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Chapter 1

Introduction

The problem of water quality receives an increasing attention of the public,
politicians, decision makers nowadays. People have to answer how to achieve
any given level and pattern of water quality in particular watercourses and
also how to mitigate the catastrophes that are inseparable elements of civiliza-
tion. The EU water framework directive, which came into force at the end of
2000 (Directive, 2000), changes the way of monitoring, assessing and manag-
ing water in European countries. Three groups of quality elements (biological,
hydromorphological and physico-chemical) have been identified in the water
framework directive as necessary to classify the ecological status of a particu-
lar water body. One should also mention about other EU directives, like the
dangerous substances directive, drinking water directive, IPCC directive which
in general should lead towards reduction and elimination of pollution by haz-
ardous substances, phasing out emissions, losses and discharges of them. In
general, achievement of levels protecting human health and aquatic ecosystems
is expected. There are however many significant shortfalls and gaps not only in
the countries information but also at the basic understanding of the physical
processes occurring in various water bodies and consequently on the modeling
of pollution transport.
Water quality predictions in rivers require development of a model that is

able to capture the basic physical features of the process and depends only on
the variables that are available in case under consideration. A very crucial and
often made assumption is the limitation to the neutrally buoyant substances.
The analysis of such micropollutants like heavy metals (e.g. mercury, cadmium,
lead) would go along different line. The reason is that these substances may be
present in three states in the system considered: in dissolved form as well as in
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1. INTRODUCTION

solid phase mostly present in the suspended solids and in the sediment below.
In case when these pollutants are in the solid form, the relevant description of
their transport should appeal to the dynamics of two-phase flows.
We will further assume that the considered mixture is passive that is one,

in which the fluid-particle interaction does not affect the dynamics of the flow.
Otherwise, one would have to include momentum considerations in order to
properly represent certain two-phase flows. Further limitation is the considera-
tion of the fate of solutes only, i.e. the substances that are dissolved in the water.
Throughout this volume, we use the macroscopic treatment, i.e. the theory of
continuum. Because of practical importance, we do not care about the motion
of individual particles of the matter and are interested only in the resultant
effects due to the motion of a large number of particles. It is possible because
in practical problems the smallest length scales of interest are much larger than
the distance between molecules.
In principle, the physical processes during the transport of any constituent

are three dimensional and should be described by three dimensional (3D) ad-
vection-diffusion equation together with the description of 3D velocity field.
Advection-diffusion equation (ADE) already imposes the so-called one-way cou-
pling, i.e. the particles dispersed in a carrier flow have negligible effect on tur-
bulence. It means that particle spread in this regime depends on the state of
turbulence but due to the negligible concentration of the particles, the momen-
tum transfer from the particles to the turbulence has an insignificant effect on
the flow (Elgobashi, 1994). In most cases, it is an acceptable assumption. Three
dimensional ADE is, however, still too demanding in respect to data, and the
data for such models are mainly available for academic purposes. Therefore,
further simplifications are usually sought in practice.
In the general three-dimensional case, construction of the mass transport

equation for a dissolved quantity requires the application of the Reynolds hy-
pothesis allowing for the decomposition of the velocities and concentrations
into mean and fluctuating values, and further additional information about the
turbulent mass flux, based for example on a linear relationship between the
turbulent flux and the gradient of the mean concentration. The main obstacles
to progress in that approach are the lack of reliable theory which relates the
spatial variation of turbulent diffusion coefficients to flow and boundary con-
ditions, mathematical difficulties in solving the transport equation for variable
diffusion coefficients and realistic spatial domains. Another important problem
is the lack of knowledge of the realistic detailed 3D velocity field. Three dimen-
sional approach is probably suitable in the vicinity of the injection point in the
river when one is interested in studying the heterogeneity in vertical and lateral
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directions. Such strong heterogeneity may occur due to the variability of river
geometry like meanders, or the ones caused by fairways and weirs.
Various simplifications of the model are necessary to tackle real life prob-

