 
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the results are as follows. Receiver 4, just below the place of impact, recorded rapid acceleration 

toward negative direction of the x-axis around the 40th second. This can be related to the wave 

propagation after the ice enters the water. Receiver 5 noted acceleration before the event on the 

surface; this may be the numerical result of preliminary movements of particles inside the tank. 

Receiver 6, in the left bottom corner of the tank, seems to be insensitive to external interference. 

 

 
 

 
 

 
 

Fig. 56. Simulated acoustic signals generated by 200 m3 of ice falling from the height of 3 m: accelera-

tion readings from receivers 1 to 6 placed in water. 
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Figure 56 presents accelerations of the six receivers placed in the water, when 200 m3 of ice 

falls from the height of 3 m. Because the only difference between these results and the previous 

ones lies in volume, the charts are similar. Receiver 1 noted accelerations just after the ice hit 

the water, and then it attenuates. Receiver 2 has accelerated significantly in the middle part of 

the simulation. Receiver 3 recorded acceleration at the end of the simulation. The first receiver 

in depths, receiver 4, accelerates around the moment of impact on the surface. Receivers 5 and 

6 show farther propagation of the signal through the medium. 

 
 

 
 

 
 

Fig. 57. Simulated acoustic signals generated by 220 m3 of ice falling from the height of 3 m: accelera-

tion readings from receivers 1 to 6 placed in water. 
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Figure 57 shows the accelerations of the six receivers placed in the water, when 220 m3 of 

ice falls from the height of 3 m. Receiver 1 noted significant accelerations around the impact 

time. Receiver 2 begins to accelerate after the 40th second, and the high peak is visible around 

80th second along the y- and the z-axis. It can be the result of interfering waves. Receiver 3 

showed small acceleration around the 60th second, between the 90th and 120th second, and a 

significant peak in acceleration appears around the 140th second along the positive direction of 

the x-, y-, and z-axis. Receiver 4 noted significant accelerations after the event on the surface, 

which are visible after 40th second. Receiver 5 did not record accelerations when the ice hit the 

water surface. Receiver 6 recorded only one huge peak of acceleration after the 40th second, 

the impact time. 

 

 

  
Fig. 58. Simulated acoustic signals generated by 180 m3 of ice falling from the height of 5 m: accelera-

tion readings from receivers 1 to 6 placed in water. 
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Figure 58 shows accelerations of the six receivers placed in the water, when 180 m3 of ice 

falls from the height of 5 m. For this height – the falling ice hits the water after around 41 s. 

This moment is clearly visible on receiver 1. Receiver 2 noted huge acceleration in the middle 

part of the simulation; this was probably due to waves moving back and forth and superposing. 

Receiver 3 recorded small accelerations except a huge peak at the end of the simulation, for z-

component (around 130th second). Receiver 4 in depths recorded accelerations around the 41st 

second, which then disappeared. Similar dependence is visible for the receiver 6, however, ac-

celerations appeared later. Receivers 5 does not seem to depend on events on the surface. 

Figure 59 shows the accelerations of the six receivers placed in the water, when 200 m3 of 

ice falls from the height of 5 m. Receiver 1 clearly noted the impact moment, while receiver 2 

 

  

  

  

Fig. 59. Simulated acoustic signals generated by 200 m3 of ice falling from the height of 5 m: accelera-

tion readings from receivers 1 to 6 placed in water. 
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noted propagation of all waves through the surface. On receiver 3 accelerations appeared at the 

end of the simulation, after the 80th second, and are very irregular. Receiver 4 recorded con-

siderable accelerations around the impact time. The oscillations that receivers 5 and 6 recorded 

are due to the influence of upper layers of particles.  

Figure 60 shows the accelerations of the six receivers placed in the water, when 220 m3 of 

ice falls from the height of 5 m. Results for this setup show a similar scheme as that for previous 

ones. Receiver 1 noted only the impact moment. Receiver 2 accelerates mostly in the middle 

part of the simulation. Receiver 3 accelerated significantly at the end of the simulation. Receiver 

4 recorded strong motion from the beginning up to 120 s, and it covered accelerations due to 

the ice hit. A very similar result was noted for receiver 5. Receiver 6 shows similar peaks in 

acceleration like the receiver 1, which suggests it dependence on the surface event. 

 

 
 

 
 

 
 

Fig. 60. Simulated acoustic signals generated by 220 m3 of ice falling from the height of 5 m: accelera-

tion readings from receivers 1–6 placed in water. 
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Fig. 61. Simulated acoustic signals generated by 180 m3 of ice falling from the height of 10 m: acceler-

ation readings from receivers 1 to 6 placed in water. 

Figure 61 shows the accelerations of the six receivers placed in the water, when 180 m3 of 

ice falls from the height of 10 m. Receiver 1 noted exactly the moment of impact, around the 

55th second. The accelerations then attenuate. Receiver 2 accelerated according to all waves 

propagation through the tank during the simulation, back and forth, especially their superposi-

tions. Receiver 3 shows no movements up to the end of the simulation, i.e., after the 120th 

second. Receiver 4 accelerates mostly around the 60th second; this suggests a link with the 

surface event. Receiver 6 also shows a similar result.  

Figure 62 shows the accelerations of the six receivers placed in the water, when 200 m3 of 

ice falls from the height of 10 m. Receiver 1 accelerates exactly at the moment of the impact. 

For receiver 2, accelerations appeared in the middle of the simulation, while for receiver 3, it 

appeared at the end. Receiver 4 shows significant acceleration around the 60th second, which  
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Fig. 62. Simulated acoustic signals generated by 200 m3 of ice falling from the height of 10 m: acceler-

ation readings from receivers 1 to 6 placed in water. 

should be linked with the ice hitting the water. Receivers 5 and 6 also vibrate after the 50th 

second, probably due to reflected waves. 

Figure 63 shows the accelerations of the six receivers placed in the water, when 220 m3 of 

ice falls from the height of 10 m. The last part of the results corresponds to the biggest block of 

ice falling down from the biggest height. Receiver 1 experienced the moment of impact very 

significantly. Interestingly, repeated high accelerations appear on the receiver 4 just after oscil-

lations on the receiver 1. Receiver 2 shows oscillations in the middle of the simulation and 

receiver 3, at the end. Receiver 5 and 6 noted considerable accelerations for approximately 50 s, 

and it seemed to depend on the surface event.  

To summarize all the results, the selected characteristics of recorded signals are gathered  

in Table 14. For different values of height and ice volume, the maximum and minimum  
 



THE MICROSCOPIC INSIGHT INTO FRACTURING OF BRITTLE MATERIALS … 

 

85 

 
 

 

 

 
 

Fig. 63. Simulated acoustic signals generated by 220 m3 of ice falling from the height of 10 m: acceler-

ation readings from receivers 1 to 6 placed in water. 

values of acceleration during the whole simulation (regardless of direction) and the approximate 

time of the main peak are shown.  

Finally, it can be concluded that along the surface, acceleration recorded by receivers 

quickly decreases with distance, while for receivers in depth, there is no straightforward de-

pendence. Moreover, larger volume of ice falling down to the water causes smaller acceleration 

of water particles or this acceleration does not depend on the volume (however, this is true only 

for the surface receivers; receivers in depth are not sensitive to volume parameter). It may seem 

that an opposite relationship should occur – in fact, the conducted simulations showed another 

dependence. What is interesting, there is no direct relationship between the acceleration of wa- 
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Table 14 

Summary of acceleration readings during glacier calving simulations  

for receivers placed in water 

Receivers in water – acceleration 

  

Volume 180 m3 Volume 200 m3 Volume 220 m3 

Receiver 
number 

Accelera-
tion range 
[mm/s2] 

Time  
of main 
event  

[s] 

Receiver 
number 

Accelera-
tion range 
[mm/s2] 

Time  
of main 
event  

[s] 

Receiver 
number 

Accelera-
tion range 
[mm/s2] 