lems. One option is to eliminate one or two dimensions in cases where such
operation is justified by the conditions in the considered river reach. This elim-
ination may be realized by relevant averaging of the governing equations (both
hydrodynamics and mass transfer equation at the same time). It is usually the
case that in the mid-field region the governing equations may be averaged over
the depth giving two-dimensional (2D) models. In the far field, in case when
the river geometry allows, one is mostly interested in the cross-sectionally av-
eraged concentrations. The governing equations may be then averaged over the
cross-section, which results in a one-dimensional (1D) model of the spread of
the constituent under consideration. Two-dimensional case will be considered
in more detail in the next section. Let us therefore briefly discuss the problem of
1D modeling. A long tradition in the application of the longitudinal dispersion
model exists. Such a model is very useful for designing outfalls or water intakes
and first of all for evaluating risks from, for example, accidental releases of haz-
ardous contaminants. 1D models are the easiest in application and not such
detailed knowledge about the hydraulic characteristics of the considered reach
is required as in case of 2D and 3D approaches.One has to be aware, however,
of the restrictions that 1D models are burdened (Jirka & Weitbrecht, 2005;
Rutherford, 1994; Sukhodolov et al., 1998). 1D model in the traditional Fickian
form applies only in relatively simple river reaches (in terms of the geometry)
and only after some initial mixing period (the solute concentration should be
well distributed over the channel width). The advection-dispersion equation has
been successfully applied for many real cases; nevertheless, very often the ques-
tions about its applicability arise. The tail of a solute tracer pulse is often more
pronounced than can be accounted for by the traditional advection-dispersion
model. A common method for simulating these long tails has been to allow for
storage zones along the stream channel (Czernuszenko et al., 1998; Rowiński
& Piotrowski, 2008; Van Mazijk & Veling, 2005). These storage zones are as-
sumed to be stagnant relative to the longitudinal flow of the stream and to obey
a first-order mass transfer type of exchange relationship. Very often a quicker
decrease of the concentration maximum following from the Fickian equation is
observed. Also a nonlinear growth of the concentration distribution variance
and dependence of the dispersion coefficient on time has been often manifested
in experimental studies.
As mentioned before, in situations where the concentration is rather uni-

form along each individual vertical line, the depth averaging of every quantity
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1. INTRODUCTION

is made to reduce the dimensionality of the problem. As a result, the depth-
averaged, two-dimensional advection-diffusion transport equation is readily ob-
tained. Discussion of efficient methods of the solutions of thus obtained model
will constitute the main aim of this volume. In this study the full version of
the transport equation has been considered. Special attention has been paid
to the often-encountered practice of neglecting the mixed derivatives in the
transport equations independently of the complexity of the domain of com-
putations. The credible investigation of mixing processes in open-channels has
stimulated the development of various numerical solvers for advection-diffusion
equations. However, the requirements regarding the accuracy and efficiency for
these methods are constantly becoming stricter and therefore there is still a
need to find better numerical schemes (Grima & Newman, 2004; Juntunen &
Tsiboukis, 2000; MacKenzie & Roberts, 2003, e.g.,). Understanding of the the-
oretical truncation error is therefore a must when concrete numerical schemes
are applied. Such an error is in fact the difference between the actual solution
and the approximate solution due solely to the numerical scheme. We do real-
ize that the root of finite-difference schemes is a Taylor expansion. Since it is
impossible to compute all the terms in an infinite series, a numerical scheme
necessarily uses a truncated series. Most of the studies aimed at the evaluation
of numerical errors associated with the finite-difference solutions of relevant
equations were either devoted to one-dimensional cases (Ataie-Ashtiani et al.,
1996, 1999; Dehghan, 2004; Fletcher, 1991; Karahan, 2006) or in case of two-
dimensional transport processes – they were usually restricted to the simple case
in which mixed derivatives were avoided (Ataie-Ashtiani & Hosseini, 2005a,b;
Noye & Tan, 1989; Noye, 1984; Peyret & Taylor, 1986). Such an approach is
very common in hydraulic research, and taking into account complex natural ge-
ometries that we deal with in natural channels is not well justified (Rowiński &
Kalinowska, 2006). One should note a recent study of Ataie-Ashtiani & Hosseini
(2005a) in which full 2D advection-dispersion equation with a reaction term has
been analysed but the authors restricted their considerations to just numerical
diffusion error. Numerical dispersion, another source of truncation error, is an
undesired nonphysical effect inherently present in the finite-difference schemes
commonly used in environmental hydraulics. It will be studied in this book as
well. Some of alike literature studies were devoted to the pure advection equa-
tion – see e.g. (Fletcher, 1991; Grandjouan, 1990; Odman, 1997; Thomas, 1995;
Zoppou & Roberts, 1993) in one-dimensional case, or (Bielecka-Kieloch, 1998;
Szymkiewicz, 2006) in two-dimensional case. The method of the present study
pertains to the so-called Modified Equation approach proposed by Warming &
Hyett (1974). Recently Szymkiewicz (2006) has provided a detailed review of
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this method. The modified equation is derived by first expanding each term
of the applied difference scheme in a Taylor series and then eliminating time
derivatives higher than the first-order by specially designed mathematical ma-
nipulations.
On top of analyzing the numerical schemes, this work aims to provide a com-