Time  
of main 
event  

[s] 

h
ei

g
h
t 

o
f 

3
 m

et
er

s 

R1 
 –1500 to 

1000 
37–50 R1 

 –2000 to 

1000 
35–60 R1 

 –500 to 

1250 
35–60 

R2 
 –1000 to 

1000 
X R2 

 –400 to 

600 
45–120 R2 

 –1250 to 

250 
35–120 

R3 
 –800 to 

500 
X R3 

 –150 to 

200 
90–130 R3 

 –100 to 

400 
90–140 

R4 
 –250 to 

50 
20–80 R4 

 –400 to 

500 
20–60 R4 

 –120 to 

100 
20–100 

R5 
 –300 to 

100 
20–60 R5 

 –100 to 

150 
20–60 R5 

 –200 to 

150 
20–60 

R6 
–50 to 

150 
20–80 R6 

 –600 to 

800 
20–85 R6 

 –600 to 

400 
40–45 

h
ei

g
h
t 

o
f 

5
 m

et
er

s 

R1 
 –1500 to 

1500 
40–60 R1 

 –400 to 

800 
40–80 R1 

 –700 to 

1500 
45–70 

R2 
 –1500 to 

2000 
50–120 R2 

 –300 to 

600 
70–110 R2 

 –500 to 

600 
55–120 

R3 
 –500 to 

1250 
110–140 R3 

 –200 to 

400 
80–140 R3 

 –75 to 

125 
90–150 

R4 
–100 to 

150 
40–70 R4 

 –400 to 

400 
20–55 R4 

 –150 to 

100 
20–100 

R5 
–200 to 

300 
20–60 R5 

 –150 to 

150 
20–80 R5 

 –200 to 

400 
20–80 

R6 
 –150 to 

250 
20–70 R6 

 –150 to 

400 
40–60 R6 

 –300 to 

500 
40–60 

h
ei

g
h

t 
o

f 
1

0
 m

et
er

s 

R1 
–2500 to 

2000 
60–80 R1 

 –1000 to 

1000 
60–62 R1 

 –1000 to 

1000 
50–80 

R2 
 –1000 to 

2500 
60–120 R2 

 –750 to 

1000 
90–120 R2 

 –1000 to 

1000 
60–120 

R3 
–1200 to 

1000 
120–150 R3 

 –500 to 

600 
90–150 R3 

 –600 to 

300 
100–150 

R4 
–100 to 

150 
55–100 R4 

 –500 to 

1500 
55–70 R4 

 –150 to 

200 
50–90 

R5 
–300 to 

300 
30–70 R5 

 –150 to 

150 
20–80 R5 

 –200 to 

200 
50–90 

R6 
–120 to 

100 
60–100 R6 

 –300 to 

400 
50–100 R6 

 –300 to 

200 
60 

 

ter particles and the height from which the ice block falls. Obviously, it can also noted that 

along the surface, the longer the distance, the bigger the time when the main shockwave comes. 

However, the result is completely different for receivers in the depth. Their times are almost 

the same as times noted by receiver 1.  
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5.3.2 Glacier-located receivers 

This section includes data recorded by four receivers placed in the glacier (see Fig. 54). Three 

different combinations of parameters were analysed, for volumes of ice 180, 200, and 220 m3 

falling down from the height of 5 m. On the basis of the obtained results, it was attempted to 

draw conclusions about the characteristics of waves travelling through the solid medium. 

Figure 64 presents the accelerations of the four receivers placed in the glacier, when 180 m3 

of ice falls from the height of 5 m. The moment of impact for falling down from the height of 

5 m is approximately 41 s. The period of intensified accelerations for receiver 1 appears before 

40 s, it then attenuates and disappears. Receiver 2 starts to accelerate with some delay (after the 

30th second); however, vibrations for this receiver are longer. A similar pattern can be observed 

for receivers 3 (after the 40th second) and 4 (after the 60th second). 

 

 
 

 
 

Fig. 64. Simulated acoustic signals generated by 180 m3 of ice falling from the height of 5 m: accelera-

tion readings from receivers 1 to 4 placed in glacier. 

 

Figure 65 presents the accelerations of the four receivers placed in the glacier, when 200 m3 

of ice falls from the height of 5 m. Receiver 1 starts to accelerate around the 10th second, the 

maximum period is between the 30th second and the 70th second, and the vibrations then de-

crease. Receiver 2 accelerates from the 20th second; vibrations are the greatest, up to the 80th 

second, and then, they are smaller, but not considerably. The same pattern was recorded by the 

receiver 3 with accelerations starting at the 40th second. Interestingly, changes can be observed 

for receiver 4 with negative accelerations between the 30th and 40th seconds and positive ac-

celerations between the 50th and 60th seconds. 
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Fig. 65. Simulated acoustic signals generated by 200 m3 of ice falling from the height of 5 m: accelera-

tion readings from receivers 1 to 4 placed in glacier. 

  

Fig. 66. Simulated acoustic signals generated by 220 m3 of ice falling from the height of 5 m: accelera-

tion readings from receivers 1 to 4 placed in glacier. 
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Figure 66 presents the accelerations of the four receivers placed in the glacier, when 220 m3 

of ice falls from the height of 5 m. The pattern from previous results is repeated for all receivers, 

that is, receivers start to accelerate with some delay related to the distance from the place of 

fracturing. Then, these motions have a similar size or attenuate. Receiver 1 starts to accelerate 

after the 5th second, and the maximum acceleration is up to the 120th second. For receiver 2, 

the acceleration begins around 30th second, and this result is similar for receivers 3 and 4. 

Within the simulation time, the recorded signals visibly attenuate for the receiver 1 while still 

remain large for other ones. 

To summarize, the selected characteristics of recorded signals are gathered in Table 15. The 

maximum and minimum values of acceleration during all the simulations (regardless of direc-

tion) are shown for different values of the height and ice volume. 
 

Table 15 

Summary of acceleration readings during glacier calving simulations  

for receivers placed in glacier 

Receivers in glacier – acceleration 

  

Volume 180 m3 Volume 200 m3 Volume 220 m3 

Receiver 

number 

Acceleration range 

[mm/s2] 

Receiver 

number 

Acceleration range 

[mm/s2] 

Receiver 

number 

Acceleration range 

[mm/s2] 

h
ei

g
h
t 

o
f 

5
 m

 

R1  –400 to 600 R1  –1500 to 1000 R1  –1000 to 500 

R2  –1500 to 1000 R2 –400 to 500 R2  –750 to 750 

R3  –2000 to 2000 R3  –2000 to 2500 R3  –600 to 500 

R4  –200 to 0 R4  –2000 to 3000 R4  –800 to 600 

 

Signals recorded inside the glacier do not depend directly on the size of breaking apart block 

of ice and do not depend even on the distance from the place of fracturing.  

5.4 Conclusions 

In this chapter, DEM simulations of glacier calving phenomena have been presented. The DEM 

model of a calving glacier was created, which consists of two blocks of particles. One block, 

with bonded particles, simulates glacier. The other one, with unbonded particles, simulates wa-

ter.  

Presented model is highly simplified. Some simplifications are introduced to save the com-

putational time (size of particles, size of the model), while others are a consequence of software 

limitations (only mechanical properties of the material are considered). Additionally, nature and 

physics of the ice are so complex that the current computer models are unable to consider all 

mechanical, thermal, electrical and optical properties simultaneously. Because of the limited 

time during PhD studies, it was not possible to compare our data with measurements carried 

out close to the real glaciers.  

Despite all the simplifications, some interesting conclusions have been drawn. Along the 

surface, acceleration recorded by receivers quickly decreases with distance, while for receivers 

in the depth, there is no straightforward dependence. Moreover, larger volume of ice falling 

down to the water causes smaller acceleration of water particles or this acceleration does not 

depend on the volume (however, only for the surface receivers, receivers in depth are not sen-

sitive to volume parameter). What is interesting, there is no direct relationship between the 

acceleration of water particles and the height from which the ice block falls. It can also be noted 

that along the surface, the longer the distance, the bigger the time when the main shockwave 
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comes. However, the result is completely different for receivers in the depth. Their times are 

almost the same as the times noted by receiver 1.  

Furthermore, the general patterns were found related to movements of the particles for all 

heights and sizes of the block of ice. Considering receivers in the water, it was observed that 

receiver 1 accelerates exactly at the moment of impact and then accelerations always disappear. 

Receiver 4 just below the receiver 1, but close to the bottom, also accelerates just after the 

impact. In contrast, receivers 5 and 6, which are also close to the bottom, show mostly acceler-

ations related to movements of the particles due to the gravitational force. Receiver 2, in the 

centre of the tank and close to the surface, accelerates in the middle period of the simulation. 

This seems to be a result of wave superposition, which moves back and forth inside the tank. 

Receiver 3 accelerates only at the end of the simulation. Patterns for the receivers in the glacier 

are more difficult to describe. However, it was observed that oscillations in acceleration start 

with delay related to the distance between the receiver and the place of cracking. 

The model consisting of discrete particles seems to fit ideally for simulating behaviour of 

ice. In the presented research, DEM model of calving glacier was prepared and this process was 

analysed thanks to the network of receivers. It was not possible to discover clear relationships 

between parameters related to calving (ice block size, falling height); however, some extensive 

information about waves propagation in the water and in the glacier were gained. 

6. SUMMARY AND CONCLUSIONS 

In a DEM model, loads and deformations can be applied to virtual samples to simulate physical 

laboratory tests, and the particle scale mechanism that underlies the complex overall material 

response can be monitored and analyzed. In a DEM model the evolution of the contact forces, 

the particle and contact orientations, the particle rotations, etc., can be easily measured. It is 

incredibly difficult (and arguably impossible) to access all this information in a physical labor-

atory test. The DEM model allows to look inside the material and to understand the fundamental 

particle interactions underlying the complex, macro-scale response. To date knowledge of brit-

tle material response has relied largely on empirical observations of the overall material re-

sponse in laboratory tests. DEM simulations thus present a valuable set of tools to complement 

existing techniques and, as a result, DEM has a potential to be an essential tool in basic research 

in geomechanics. 

Summarizing all parts of the work, an insight into the process of material cracking was 

made. The DEM allows to obtain innovative results, such as describing the cracking process 

from the point of view of individual grains, and their displacements, velocity, acceleration and 

energy. In DEM, even if simple numerical models are used to simulate the inter-particle con-

tacts, and ideal, approximate, particle geometries are used, many of the mechanical response 

features associated with the material can be captured. Simplifying the particle shapes (e.g. using 

spheres) and adopting very basic models of the contact response reduce the computational cost 

of the simulation and thus allow systems involving relatively large numbers of particles to be 

analyzed while still capturing the salient response characteristics of material behavior. 

The results were presented in two chapters. The first one described numerical simulations 

of materials tests: uniaxial compression, Brazilian test, and uniaxial stretching. The analysis of 

the fracturing process was carried out for all three cases, focusing on kinetic and potential en-

ergies, the impact of particle size and material density, and the formation of cracks. An insight 

into creation of cracks under the simulated laboratory conditions was obtained. Additionally, 

the procedure was able to monitor a nucleation and temporal evolution of cracks which finally 

lead to breaking apart of using Brazilian test and uniaxial compression samples. Simulations of 

the uniaxial stretching provided information about three classes of elastic material cracking, 
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depending on the inter-particles bond parameters. The second part presents the results of simu-

lations of glacier calving. The relationship between the volume of ice falling into the water and 

the height from which the ice falls and the acceleration of water and ice particles was studied. 

The general patterns concerning movements of the particles for all heights and sizes of the block 

of ice were found.  

Consequently, the most important achievements within this work are as follows. 

DEM model of uniaxial compression: 

 The simulations of uniaxial compression provided results in three groups of issues: 

dependencies between microscopic (Young’s modulus, Poisson’s ratio, cohesion, 

tangent of the friction angle) and macroscopic (Young’s modulus, Poisson’s ratio) 

parameters of samples with densities 940 and 2260 kg/m3, average potential energy 

of bonds, average kinetic energy of particles.  

 One of the clearest relationships between microscopic and macroscopic parameters 

is that between the microscopic Young’s modulus and the macroscopic Young’s 

modulus. A higher value of the first parameter corresponds to a higher value of the 

second parameter.  

 Other conclusions came from the observation of a parameter such as cohesion. When 

keeping the remaining three microscopic parameters fixed, the change in cohesion 

does not affect macroscopic parameters, Young’s modulus and Poisson’s ratio, or 

slightly affects them. For some results the higher microscopic cohesion corresponds 

to the lower macroscopic Young’s modulus.  

 The lower microscopic Poisson’s ratio translates into a higher macroscopic Young’s 

modulus. Additionally, microscopic Poisson’s ratio and tangent of the friction affect 

significantly macroscopic Poisson’s ratio, while macroscopic Young’s modulus is 

much weaker. 

 Interesting results were obtained while considering potential energies of bonds. The 

average percentage contribution of different potential energies of bonds to the aver-

age overall potential energy of bonds during the breaking process is constant. Normal 

energy is around 61%, shearing energy being around 38%. The smallest share be-

longs to bending energy and twisting energy, both of these energies being generally 

less than 1%.  

 The relationship between kinetic energies of particles is not as obvious at first glance 

as in the case of energy of potential bonds. Linear kinetic energy prevails, ranging 

from about 80% to 96%. It is possible to distinguish between two groups of results 

for which the ratio between linear kinetic energy and rotational kinetic energy is 

about 80% to 20% or about 94% to 6%. A comparison with microscopic parameters 

of bonds leads to the conclusion that the microscopic parameter – cohesion – is re-

sponsible for the higher proportion of rotational kinetic energy during the breaking 

process. 

DEM model of Brazilian test: 

 A detailed monitoring of internal microscopic state of loaded samples including 

changes in kinetic and potential energies of particles.  

 An insight into the creation of tensile cracks under the simulated laboratory condi-

tions.  

 Monitoring of the nucleation and temporal evolution of a tensile crack which finally 

led to the breaking apart of Brazilian test samples. 
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 Following the evolution of the total kinetic and potential energies during loading, it 

was possible to identify a few stages in a response of the samples to constant speed 

loading. At the beginning of loading, the elastic response of the samples was clearly 

visible. For the intermediate loading, the samples exhibited a viscoelastic property 

due to the induced particle dislocations. At the end of this stage, large dislocation 

occurring in block resulted in a visible plastic behaviour of the samples and finally 

led to crack nucleation and breaking the samples apart. 

 Observation how the size of used particles influenced each of the above stages. Alt-

hough a relatively small range of particle sizes was used, the obtained results clearly 

showed that the most sensitive to the material composition is the intermediate loading 

stage when dislocations start to change the properties of materials and lead to crack 

nucleation. On the other hand, the rather weak dependence of the critical strain and 

the strain when the crack fully breaks the sample into two pieces shows that this 

failure stage is rather insensitive to the material composition.  

 Scaling of the critical load which the sample can withstand with the inverse of the 

size of the smallest particles building the sample.  

DEM model of uniaxial stretching: 

 A series of measurements with three uniaxial stretching velocities. For each one of 

them, the value of maximum stress was calculated when the main crack occurred. An 

interesting point is that the maximum stress weakly depends on elastic stiffness for 

smaller values of this parameter. In this range, the character of cracking seems to be 

similar. However, for higher values of elastic stiffness there is a significant increase 

in the maximum value of stress. At the same time, for the same values of elastic 

stiffness, different uniaxial stretching velocities weakly influence the maximum 

stress.  

 Three different types of cracking; Type I, when multicracking occurs and the crack-

ing is dispersed in time. For this class of processes it is impossible to extract the main 

breaking event at its specific time; Type II, when dominating “macro-cracks” accom-

panied with smaller micro-cracks are developing; Type III, when a single crack is 

created.  

 Analysis the kinetic energy and potential energy of the bonds. It is interesting to note 

that when the peak of the kinetic energy occurs, the strain does not seem to depend 

on the stretching velocity and elastic stiffness of bonds. Potential energy describes 

all kinds of interactions related to bonds between particles. For kinetic energy this is 

total value in every time step. Two interesting issues can be observed. First, as in the 

case of kinetic energy, the strain for which peak of energy occurs does not seem to 

depend on stretching velocity and elastic stiffness of bonds. Additionally, the maxi-

mum value of potential energy strongly depends on elastic stiffness, but it does not 

depend very much on velocity.  

 Almost a linear relationship between the maximum kinetic energy during the entire 

simulation and stretching velocity, for different values of elastic stiffness of bonds. 

Meanwhile, the maximum potential energy is almost constant as a function of stretch-

ing velocity. 

 The relationship between kinetic energy of particle linear movement, potential en-

ergy of bonds between particles and number of bonds between particles as a function 

of stretching velocity and elastic stiffness of the bonds. 
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DEM model of glacier calving: 

 Acceleration recordeded by receivers in the water (on the surface) quickly decreases 

with distance, while for receivers in the depth, there is no straightforward depend-

ence. Moreover, larger volume of ice falling down to the water causes smaller accel-

eration of water particles or this acceleration does not depend on the volume 

(however, this is true only for the surface receivers, receivers in depth are not sensi-

tive on volume parameter).  

 General patterns related to movements of the particles for all heights and sizes of the 

block of ice were outlined. Considering surface receivers, the one located closest to 

the place of ice fall accelerates exactly at the moment of impact and then accelera-

tions always disappear. Receiver in the centre of the tank accelerates in the middle 

period of the simulation. This seems to be a result of wave superposition, which 

moves back and forth inside the tank. The farthest receiver accelerates only at the 

end of the simulation. For receivers in depth, receiver just below the place of fall 

accelerates just after the impact moment. In contrast, other receivers, which are also 

close to the bottom, show mostly accelerations related to movements of the particles 

due to the gravitational force.  