prehensive model and the description of the computer program RivMix (River
Mixing Model) together with its application to a few case studies. The com-
puter program was created in C++ computing language and compiled under
Linux Red Hat operating system. Visualization of results was done with use of
an Object Oriented Data Analysis Framework ROOT – the program created in
CERN – European Organization for Nuclear Research (Brun & Rademakers,
1997). The RivMix model has been verified and tested using the comparison
with analytical solution for a simple case, when such solution could be obtained.
Data from the experiment performed at Sheffield Hallam University and pro-
vided by Ian Guymer has been used for validation of the model.
The presented model with its numerical implementations holds great promise

for future applications to real cases studies. This model still lacks verification
for a wide range of prototype situations. This circumstance is due in part to the
complexity of performing two dimensional experiments and a giant step forward
toward further development of the method requires high quality laboratory and
field data.
We hope that the results of the study presented in this book will be helpful

for researchers and students dealing with numerical modeling of mass transport
in open channels. The numerical aspects may also be treated more universally
and definitely may be used by a broader audience, namely by everybody work-
ing on solving the advection-diffusion equation in natural flows but also in
industrial applications.
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Chapter 2

Mass Transport
in Open Channels

2.1 Introduction

Monitoring the quality of waters and control of pollutants released into them,
as well as development of ways of acting in case of possible contamination make
us create models describing processes of water flow and the transport of sub-
stances dissolved in it. This volume considers processes of transport and mixing
of substances dissolved in surface flowing waters, e.g. rivers and open channels.
The transport of passive and conservative substances which dissolve in water
after a short time is taken into account. In the natural environment, the sig-
nificant number of admixtures is of passive nature (Szymkiewicz, 2000). Such
substances do not have any influence upon the water velocity field, which al-
lows to limit the consideration to single phase flows. Conservative substances
are substances whose total mass does not change in time. Therefore, the gener-
ation and disappearance of solute are not taken into consideration. Otherwise,
the mass transport equation described further in the volume would have to in-
clude terms representing equations of chemical, physical or biological reactions
or transformations describing the process of generation or dissolution of the
source factor. Those terms obviously depend on the kind of the process and the
dissolved substance under consideration. The ways of their parameterisation
may be found in literature (e.g. Rowiński & Kwiatkowski, 2008; Sawicki, 2003).
The description of the basic transport processes and the ways of modeling

them mathematically are broadly discussed in the literature on the subject. The
review of the basic theories relating to open channels is presented, among oth-
ers, by: Czernuszenko (1990, 2000a,b); Czernuszenko & Rowiński (1994); Fischer
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2. MASS TRANSPORT IN OPEN CHANNELS

et al. (1979); Holley & Jirka (1986); Rutherford (1994); Szymkiewicz (2000).
A comprehensive work describing mass and energy transport is “Migration of
Pollutants” (Sawicki, 2003), and the monograph “Water Quality Hazards and
Dispersion of Pollutants” (Czernuszenko & Rowiński, 2005), including a collec-
tion of works by leading experts dealing with various aspects of modeling of
spreading of pollutants in rivers.
The equations describing the transport of dissolved substances result from

one of the basic laws of physics, which is the mass conservation law (derivation
can be found in, e.g.: Czernuszenko, 1990; Sawicki, 2003; Szymkiewicz, 2000).
In the most general case this will be a three-dimensional advection-diffusion
equation, but in practice its averaged versions are usually applied, leading to
two-dimensional or one-dimensional equations.

2.2 Physical bases for modeling mass transport
in open channels

The basic measure of the amount of a substance dissolved in water is con-
centration defined by the proportion of the mass of the solute to the volume
of water in which it is dissolved:

c =
M

V

[
kg
m3

]
, (2.1)

where:
c – concentration,
M – mass of the solute,
V – volume of the liquid.

One may find other definitions in literature, but relation (2.1) will be conse-
quently used in this book.
The process of transport of any solute in water is the result of operation

of two basic mechanisms: advection , which is the mechanism connected with
the movement of water, and diffusion , which is an intrinsive mechanisms of
transporting the substance in the direction of decreasing concentration. Dif-
fusion, unlike advection, is an irreversible process. To describe the advection
process, one needs to solve the complicated equation of motion, while the dif-
fusion process is usually described by well-known diffusion coefficients.
The equation which allows to determine the concentration field in the most

general three-dimensional case results from mass conservation law and can be
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2.2 Physical bases for modeling mass transport in open channels

written as follows (Czernuszenko, 2000b):

∂c(x, t)
∂t

+ div
[
v(x)c(x, t)︸ ︷︷ ︸
advection term

−DM grad c(x, t)︸ ︷︷ ︸
diffusion term

]
= 0; (2.2)

where:
t – time,
x = (x, y, z) – position vector,
c(x, t) – concentration,
v(x) – velocity vector,
DM – molecular diffusion tensor.