 Patterns for the receivers in the glacier are more difficult to describe. However, it 

was observed that oscillations in acceleration start with a delay related to the distance 

between the receiver and the place of cracking.  
 

The scientific goal adopted at the beginning of the research was to obtain the microscopic 

insight into fracturing of brittle materials using the Discrete Element Method. In the light of the 

abovementioned conclusions, it can be claimed that the preliminary assumptions were achieved. 

A P P E N D I X  A  

Okeanos Supercomputer 

DEM simulations require a significant number of particles and a huge amount of computational 

resources. The best solution (in the case of complex models consisting of a huge number of 

particles) is to run DEM calculations on powerful machines such as supercomputers. A super-

computer is a type of computer that has the architecture, resources and components needed to 

achieve massive computing power. Today’s supercomputers are built of tens of thousands of 

processors that are able to perform billions and trillions of floating point operations per second. 

Supercomputers incorporate architectural and operational principles from parallel and grid pro-

cessing, where a process is simultaneously executed on thousands of processors or is distributed 

among them.  

In the presented work, the supercomputer Cray XC40 “Okeanos” (Fig. A.1), which belongs 

to Interdisciplinary Centre for Mathematical and Computational Modelling of Warsaw Univer-

sity was used with great advantage (Computational Research Grants on The Okeanos Super-

computer ICM UW, Project GC70-6, Project GB72-7). The work started in July 2016 and 

comprised 1084 computing nodes. Each node had 24 Intel Xeon CPU cores (x86_64 architec-

ture, code name Haswell) with a 2-way Hyper Threading (HT). The nodes are connected with 

a Cray Aries Network, with a Dragonfly topology. Each node has 128 Gb of main memory 

(RAM). The memory is organized in ccNUMA (cache coherent Non-Uniform Memory Access) 

domains. Computing nodes do not have a local storage. All data is stored on the parallel file  
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Fig. A.1. The supercomputer Cray XC40 “Okeanos” (from kdm.icm.edu.pl/kdm/Witamy). 

system. Detailed description of the ICM machines can be found on the webpage 

[kdm.icm.edu.pl/kdm/ Witamy]. 

Access to the Okeanos system is available with secure shell interface. User sessions are 

started on a login node, visible as OkeanosX (where X = 1,2,3), by using a round-robin order. 

Login-nodes are only for job preparation, data transmission and program compilation. It is not 

allowed to run any computation or load intensive applications on the login-nodes. User jobs are 

submitted to the batch system and executed on computing nodes. The system is controlled by 

the Slurm resource manager (batch system). To prepare a computing job, user should create 

dedicated script with resource specification and commands to execute the application. The sys-

tem runs on the Linux operating system. The system is characterized by very high computa-

tional power as well as outstanding graph analytics capability and extreme performance on data-

intensive workloads. Okeanos is best suited for large-scale computations, which require several 

thousand cores and several tens of terabytes of memory in a single run. Supporting such large-

scale computations is the primary purpose of the Okeanos supercomputer.  

The efficiency of the supercomputer was verified during “scaling test”, performed on the 

basis of uniaxial compression. For the purpose of this test, a cylindrical sample consisting of 

about 100 000 particles was used. Particle sizes were in range of 0.3–3.0 mm. The cylinder was 

20 cm in height, with a diameter of 10 cm (Fig. A.2). 

The calculation times were determined for different core distributions. In ESyS-Particle, the 

simulation domain is divided between cores spatially according to vector [x,y,z]. Numbers x, y, 

and z describe how many cores work in which direction. Total number is equal to x*y*z plus 

one Master core. The results are shown in Table A.1. 
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Fig. A.2. The sample used for determining calculation times on 

the supercomputer. View of bonds for approximately 100 000 

particles. 

 

Table A.1 

Calculation times for different core distribution 

Cores  

distribution 

Number  

of processors 

Time 

minutes seconds 

[1,1,1] = 1 PC 1 412 52 

[1,1,1] = 1 1 416 28 

[2,2,2] = 8 8 156 19 

[2,3,2] = 12 12 193 48 

[2,5,2] = 20 20 137 7 

[2,9,2] = 36 36 153 37 

[2,10,2] = 40 40 140 2 

[2,10,2] = 40 40 139 34 

[2,10,2] = 40 40 139 28 

[2,11,2] = 44 44 142 42 

[2,20,2] = 80 80 110 48 

[2,20,2] = 80 80 110 44 

[3,10,3] = 90 90 203 56 

[5,5,5] = 125 125 195 39 

[5,8,5] = 200 200 152 37 

About 100 000 particles in range 0.3–3.0 mm 
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First, the simulation was ran using only one core of the supercomputer, and then one core 

of the personal computer. One core of the supercomputer executed simulation with more than 

416 minutes. Surprisingly, one core of the personal computer was 4 minutes faster and dealt 

with the task within about 412 minutes. Certainly, the real power of the supercomputer is visible 

for higher number of cores. For this type of simulation, the most efficient number of cores was 

80 with distribution [2,20,2]. With this setup our simulation was almost 4 times faster than that 

run on the one core. 

As shown in Fig. A.3, the bigger the number of cores, the faster the simulation. However, 

this is true only up to some point. When too many cores are used with respect to the size of the 

sample, the calculation time increases.  

 

Fig. A.3.The relationship between core number and calculation time. 

 

Fig. A.4. Process structure of the parallel ESyS-Particle. The communication between the parallel pro-

cesses is provided by MPI interface (from Abe et al. 2004). 
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Fig. A.5. Enlarged part of the chart shown in Fig. A.3, only for bigger number of cores. 
 

The reason underlying such phenomena is the MPI structure (Fig. A.4). Workers communi-

cate with each other and are managed by the master. However, when the amount of work is too 

small for assigned workers, then the time for communication becomes a dominating factor. 

Consequently, the efficiency of calculation decreases.  

For reasons mentioned earlier, one has to take care about proper core distribution. As shown 

in Fig. A.5, the calculation time may increase significantly after exceeding the critical threshold. 

 

A P P E N D I X  B  

Anatomy of the ESyS-Particle and GenGeo scripts,  

on the example of glacier calving simulation 

This appendix presents the complete set of programs for simulating glacier calving. It consists 

of the following scripts: 

 Slurm Script: this script is prepared to run the simulation on the supercomputer and 

defines important parameters such as allocation of computing resources, maximum 

calculation time or name of the main program. 

 GenGeo Script: GeoGeo is additional library associated with ESyS-Particle and is 

used for generating particle geometries. After generation, such geometry is imple-

mented later in the main ESyS-Particle script. 

 ESyS-Particle Script: this is the main part, which describes all technical and physical 

aspects of the simulation.  

 Mesh Files: some simulations require more sophisticated geometries, where standard 

walls implemented in ESyS-Particle are insufficient. In such case, it is necessary to 

create additional walls in separated files (mesh files).  
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I would like to gratefully acknowledge all ESyS-Particle team for their great tutorial (Abe 

et al. 2014). This appendix is based on it and presents only small part of the software possibil-

ities. Deeper description can be found in the abovementioned tutorial or on the webpages: 

[https://launchpad.net/esys-particle] and [https://launchpad.net/esys-particle/gengeo]. 

Slurm script for supercomputer 

#!/bin/bash -l 

#SBATCH --job-name=calving1 

#SBATCH --output="output.out" 

#SBATCH --error="error.err" 

#SBATCH --account="GB72-7" 

#SBATCH --nodes=1 

#SBATCH --tasks-per-node=48 

#SBATCH --time=48:00:000 

 

 

module swap PrgEnv-cray PrgEnv-intel 

module load esys-particle 

 

time srun -n 2 esysparticle iceberg_mesh.py 

 

This script defines important parameters such as allocation of computing resources, maxi-

mum calculation time, name of the main program, additional libraries, and, finally, the name of 

the main program.  

 

Simulation geometry generated with GenGeo 

# --- geometry setup script for block with smooth sides --- 

from gengeo import * 

 

 

# particle size range 

minRadius = 200 

maxRadius = 800 

 

 

# - input parameters -- 

# block dimensions 

x0=-50000 

y0=-50000 

z0=-50000 

 

xdim0=50000 

ydim0=50000 

zdim0=50000 
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# corner points 

minPoint0 = Vector3(x0,y0,z0) 

maxPoint0 = Vector3(xdim0,ydim0,zdim0) 

 

 

# neighbour table  

mntable = MNTable3D( 

minPoint=minPoint0, 

maxPoint=maxPoint0, 

gridSize=2.5*maxRadius, 

numGroups=3 #the initial number of groups (default: 1) 

) 

 

#lod 

x1=-15000 

y1=10000 

z1=0 

 

xdim1=30000 

ydim1=20000 

zdim1=2000 

 

 

#woda 

x3=-40000 

y3=-20000 

z3=0 

 

xdim3=-5000 

ydim3=0 

zdim3=2000 

 

# corner points 

minPoint1 = Vector3(x1,y1,z1) 

maxPoint1 = Vector3(xdim1,ydim1,zdim1) 

 

 

minPoint3 = Vector3(x3,y3,z3) 

maxPoint3 = Vector3(xdim3,ydim3,zdim3) 

 

 

# block volume1 

box1 = BoxWithPlanes3D(minPoint1,maxPoint1) 

 

# boundary planes 

bottomPlane1=Plane(minPoint1,Vector3(0.0,1.0,0.0)) 

leftPlane1=Plane(minPoint1,Vector3(1.0,0.0,0.0)) 

frontPlane1=Plane(minPoint1,Vector3(0.0,0.0,1.0)) 

topPlane1=Plane(maxPoint1,Vector3(0.0,-1.0,0.0)) 

rightPlane1=Plane(maxPoint1,Vector3(-1.0,0.0,0.0)) 

backPlane1=Plane(maxPoint1,Vector3(0.0,0.0,-1.0)) 
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# add them to the box  

box1.addPlane(bottomPlane1) 

box1.addPlane(leftPlane1) 

box1.addPlane(frontPlane1) 

box1.addPlane(topPlane1) 

box1.addPlane(rightPlane1) 

box1.addPlane(backPlane1) 

 

 

# block volume3 

box3 = BoxWithPlanes3D(minPoint3,maxPoint3) 

 

# boundary planes 

bottomPlane3=Plane(minPoint3,Vector3(0.0,1.0,0.0)) 

leftPlane3=Plane(minPoint3,Vector3(1.0,0.0,0.0)) 

frontPlane3=Plane(minPoint3,Vector3(0.0,0.0,1.0)) 

topPlane3=Plane(maxPoint3,Vector3(0.0,-1.0,0.0)) 

rightPlane3=Plane(maxPoint3,Vector3(-1.0,0.0,0.0)) 

backPlane3=Plane(maxPoint3,Vector3(0.0,0.0,-1.0)) 

 

# add them to the box  

box3.addPlane(bottomPlane3) 

box3.addPlane(leftPlane3) 

box3.addPlane(frontPlane3) 

box3.addPlane(topPlane3) 

box3.addPlane(rightPlane3) 

box3.addPlane(backPlane3) 

 

 

# -- setup packer -- 

# iteration parameters 

insertFails = 1000 

maxIter = 1000 

tol = 1.0e-6 

 

# packer 

packer = InsertGenerator3D(200,800,insertFails,maxIter,tol,False) 

packer3 = InsertGenerator3D(67,267,insertFails,maxIter,tol,False) 

 

# pack particles into volume 

packer.generatePacking( 

volume=box1, #the volume to fill with particles 

ntable=mntable, #the neighbours table that particles are inserted into 

groupID=0,#the group ID assigned to particles (default: 0) 

tag=100#the tag assigned to the generated particles (optional (default: -

1) if not followed by ShapeList) 

) 

 

# pack particles into volume 

packer3.generatePacking( 
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volume=box3, #the volume to fill with particles 

ntable=mntable, #the neighbours table that particles are inserted into 

groupID=2,#the group ID assigned to particles (default: 0) 

tag=200#the tag assigned to the generated particles (optional (default: -

1) if not followed by ShapeList) 

) 

 

 

# create bonds between neighbouring particles: 

mntable.generateBonds( 

groupID=0,#the group ID of particles to bond together (default: 0) 

tolerance=1.0e-5,#maximum distance separating bonded particles 

bondID=0)#the bond ID to assign generated bonds 

 

 

# write a geometry file 

mntable.write("berg_meshBezKlastrow2.geo", 1) 

mntable.write("berg_meshBezKlastrow2.vtu", 2) 

 

 

Explanation of GenGeo script 

The GenGeo is an additional library created for generating advanced particle geometries 

(Fig. B.1), which can be used in ESyS-Particle simulations. 

The GenGeo library is built around three basic concepts: geometrical volumes to fill with 

particles, a “Packer” to place the particles into the volumes according to given criteria, and the 

“Neighbour Table” – a container to store the particles and to keep track of their relative posi-

tions and neighbour relations. 
 

# --- geometry setup script for block with smooth sides --- 

from gengeo import * 

 

The implemented packers are based on the insertion-based algorithm. The advantages of 

this packing strategy are that it produces relatively dense particle arrangements where each 

interior particle is touched by at least 4 other particles in 3D (by 3 other particles in 2D) and 

that there are nofrozen-in stresses between the particles. The disadvantage is that the user cannot 

control the particle size distribution except for the minimum and maximum particle radius al-

lowed. 

 

Most GenGeo scripts consist of 5 steps: 

1. setting up a neighbour table 

2. defining the volume to be filled 

3. setting up the packer 

4. running the packer to fill the box and, if required, bond the particles together 

5. write the particle data to an output file 

 

First, a couple of parameters is defined that will be needed repeatedly throughout the script, 

namely the dimensions of the box, which is intended to fill and the minimum and maximum 

radius of the particles. This sets the shape of the box to a square prism.  
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Fig. B.1. Examples of geometries generated with GenGeo. 

 

 
x1=-15000 

y1=10000 

z1=0 

 

xdim1=30000 

ydim1=20000 

zdim1=2000 
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The corner points can be used to define both the volume to be filled and the neighbour table 

to contain the particles. The volume, which is of the class BoxWithPlanes3D, takes exactly two 

parameters in its constructor, describing the locations of two opposite corners of the box. There-

fore, both parameters are of type Vector3.  

 
# corner points 

minPoint1 = Vector3(x1,y1,z1) 

maxPoint1 = Vector3(xdim1,ydim1,zdim1) 

 
# block volume1 

box1 = BoxWithPlanes3D(minPoint1,maxPoint1) 

 

# boundary planes 

bottomPlane1=Plane(minPoint1,Vector3(0.0,1.0,0.0)) 

leftPlane1=Plane(minPoint1,Vector3(1.0,0.0,0.0)) 

frontPlane1=Plane(minPoint1,Vector3(0.0,0.0,1.0)) 

topPlane1=Plane(maxPoint1,Vector3(0.0,-1.0,0.0)) 

rightPlane1=Plane(maxPoint1,Vector3(-1.0,0.0,0.0)) 

backPlane1=Plane(maxPoint1,Vector3(0.0,0.0,-1.0)) 

 

# add them to the box  

box1.addPlane(bottomPlane1) 

box1.addPlane(leftPlane1) 

box1.addPlane(frontPlane1) 

box1.addPlane(topPlane1) 

box1.addPlane(rightPlane1) 

box1.addPlane(backPlane1) 

 

Next, it is necessary to create a neighbour table to store the particles. The constructor for 

the neighbour table takes four arguments: two corner points (minPoint, maxPoint) to describe 

the volume covered by the model, the grid spacing (gridSize) and the number of particle groups 

(numGroups). The volume covered by the neighbor table should ideally be the bounding box 

of the whole model, i.e., it needs to cover all particles, but it should not be much larger in order 

to minimize the memory used. The grid spacing determines the search range used for the deter-

mining if two particles touch each other. To ensure all touching (or intersecting) pairs of parti-

cles can be found the grid spacing needs to be larger than twice the maximum particle radius. 

The number of particle groups will only be different from 1 for rather complicated geometry 

setup scripts.  

 
# neighbour table  

mntable = MNTable3D( 

minPoint=minPoint0, 

maxPoint=maxPoint0, 

gridSize=2.5*maxRadius, 

numGroups=3 #the initial number of groups (default: 1) 

) 

 

Next, the “packer” is set up that places the particles inside the volume. The most simple 

constructor for this type of packer takes 5 arguments. In addition to the minimum and maximum 

particle radius (minRadius, maxRadius) there are 3 parameters that control the performance of 
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the packing algorithm. These are the number of consecutive failed particle insertion attempts 

allowed before the algorithm gives up and terminates (insertFails), the maximum number of 

iterations for the internal sphere fitting procedure (maxIterations) and the precision of the 

sphere fitting, i.e., the maximum tolerance up to which two particles are still considered touch-

ing (tolerance). The values insertFails=1000, maxIterations=1000 and tolerance=1e-6 usually 

work fine for small to medium models. For large models it is necessary to increase the value of 

insertFails to obtain a good packing of the particles. The value of tolerance should be considered 

in relation to the particle radii. A sixth parameter seed can be used to force a re-seeding of the 

random number generator before the packing algorithm starts. Setting seed=True guarantees a 

different packing with each run of the script, otherwise, the run is system-dependent.  