The exact determination of the value of concentration at a given point
in space in a given time instant is not possible, therefore, in practice, we look
for concentration values which are averaged over time. The most general three-
dimensional case of the equation for transport of the solute requires the appli-
cation of Reynolds’ hypothesis, allowing for decomposition of the concentration
and velocity values into their average values and fluctuating (turbulent) values:

v = v̄ + v′;

c = c̄+ c′;

where:
v̄ – mean velocity vector,
v′ – turbulent velocity vector,
c̄ – mean point concentration,
c′ – concentration fluctuation.

This procedure described in detail e.g. in (Czernuszenko, 2000b; Czernuszenko
& Rowiński, 2005; Rowiński, 2002; Sawicki, 2003; Szymkiewicz, 2000) intro-
duces an additional mechanism of turbulent mass transport called turbulent
diffusion . The solution of the equation requires the acceptance of a hypothesis
that makes the turbulent mass stream dependent on the average concentration
gradient (Czernuszenko, 2000b):

v′c′ = −DT grad c̄; (2.3)

where:
DT – turbulent diffusion tensor.
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2. MASS TRANSPORT IN OPEN CHANNELS

Table 2.1: Orders of magnitude of various mixing coefficients in rivers (Smith, 1992)

Coefficient Order of Magnitude in m
2

s

molecular diffusion from 10−10 to 10−9

turbulent diffusion from 10−3 to 10−1

dispersion from 1 to 103

Turbulent diffusion tensor appears in the transport equation, which has nine
components in the general case. The equation can be written as follows:

∂c̄(x, t)
∂t

+ div
[
v̄(x)c̄(x, t)− (DM +DT(x)) grad c̄(x, t)

]
= 0. (2.4)

The values of the molecular diffusion coefficients are usually much smaller
than those of the turbulent diffusion coefficients (see table 2.1), and therefore
they are often omitted. Hence, the three-dimensional transport equation can be
written in the form:

∂c(x, t)
∂t

+∇
[
v(x) · c(x, t)

]
−∇

[
DT(x) · ∇c(x, t)

]
= 0; (2.5)

where, for simplicity the mean velocity (v̄) and concentration (c̄) values are
written without the overhead dash.

With appropriately selected system of coordinates, the turbulent diffusion
tensor is diagonal and has only three non-zero components (Czernuszenko,
2000b; Sawicki, 2003). Although any solution of a full three-dimensional equa-
tion requires information not only on turbulent diffusion coefficients which are
difficult to establish, but also on exact measurements of the velocities and depth,
which are seldom available in reality. At the same time the computational costs
of the solution of a three-dimensional task are very high.
In practice, the information on the three-dimensional concentration field

is usually not necessary. Apart from that, the majority of natural rivers and
channels is shallow as compared to their width, and therefore the mixing process
along the depth runs relatively fast, both in case of large and small rivers (see
table 2.2). We may assume that the complete vertical mixing takes place at the
distance equal to a few dozens of depths at most (Jirka & Weitbrecht, 2005).
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2.2 Physical bases for modeling mass transport in open channels

Table 2.2: Examples for the complete mixing of a passive point source located at
water surface and at bank of a river (Jirka & Weitbrecht, 2005)

Distance to complete mixing

vertical horizontal

River (along the depth) (along the width)

Large river 150 m 160 000 m
B = 250 m, H = 3 m

Small river 25 m 400 m
B = 5 m, H = 0.5 m

B – river width
H – average depth

Treating the process of spreading of pollutants (except for the short ini-
tial distance) as two-dimensional seems natural. The equation describing it
(presented further on in the volume – see equation (2.6)) is obtained by the
averaging of the three dimensional equation along the depth. The averaging
process (analogous to time averaging) introduces the additional transport mech-
anism called dispersion , which will be described in detail further in the book.
The mathematical description of the averaging process can be found in many
works (e.g.: Czernuszenko, 1990, 2000b; Fischer et al., 1979; Rowiński, 2002;
Rutherford, 1994). In practice, it is mainly attempted to describe the process
of spreading of pollutants with the application of a one-dimensional advection-
diffusion equation obtained by the averaging of the three dimensional equation
in the given cross-section of the channel. Such an approach can be very useful;
however, it is often insufficient. Although the complete vertical mixing takes
place relatively fast, the mixing along the width can take a very long time (see
table 2.2). In large rivers, in an extreme case, these may be distances of hundreds
of kilometers. Figures 2.1, 2.2 and 2.3 illustrate the process very well. The one-
dimensional approach can, therefore, be effectively applied only starting from
the moment when complete mixing of the substance along the cross-section of
the channel took place. For a typical river (B/H = 10 to 100) this will be a
section of the length equal 100 to 1000 times the width of the river (Endrizzi
et al., 2002; Jirka & Weitbrecht, 2005).