 

Generating an assembly of particles includes the following three steps: 

1. generating a block of unbonded particles, 

2. creating bonds between neighbouring particles, and 

3. specifying the type of interactions between bonded-particle-pairs. 

 

For generating a block of unbonded particles ESyS-Particle provides four methods for gen-

erating a block of particles: SimpleBlock – generates a block of particles whose centres-of-mass 

reside on the vertices of a regular cubic lattice. This is the simplest configuration but is typically 

not the best choice for serious simulations because the particle-packing is not ideal (the porosity 

is very high); CubicBlock – generates a Face-Centred Cubic (FCC) lattice of particles with a 

dense packing arrangement; HexagBlock – generates a Hexagonal Close Packing (HCP) of 

particles; RandomBoxPacker – generates a block of particles with radii randomly distributed in 

a specified range. The use of uniform particle sizes and regular particle arrangements introduces 

artefacts such as preferential movement along lattice planes. A simple way to remove such 

artefacts and to model more realistic granular materials is to use particle assemblies in which 

the positions and radii of particles are selected randomly.  

 

The RandomBoxPacker and some other ESyS-Particle Packer modules make use of an iter-

ative, geometrical space-filling algorithm to insert particles within a prescribed volume. The 

algorithm may be summarized as follows: 

1. Insert a number of seed particles at random locations within the volume ensuring they do 

not overlap. 

2. Identify 4 adjacent particles 

(a) compute the centroid of the tetrahedron defined by the 4 particles 

(b) compute the radius of a particle that touches all 4 particles 

(c) if the radius of that particle is within the specified range and it is entirely 

within the prescribed volume, insert the particle 

3. Repeat step 2 until the number of failed insertion attempts reaches the maxInsertFails 

 

The tolerance parameter defines what is implied by touching in the above algorithm. If par-

ticles overlap by less than the prescribed tolerance, they are said to be touching. The cu-

bicPackRadius is a parameter for setting up the neighbours table used to track relative locations 

of adjacent particles. The optimal value for this is approximately 2.2 x maxRadius. circDimList 

informs the packing algorithm of any circular (or periodic) boundaries so particles will be fitted 

together along these boundaries rather than being fitted to straight walls. This algorithm for 

filling a volume with spherical particles has some distinct advantages over some other methods 

but also has some limitations. The algorithm requires no equilibration simulation such as some 

dynamical methods (e.g. expanding particle algorithms) to achieve a close packing of relatively 
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low porosity. On the downside, the user has little control over the final distribution of particle 

sizes (apart from specifying the range of sizes). Experience has shown that for a broad range of 

sizes (e.g. [0:1; 1:0]) the final particle size distribution is a power-law. For a narrow range of 

sizes (e.g. [0:4; 0:6]) the size distribution is approximately a uniform random distribution. 

 
# -- setup packer -- 

# iteration parameters 

insertFails = 1000 

maxIter = 1000 

tol = 1.0e-6 

 

# packer 

packer = InsertGenerator3D( minRadius,maxRadius,insertFails,max-

Iter,tol,False) 

packer3 = InsertGenerator3D( minRadius,maxRadius,insertFails,max-

Iter,tol,False) 

 

When the volume, the neighbour table and the packer are defined, the actual work can start. 

First the packer needs to fill the volume with particles. In the simplest case this requires two 

arguments to the generatePacking function of the packer: the volume to fill and the neighbour 

table in which to store the particles.  

 
# pack particles into volume 

packer.generatePacking( 

volume=box1, #the volume to fill with particles 

ntable=mntable, #the neighbours table that particles are inserted into 

groupID=0,#the group ID assigned to particles (default: 0) 

tag=100#the tag assigned to the generated particles (optional (default: -

1) if not followed by ShapeList) 

) 

 

The last thing to do to complete the generation of the particle arrangement is to create the 

bonds between touching particle-pairs. Because the neighbour table contains all information 

necessary to determine which particles should be bonded, i.e., particle positions and radii, the 

bonding procedure is a member function of the neighbour table. The most simple form of the 

function call, which just bonds all neighbouring particles in one group, needs 3 arguments: the 

ID of the particle group that should be bonded groupID, the bonding tolerance and the tag given 

to the newly created bonds bondID. Because considered neighbour table contains only one 

group of particles, the groupID can be equal to 0. The tolerance for bonding should normally 

be larger than the packing tolerance used in the packer, hence, 1.0e-05 is chosen here. The bond 

tag can be set to any value, in this case it was marked as 0.  

 
# create bonds between neighbouring particles: 

mntable.generateBonds( 

groupID=0,#the group ID of particles to bond together (default: 0) 

tolerance=1.0e-5,#maximum distance separating bonded particles 

bondID=0)#the bond ID to assign generated bonds 
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ESyS-Particle script written in Python 

from esys.lsm import * 

from esys.lsm.util import * 

from esys.lsm.geometry import * 

from WallLoader import WallLoaderRunnable 

from WallLoaderMod import WallLoaderRunnableMod 

from math import * 

 

#mpirun -np 2 esysparticle tiger.py 

#dump2vtk -i snapshot -o vtk_snaps_ -rot -t 0 2 1 

 

maxR=800 

minR=200 

time_steps=2000000 

increment=1000 

 

field_saver=500 

check_pointer=10000 

 

 

ym=1.0e+06 

pr=0.25 

coh=1000.0 

ta=1.0 

den=940*1.0e-06 

den2=1000*1.0e-06 

 

dt=1.0e-04 

 

plik=open("step.dat","w") 

plik.write(str(dt)) 

plik.close() 

 

#instantiate a simulation object: 

sim = LsmMpi (numWorkerProcesses = 1, mpiDimList = [1,1,1]) 

 

#initialise the neighbour search algorithm: 

sim.initNeighbourSearch ( 

particleType = "RotSphere", 

gridSpacing = 2*maxR+0.2*minR, 

verletDist = 0.2*minR 

) 
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#set the number of timesteps and timestep increment: 

sim.setNumTimeSteps (time_steps) 

sim.setTimeStepSize (dt) 

 

sim.readGeometry("berg_meshBezKlastrow2.geo") 

 

#density 

sim.setParticleDensity( 

tag=100, 

mask=-1, 

Density=den 

) 

 

#density 

sim.setParticleDensity( 

tag=200, 

mask=-1, 

Density=den2 

) 

 

sim.createWall ( 

name = "right_wall", 

posn = Vec3(30000.0, 0.0, 0.0), 

normal = Vec3(-1.0, 0.0, 0.0) 

) 

 

sim.createWall ( 

name = "left_wall", 

posn = Vec3(-40000.0, 0.0, 0.0), 

normal = Vec3(1.0, 0.0, 0.0) 

) 

 

sim.createWall ( 

name = "back_wall", 

posn = Vec3(0.0, 0.0, 0.0), 

normal = Vec3(0.0, 0.0, 1.0) 

) 

 

sim.createWall ( 

name = "front_wall", 

posn = Vec3(0.0, 0.0, 2000.0), 

normal = Vec3(0.0, 0.0, -1.0) 

) 
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sim.readMesh( 

fileName = "meshBottom.msh", 

meshName = "meshBottom_wall" 

) 

 

sim.readMesh( 

fileName = "meshBottomBottom.msh", 

meshName = "meshBottomBottom_wall" 

) 

 

sim.readMesh( 

fileName = "meshRight.msh", 

meshName = "meshRight_wall" 

) 

 

 

 

#create rotational elastic-brittle bonds between particles: 

pp_bonds = sim.createInteractionGroup ( 

BrittleBeamPrms( 

name="pp_bonds", 

youngsModulus=ym, 

poissonsRatio=pr, 

cohesion=coh, 

tanAngle=ta, 

tag=0 #Connections which are tagged with tag will be created 

with these parameters. bondTag 

) 

) 

 

#initialise frictional interactions for unbonded particles: 

sim.createInteractionGroup ( 

FrictionPrms( 

name="friction", 

youngsModulus=ym, 

poissonsRatio=pr, 

dynamicMu=0.4, 

staticMu=0.6 

) 

) 

#create an exclusion between bonded and frictional interac-

tions: 
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sim.createExclusion ( 

interactionName1 = "pp_bonds", 

interactionName2 = "friction" 

) 

 

#initialise gravity in the domain: 

sim.createInteractionGroup( 

GravityPrms(name="earth-gravity", acceleration=Vec3(0,-

9.81,0)) 

) 

 

 

#specify elastic repulsion from the top wall: 

sim.createInteractionGroup ( 

NRotElasticWallPrms ( 

name = "right_wall_repel", 

wallName = "right_wall", 

normalK = ym 

) 

) 

 

#specify elastic repulsion from the top wall: 

sim.createInteractionGroup ( 

NRotElasticWallPrms ( 

name = "left_wall_repel", 

wallName = "left_wall", 

normalK = ym 

) 

) 

 

 

#specify elastic repulsion from the top wall: 

sim.createInteractionGroup ( 

NRotElasticWallPrms ( 

name = "back_wall_repel", 

wallName = "back_wall", 

normalK = ym 

) 

) 

 

#specify elastic repulsion from the top wall: 

sim.createInteractionGroup ( 

NRotElasticWallPrms ( 

name = "front_wall_repel", 
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wallName = "front_wall", 

normalK = ym 

) 

) 

 

 

 

sim.createInteractionGroup ( 

NRotElasticTriMeshPrms ( 

name = "meshBottom_repell", 

meshName = "meshBottom_wall", 

normalK = ym 

)) 

 

sim.createInteractionGroup ( 

NRotElasticTriMeshPrms ( 

name = "meshBottomBottom_repell", 

meshName = "meshBottomBottom_wall", 

normalK = ym 

)) 

 

sim.createInteractionGroup ( 

NRotElasticTriMeshPrms ( 

name = "meshRight_repell", 

meshName = "meshRight_wall", 

normalK = ym 

)) 

 

 

 

 

#add translational viscous damping: 

sim.createInteractionGroup ( 

LinDampingPrms( 

name="damping1", 

viscosity=0.002, 

maxIterations=50 

) 

) 

#add rotational viscous damping: 

sim.createInteractionGroup ( 

RotDampingPrms( 

name="damping2", 

viscosity=0.002, 
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maxIterations=50 

) 

) 

 

 

#total kinetic energy 

sim.createFieldSaver ( 

ParticleScalarFieldSaverPrms( 

fieldName="e_kin", 

fileName="ekin.dat", 

fileFormat="SUM", 

beginTimeStep=0, 

endTimeStep=time_steps, 

timeStepIncr=field_saver 

) 

) 

 

#linear kinetic energy 

sim.createFieldSaver ( 

ParticleScalarFieldSaverPrms( 

fieldName="e_kin_linear", 

fileName="ekin_linear.dat", 

fileFormat="SUM", 

beginTimeStep=0, 

endTimeStep=time_steps, 

timeStepIncr=field_saver 

) 

) 

 

#rotational kinetic energy 

sim.createFieldSaver ( 

ParticleScalarFieldSaverPrms( 

fieldName="e_kin_rot", 

fileName="ekin_rot.dat", 

fileFormat="SUM", 

beginTimeStep=0, 

endTimeStep=time_steps, 

timeStepIncr=field_saver 

) 

) 

 

#add a FieldSaver to store total potential energy: 

sim.createFieldSaver ( 

InteractionScalarFieldSaverPrms( 
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interactionName="pp_bonds", 

fieldName="potential_energy", 

fileName="epot.dat", 

fileFormat="SUM", 

beginTimeStep=0, 

endTimeStep=time_steps, 

timeStepIncr=field_saver 

) 

) 

 

 

 

#create a FieldSaver to store number of bonds: 

sim.createFieldSaver ( 

InteractionScalarFieldSaverPrms( 

interactionName="pp_bonds", 

fieldName="count", 

fileName="nbonds.dat", 

fileFormat="SUM", 

beginTimeStep=0, 

endTimeStep=time_steps, 

timeStepIncr=field_saver 

) 

) 

 

 

#add a CheckPointer to store simulation data: 

sim.createCheckPointer ( 

CheckPointPrms ( 

fileNamePrefix = "snapshot", 

beginTimeStep = 0, 

endTimeStep = time_steps, 

timeStepIncr = check_pointer 

) 

) 

 

nr=sim.getNumParticles() 

print(nr) 

 

#execute the simulation: 

sim.run() 
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Mesh file generating bottom wall for glacier 

Triangle 

3D-Nodes 4 

0 0 0 -5000.0 10000.0 0.0 

1 1 0 30000.0 10000.0 0.0  

2 2 0 30000.0 10000.0 2000.0 

3 3 0 -5000.0 10000.0 2000.0 

 

 

Tri3 2 

0 0 0 1 2 

1 0 0 2 3 

 

 

Mesh file generating bottom wall for water 

Triangle 

3D-Nodes 4 

0 0 0 -5000.0 -20000.0 0.0 

1 1 0 -5000.0 -20000.0 2000.0  

2 2 0 -40000.0 -20000.0 2000.0 

3 3 0 -40000.0 -20000.0 0.0 

 

 

Tri3 2 

0 0 0 1 2 

1 0 0 2 3 

 

 

Mesh file generating left wall for water 

Triangle 

3D-Nodes 4 

0 0 0 -40000.0 10000.0 0.0 

1 1 0 -40000.0 10000.0 2000.0  

2 2 0 -40000.0 -20000.0 2000.0 

3 3 0 -40000.0 -20000.0 0.0 

 

 

Tri3 2 

0 0 0 2 1 

1 0 0 3 2 
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Mesh file generating right wall for water 

Triangle 

3D-Nodes 4 

0 0 0 -5000.0 10000.0 0.0 

1 1 0 -5000.0 10000.0 2000.0  

2 2 0 -5000.0 -20000.0 2000.0 

3 3 0 -5000.0 -20000.0 0.0 

 

 

Tri3 2 

0 0 0 1 2 

1 0 0 2 3 

 

 

Explanation of ESyS-Particle script 

The main components of any ESyS-Particle simulation are: initialization of an ESyS-Particle 

simulation object, specification of the spatial domain, particle creation and initialization, defi-

nition of inter-particle interactions, and execution of time integration. To use the ESyS-Particle 

simulation libraries in Python, it is necessary to import the modules, which will be used. The 

following statements are required: 

 
from esys.lsm import * 

from esys.lsm.util import * 

from esys.lsm.geometry import * 

from WallLoader import WallLoaderRunnable 

from WallLoaderMod import WallLoaderRunnableMod 

from math import * 

 

These statements load a number of relevant classes and subroutines required for all ESyS-

Particle simulations. These statements also import the Vec3 and BoundingBox classes. Objects 

of the Vec3 class are 3-component vectors, which are useful for specifying position, velocity 

or acceleration vectors in 3D.  

Every ESyS-Particle simulation commences with the creation of an ESyS-Particle simula-

tion object called LsmMpi. This object provides a means to define and run a simulation and can 

be thought of as a container to which simulation components are added, such as a list of parti-

cles, walls, different types of interactions and data output components. The following code-

fragment creates a simulation object: 

 
#instantiate a simulation object: 

sim = LsmMpi (numWorkerProcesses = 1, mpiDimList = [1,1,1]) 

 

The statement creates an LsmMpi object and takes two arguments. The numWorkerPro-

cesses argument specifies the number of MPI processes to use for calculations. However, this 

argument can be set to a larger value for an MPI-parallel simulation (in the case of access to a 

computer with multiple processor cores/CPUs). The second argument (mpiDimList) specifies 
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the manner in which the domain will be divided among the worker processes. The first coordi-

nate refers to the number of subdivisions in the x-direction, while the second and third coordi-

nates specify the number of subdivisions in the y- and z-directions respectively. It is important 

that numWorkerProcesses should be equal to the total number of subdomains specified by the 

mpiDimList. 

 
#initialise the neighbour search algorithm: 

sim.initNeighbourSearch ( 

particleType = "RotSphere", 

gridSpacing = 2*maxR+0.2*minR, 

verletDist = 0.2*minR 

) 

 

The statement (sim.initNeighbourSearch) specifies the type of particles used in the simula-

tion. The two most common particle types are NRotSphere and RotSphere. sim.initNeighbour-

Search also sets two parameters for the contact detection algorithm. The gridSpacing parameter 

defines the size of cubic cells used to identify contacting particles. This parameter needs to be 

larger than the maximum particle diameter. The verletDist parameter determines the frequency 

with which the contact lists are updated. If any particle moves a distance greater than verletDist 

the lists are updated. Optimal values for these two parameters satisfy the inequality gridSpacing 

> 2 x maxRadius + verletDist.  