11



2. MASS TRANSPORT IN OPEN CHANNELS

Figure 2.1: Aerial photograph (ca. 1960) of an industrial discharge located near the
middle of the regulated River Rhine upstream of Lake Constance (Bodensee); photo-
graph courtesy of D. Vischer, Zurich; source: (Jirka & Weitbrecht, 2005)
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2.2 Physical bases for modeling mass transport in open channels

Therefore, we can distinguish three characteristic zones conditioning the
dimension of the problem:

� NEAR FIELD ZONE – the shortest one – starting at the discharge
point (figs. 2.4 and 2.5) and continuing to the point of complete vertical
mixing. Its length depends mainly on the depth and the way of discharging
of the pollutants. Vertical mixing prevails in this zone.

� MID FIELD ZONE – may continue for a very long distance (figs. 2.1,
2.2 and 2.3) – it stretches down the river until the point where a complete
mixing in the cross-section of the channel takes place. Horizontal mixing
prevails in this zone.

Figure 2.2: Tracer study of horizontal
mixing in Missouri river in USA (river
width: from B = 150m to B = 240m,
maximum depth: H = 7.5m); source:
(Holley, 2001)

Figure 2.3: Rhodamine dye study
of hydrology of stream-lake inter-
actions (Spring Creek lake); source:
http://www.aslo.org/, author: Prof.
Wayne Wurtsbaugh
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2. MASS TRANSPORT IN OPEN CHANNELS

Figure 2.4: Tracer test performed in a natural Narew river in the North-East of Poland
in June 2005; dye release

Figure 2.5: Tracer test performed in a small river (river width: B = 5m, height:
H = 1m); dye release; source: (Holley, 2001)

14



2.2 Physical bases for modeling mass transport in open channels

� FAR FIELD ZONE – starting after the complete mixing along the
depth and width of the channel (fig. 2.6) – where the transport of the
solute takes place only downstream. Longitudinal mixing prevails here.

Mixing in each zone should be modeled, respectively, with the application of
three-, two- or one-dimensional equations. In the literature, generally the at-
tempts to model the process with application of the one-dimensional diffusion-
advection equation, or its various modifications, may by found (for example see:
Beer & Young, 1983; Cheong & Seo, 2003; Czernuszenko et al., 1998; Karahan,
2006; Tsai et al., 2001). Although the modeling of the near field, in which the
three-dimensional approach has to be applied (sample works: Chau & Jiang,
2002; Czernuszenko & Rylov, 2005), due to a short distance along which it takes
place, has small practical applicability, in the analysis of phenomena related to
the discharge of pollutants, the mid field is very often significant, where the full
spreading of the pollutant across the channel has not yet taken place. In such
situations, the one-dimensional approach is, as mentioned earlier, insufficient.
The subject of this study is often disregarded, yet significant, transition zone,

Figure 2.6: Tracer test performed in a natural Narew river in the North-East of Poland
in June 2005 (Rowiński et al., 2007, 2008); after complete mixing along the river width
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2. MASS TRANSPORT IN OPEN CHANNELS

the modeling of which requires solving an averaged two-dimensional transport
equation. The two-dimensional approach is necessary also in the situation of
mixing of rivers (joining of two or more rivers, tributaries), and allows to take
into consideration a complicated geometry (e.g., bends) which is present in case
of natural channels. Note that all the presented equations must be supplemented
by proper initial and boundary conditions.

2.3 Two-dimensional equation of mass transport

The majority of rivers are shallow in relation to their length and width, which,
as mentioned earlier, guarantees relatively fast vertical mixing of the admix-
ture. In this case, the transport of passive substances dissolved in water may be
represented by a depth-averaged, two-dimensional advection-diffusion differen-
tial equation (Czernuszenko, 1990):

h(x)
∂c(x, t)
∂t

+ h(x)
[
v(x) · ∇c(x, t)

]
︸ ︷︷ ︸

advection term

−∇
[
h(x)D(x) · ∇c(x, t)

]
︸ ︷︷ ︸

diffusion term

= 0; (2.6)

where:
x = (x, y) – position vector,
c(x, t) – depth-averaged concentration,
h(x) – local depth,
v(x) – depth-averaged velocity vector,
D(x) – dispersion tensor.