Reducing the verletDist will result in more accurate force calculations (because new con-

tacts will be detected earlier) but the lists will be updated more frequently, which is computa-

tionally expensive. In most cases, the gridSpacing should be set to approximately 2.5 x the 

maximum particle radius and the verletDist should be approximately 0.2 x the minimum parti-

cle radius. These two statements result in the construction of a suitable ESyS-Particle simula-

tion object called sim. The simulation object now becomes a container to which particles can 

be added, as well as walls, and various types of interactions. Before it is done, it is necessary to 

specify how many timesteps to compute during the simulation and the timestep increment (in 

seconds): 

 
#set the number of timesteps and timestep increment: 

sim.setNumTimeSteps (time_steps) 

sim.setTimeStepSize (dt) 

 

These two statements can be described as follows: the total number of timesteps will be 

computed, with a time increment of dt seconds between each timestep. It is usually a good idea 

to set the timestep increment before creating particles or interactions. In some cases, the 

timestep increment is needed internally to correctly initialize interactions. 

Prior to addition of particles, the simulation object must be assigned a valid spatial domain. 

Any particles or walls residing outside this domain are eliminated from force calculations and 

time integration. The following code-fragment specifies the spatial domain for a simulation, 

which was defined by the GenGeo script.  

 
sim.readGeometry("berg_meshBezKlastrow2.geo") 
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Having added particles to the simulation object, it is necessary to specify the type of inter-

actions between the particles if they should come into contact (which they will due to the care-

fully selected initial positions and velocities above). There are a number of different types of 

particle-particle interactions that may be used, but in this code rotational elastic-brittle bonds 

were used.  

For particle-pair interactions that incorporate both translational and rotational degrees of 

freedom, this is achieved in the following manner. Two bonded particles may undergo normal 

and shear forces, as well as bending and twisting moments. Bonds designed to import such 

forces and moments are known as cementitious bonds (or, in ESyS-Particle, BrittleBeamPrms 

interactions). Unlike the non-rotational equivalent, rotational frictional interactions impart a 

torque to both particles, causing the particles to rotate relative to each other when they are in 

frictional contact. The detailed description of inter-particle interactions can be found in the Sec-

tion 3.3.2, together with a schematic picture (Fig. 6). 

Because a broken bond represents a fracture surface, it is appropriate to specify frictional 

interactions between unbonded particles. The following code fragment implements frictional 

interactions between unbonded, touching particles: 

 
#initialise frictional interactions for unbonded particles: 

sim.createInteractionGroup ( 

FrictionPrms( 

name="friction", 

youngsModulus=ym, 

poissonsRatio=pr, 

dynamicMu=0.4, 

staticMu=0.6 

) 

) 

 

Rotational frictional interactions are defined by a microscopic Young’s modulus (youngs 

Modulus) and Poisson’s ratio (poissonsRatio) and two microscopic coefficients of friction. 

Typically the Young’s modulus and Poisson’s ratio for FrictionPrms interactions are set equal 

to their BrittleBeamPrms counterparts. The staticMu coefficient of friction is applied when two 

particles are in static frictional contact, i.e., prior to the first time the frictional sliding criterion 

is met. Thereafter the dynamicMu coefficient of friction is applied. By setting dynamicMu < 

staticMu, one can simulate the physical observation that the frictional force required to maintain 

sliding is less than the force necessary to initiate sliding. 

Any given particle-pair undergoes either bonded interactions or frictional interactions but 

not both. This is achieved by specifying an exclusion between the two interaction groups: 

 
#create an exclusion between bonded and frictional interac-

tions: 

sim.createExclusion ( 

interactionName1 = "pp_bonds", 

interactionName2 = "friction" 

) 
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Any acoustic emissions generated during fracturing should dissipate rapidly compared with 

the duration of the experiment. To simulate these conditions, it is necessary to incorporate two 

body forces designed to attenuate translational and rotational oscillations. In this case are used 

both LinDamping (designed to attenuate translational oscillations) and RotDamping (designed 

to attenuate rotational oscillations). The two damping forces are implemented as follows: 

 
#add translational viscous damping: 

sim.createInteractionGroup ( 

LinDampingPrms( 

name="damping1", 

viscosity=0.002, 

maxIterations=50 

) 

) 

#add rotational viscous damping: 

sim.createInteractionGroup ( 

RotDampingPrms( 

name="damping2", 

viscosity=0.002, 

maxIterations=50 

) 

) 

 

The viscosity coefficients are chosen to be small so that damping has little effect on the 

elastic response of the simulated material, but sufficient to attenuate unwanted oscillations. 

Frequently, it may be useful to incorporate fixed or movable walls in particle simulations. 

Walls may be planar, piecewise planar, or perhaps an arbitrary shape. ESyS-Particle imple-

ments three types of walls: Planar walls (infinite planar walls specified by a point and a normal 

vector), Linear meshes (a piece-wise linear mesh of line segments for arbitrarily shaped walls 

in 2D simulations), and Triangular meshes (a mesh of triangles used to define surfaces in 3D 

simulations). All three types of walls have an active side and an inactive side. For the case of 

an infinite wall, the normal vector points to the active side of the wall. Particles impinging on 

a wall from the active side will bounce off the wall. However, particles impinging on a wall 

from the inactive side will accelerate through the wall in an unphysical manner. Both types of 

mesh walls have an active side determined by the order in which vertices are specified for line-

segments or triangles.  

An infinite planar wall can be inserted as follows: 

 
sim.createWall ( 

name = "right_wall", 

posn = Vec3(30000.0, 0.0, 0.0), 

normal = Vec3(-1.0, 0.0, 0.0) 

) 

 

The second argument (posn) is a Vec3 vector specifying a point lying in the plane of the 

wall. Finally the normal argument specifies a Vec3 normal vector for the wall.  
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Simply inserting a wall into a simulation object is insufficient. The type of interactions must 

also be defined between particles and walls. There are two common types of interactions: elastic 

repulsion and bonded interactions. In this code, only elastic repulsion is considered.  

 
#specify elastic repulsion from the top wall: 

sim.createInteractionGroup ( 

NRotElasticWallPrms ( 

name = "right_wall_repel", 

wallName = "right_wall", 

normalK = ym 

) 

) 

 

Particle-wall interactions are also implemented through an InteractionGroup. The wallName 

argument specifies to which wall this particle-wall interaction refers. The last argument (nor-

malK) specifies the elastic stiffness of the particle-wall interaction. The choice of elastic stiff-

ness is not arbitrary. An elastic stiffness should be assigned sufficiently large that the wall can 

support the weight of the particle with a relatively small indentation (or overlap). If the elastic 

stiffness is too small the particle will continue to fall through the wall and eventually fall out 

on the other side. 

Planar walls, by their definition, are infinite in length, making it difficult to simulate prob-

lems that require complex wall shapes or walls with holes. Mesh walls overcome this problem 

but are slightly more complicated to implement in simulations. ESyS-Particle uses a triangu-

lated mesh format to define piecewise segments of a wall (Fig. B.2).  

 
sim.readMesh( 

fileName = "meshBottom.msh", 

meshName = "meshBottom_wall" 

) 

 

Mesh walls are a powerful and flexible feature of ESyS-Particle that allow complex shapes 

and interactions to be simulated.  

ESyS-Particle includes a group of modules called FieldSavers designed to store specific 

simulation data to disk. FieldSavers are closely related to the CheckPointer, with the main dif-

ference being that FieldSavers store only specific data rather than all of the state variables of 

the particles. FieldSavers can also be used to store data on particles (such as position or kinetic 

energy), interactions (such as potential energy and the number of broken bonds), and walls 

(such as the position of a wall and the net force acting on the wall).  

 

 

 

 

 

 

Fig. B.2. Triangulated piece of mesh wall. 
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#add a CheckPointer to store simulation data: 

sim.createCheckPointer ( 

CheckPointPrms ( 

fileNamePrefix = "snapshot", 

beginTimeStep = 0, 

endTimeStep = time_steps, 

timeStepIncr = check_pointer 

) 

) 

 

#total kinetic energy 

sim.createFieldSaver ( 

ParticleScalarFieldSaverPrms( 

fieldName="e_kin", 

fileName="ekin.dat", 

fileFormat="SUM", 

beginTimeStep=0, 

endTimeStep=time_steps, 

timeStepIncr=field_saver 

) 

) 
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