The result of the depth-averaging of the equation (or cross-section averaging)
is the occurrence of additional coefficients in the transport equation, resulting
from the non-uniformity of concentrations and velocities along the depth of the
flow. Those coefficients represent an additional, significant transport mecha-
nism called dispersion or shear dispersion. Dispersion is not a physical process
but only a consequence of the averaging of the equation. Like in the case of
turbulent diffusion, it is assumed that dispersion flow is proportional to the
average concentration gradient (Czernuszenko, 2000b; Rowiński, 2002; Ruther-
ford, 1994). This proportionality is determined by the so-called dispersion
coefficients (Dxx, Dxy, Dyx, Dyy), which, in the general case in the Cartesian
coordinate system, create the non-diagonal tensor:

D =

Dxx Dxy
Dyx Dyy

 . (2.7)
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2.3 Two-dimensional equation of mass transport

Note that usually the turbulent diffusion coefficients are included in the
dispersion coefficients. For a properly selected coordinate system, when the
direction of flow is parallel to the x- or y-axis, off-diagonal elements of the
tensor equal zero. In such a situation, instead of the full equation:

h

(
∂c

∂t
+ vx
∂c

∂x
+ vy
∂c

∂y

)
− ∂
∂x

(
hDxx

∂c

∂x
+ hDxy

∂c

∂y

)
− ∂
∂y

(
hDyy

∂c

∂y
+ hDyx

∂c

∂x

)
= 0, (2.8)

a simplified differential equation (2.9) can be solved, where the mixed deriva-
tives are not present:

h

(
∂c

∂t
+ vx
∂c

∂x
+ vy
∂c

∂y

)
− ∂
∂x

(
hDxx

∂c

∂x

)
− ∂
∂y

(
hDyy

∂c

∂y

)
= 0; (2.9)

where:
vx, vy – depth-averaged components of the velocity vector in x and y
direction respectively.

In practice, we seldom find a channel for which the flow direction is parallel to
the x- or y-axis in all points of flow, and therefore the full equation (2.8) should
be applied, including mixed derivatives. Nevertheless, in the literature, even for
complex geometries, the simplified versions (2.9) of the equation are applied
without a proper justification (Rowiński & Kalinowska, 2006). This problem is
discussed in detail in Chapter 3.
If at a given point the axes of the coordinate system are directed along the

main directions of flow, then the dispersion coefficientDxx is called the longitu-
dinal dispersion coefficient denoted by DL, and the Dyy is the transverse
dispersion coefficient denoted by DT . Then the dispersion tensor has the
following form:

D =

Dxx 0

0 Dyy

 =
DL 0

0 DT

 . (2.10)

The knowledge of the dispersion coefficients is, beside the information regarding
the velocity field, necessary for the solution of two- or one-dimensional transport
equations.
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2. MASS TRANSPORT IN OPEN CHANNELS

2.4 Dispersion coefficients

The dispersion coefficients influencing the velocity of spreading of pollutants in
the channel are in fact the most important and the most difficult to determine
factors characterizing the mixing processes (Czernuszenko, 1990, 2000b). These
coefficients depend on many factors relating to the geometry of the channel and
the dynamics and turbulence of the flow. In practice, they are determined by
means of tracer experiments carried out in the considered channel, or on the
basis of available empirical relationships, determined earlier.
The longitudinal and transverse dispersion coefficients, due to their signif-

icance and the difficulties connected with their determination, are the subject
of many considerations in the literature. The majority of research relates to the
attempts to determine “universal” empirical formulae determining the values of
the coefficients on the basis of known parameters characteristic for a river or a
channel of the given type. The selection of the proper formula, in the discussed
case, is not a simple matter. Relations true for one river are not always such
for another; straight channels must be treated differently from meandering ones
(Deng et al., 2002; Guymer, 1998). According to Czernuszenko (1990), labora-
tory measurements, in case of spreading of pollutants in a rectangular channel,
lead to a general relation:

D = aHu∗ ; (2.11)

where:
D – longitudinal or transverse dispersion coefficient,
H – average depth,
u∗ – friction (shear) velocity,
a – dimensionless coefficient.

The bulk friction velocity is most often calculated from the formula:

u∗ =
√
gRS0 ; (2.12)

where:
R – hydraulic radius,
S0 – slope of the channel,
g – gravitation.

In literature, however, more complex formulae for determination of the friction
velocity are known (see e.g. Rowiński et al. (2005a)). In some cases, the rela-
tions determining the DL factor use the average flow velocity (U) instead of
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2.4 Dispersion coefficients

Table 2.3: Parameter a values for transverse dispersion coefficient (Rutherford, 1994)

Type of channel Range of the values of parameter a

straight channels from 0.15 to 0.3

meandering channels from 0.3 to 1.0

strongly curved channels from 1.0 to 3.0

friction velocity, and the width of the channel (B) instead of the average depth,
or a combination of all these parameters. The coefficient a is different for lon-
gitudinal dispersion and transverse dispersion, and it also depends on the type
of the river in question, its sinuosity, etc. In case of longitudinal dispersion, the
value a = 5.93, is very often seen, determined with the assumption of logarith-
mic distribution of velocity (Elder, 1959). For transverse dispersion, Rutherford
(1994) suggests using the values presented in table 2.3 depending on the cur-
vature of the channel. Czernuszenko (1990) gives example ranges for coefficient
a: for transverse dispersion in a rectangular channel – from 0.1 to 0.25 and for
longitudinal dispersion in a trapezoidal channel – from 150 to 400. In the same
work, we can also find a description of how to determine dispersion coefficients
on the basis of tracer measurements. The presented methods were applied to
determine the longitudinal and transverse dispersion coefficients for the Vistula
river within the area of Warsaw. The average values of those coefficients are,
respectively, DL = 2.77 m

2

s , DT = 0.24
m2
s , for the average depth of the river

being H = 1.42m and the average flow velocity U = 0.67 ms . It is worth noticing
that in this case the value of the longitudinal dispersion coefficient is about 12
times greater than the value of the transverse dispersion coefficient.
In majority of cases, there are separate works devoted to the processes of

longitudinal and transverse mixing. The dispersion coefficients are usually de-
termined in the situation of actual discharge of pollutants at the stage when
the full mixing along the width of the channel has already taken place. The
description of methods of determining and comparing, and the discussion of
various empirical relations enabling to determine the DL factor can be found,
among others, in the following works: (Guymer et al., 1999; Rieckermann et al.,
2005; Sukhodolov et al., 1998; Wallis et al., 2007; Wallis & Manson, 2004). The
research concerning transverse mixing usually concerns situations of continu-
ous discharge of pollutants (Boxall et al., 2003; Holley & Abraham, 1973a,b;
Rutherford et al., 1992; Seo et al., 2006), when we can assume that ∂c∂t = 0. The
review of empirical formulae used to determine the value of the transverse dis-
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2. MASS TRANSPORT IN OPEN CHANNELS

persion coefficient DT , may be found in the article of Jeon et al. (2007). The DT
coefficient is in some cases called the transverse mixing coefficient. On the basis
of tracer experiments, databases of dispersion coefficients for individual rivers
are created, together with the description of their basic parameters (e.g.: Deng
et al., 2002; Kashefipour et al., 2002; Lau & Krishnappan, 1981; Rutherford,
1994; Sukhodolov et al., 1998), which can in turn be useful for similar rivers.
Also artificial intelligence models for the estimation of dispersion coefficients
on the basis of such data as the depth, width and curvature of the riverbed
are created using such data (e.g.: Kashefipour et al., 2002; Piotrowski, 2005;
Piotrowski et al., 2006; Rowiński et al., 2005b; Tayfur & Singh, 2005).
However, the best source of information on the dispersion coefficients of

the given river is still a tracer test. If there is no possibility to carry out the
experiment, then using both the available data and empirical relations or models
provided to determine the coefficients, we must always take into account both
the conditions and the rivers for which they were created.

2.5 Solving 2D transport equation

The advection-diffusion transport equation (2.8) may be also presented, without
loosing its general character, as:

∂c

∂t
+ v′x
∂c

∂x
+ v′y
∂c

∂y
−Dxx

∂2c

∂x2
− 2Dxy

∂2c

∂x∂y
−Dyy

∂2c

∂y2
= 0; (2.13)

where in most cases one can assume: v′x = vx, v
′
y = vy.

The equation can be effectively applied in the situation of constant depth of
the channel and constant dispersion coefficients, or when the changes in depth
and coefficients are insignificant. In case of significant variability in the x or y
directions, the averaged components of the velocity in equation (2.13) should
be replaced with the previously determined values (see Appendix A):

v′x = vx −
1
h

∂(hDxx)
∂x

− 1
h

∂(hDxy)
∂y

,

and

v′y = vy −
1
h

∂(hDyy)
∂y

− 1
h

∂(hDxy)
∂x

. (2.14)

The information concerning the dispersion coefficients, two-dimensional ve-
locity field, the depth of the channel and the boundary and initial conditions
is necessary to solve the two-dimensional transport equation. Unfortunately, in
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2.5 Solving 2D transport equation

natural flow conditions, the advection-diffusion equation (2.13) with real bound-
ary and initial conditions does not have an analytical solution, and therefore, in
practice, it has to be solved numerically. Such a problem appears for many is-
sues in fluid mechanics. There are, of course, analytical solutions for individual
flow conditions and boundary conditions as well as for specific geometries, but
they have little application in practice. Suggestions for various analytical solu-
tions for specific cases are presented, e.g. by Boczar (1980, 1991), Rutherford
(1994) and Socolofsky & Jirka (2005).
In case of instantaneous release of pollutants (as the initial condition) and

constant dispersion coefficients and constant velocity field in a rectangular chan-
nel of constant depth, the solution of the two-dimensional transport equation
in situation where the axes of the coordinate system are parallel to the main
flow directions can be written in the form of bivariate Gaussian distribution
(Rutherford, 1994):

c(x, y, t) =M

exp

[
−(x− µx)

2

4πDxxt

]
√
4πDxxt

exp

[
−(y − µy)

2

4πDyyt

]
√
4πDyyt

; (2.15)

where:
(x0, y0) – release point;
µx = x0 + vxt, µy = y0 + vyt;
M – mass injected at point (x0, y0) and time t = 0.

The solution is true for an infinite domain (as the boundary conditions), far
away from the banks, i.e. when the pollutant has not reached the walls of the
channel.
For the equation with the off-diagonal dispersion tensor, with the same

assumptions, we can analogically write:

c(x, y, t) =
M

4πt
√
D
exp

[
−(x− µx)

2

4tD/Dyy
− (y − µy)

2

4tD/Dxx
+
(x− µx) (y − µy)
2tD/Dxy

]
;

(2.16)
where:

D = DxxDyy −D2xy.

To write down the above analytical solution, a solution presented in the work
of Smith (1992) was used. It was checked that the suggested solution meets
the advection-diffusion equation given in the form (2.13). Example analytic
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2. MASS TRANSPORT IN OPEN CHANNELS

Analytical solution, t = 500s

Figure 2.7: An example of an analytical solution (eq. 2.16) after time t = 500 s,
for vx = vy = 0.28 ms , Dxx = Dyy = 1.6

m2

s , Dxy = 1.4
m2

s and M = 10 a.u. released at
point (x0, y0) = (0, 0) and time t = 0 s

solutions for selected values of velocity and the dispersion coefficients, in case
of instantaneous discharge of mass equivalent to 10 arbitrary units, is presented
in figure 2.7.
The analytical solutions presented above will be used further on in the book

for verification of the numerical model, tests of numerical schemes, and also in
analyses concerning the simplification of the off-diagonal dispersion tensor.
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Chapter 3

Simplifications of
Two-Dimensional Mass
Transport Equation

3.1 Introduction

Transport of a substance dissolved in water is described, in general case, by a
three-dimensional advection-diffusion equation. Solving such an equation, as
mentioned in the previous chapter, requires a large amount of data which
are difficult to obtain in the majority of real-life cases. Moreover, the calcu-
lation costs of a numerical solution for such an equation would be also large.
Therefore, in practice, various kinds of simplifications are used, resulting in
one- or two-dimensional equations by averaging the three-dimensional equation
and/or omitting elements which seem to be small in comparison with others. In
Chapter 2 it was demonstrated that in case of rivers and open channels whose
depth is small in comparison with their length and width, the two-dimensional
approach can be effectively applied to describe the transport of solute. The
two-dimensional transport equation was written in its full form (2.8) and the
simplified form (2.9). The simplified version can be applied if the main flow
directions follow the axes of the coordinate system. Unfortunately, a very com-
mon practice is to use the easier to solve version (2.9) of the equation without
the mixed derivatives, even if a complex geometry of a channel is under con-
sideration. The approach accounting only for the diagonal components of the
dispersion tensor, as pointed out by Sawicki (2003) for an analogical problem in
case of turbulent diffusion tensor, may lead to results too far away from reality.
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3. SIMPLIFICATIONS OF 2D MASS TRANSPORT EQUATION

The resultant error is influenced by the geometry of the channel and the way in
which the off-diagonal components of dispersion tensor were omitted. The tests
presented in this chapter allow for comparison of errors and indicate when the
individual simplifications can be applied. The analyses were carried out for two
basic situations encountered in real-life conditions: instantaneous release (e.g.
catastrophic release) or continuous inflow of pollutants (e.g. constant inflow of
warm or hot water from cooling processes into reservoirs).
In case of the two-dimensional transport equation, the applied practice is

to solve the equation in a curvelinear coordinate system, sometimes called the
natural coordinate system (e.g.: Czernuszenko, 1987, 1990; Guan & Zhang,
2005; Holley & Jirka, 1986; Lau & Krishnappan, 1981; Manson et al., 2002),
where the dispersion tensor is always diagonal. The idea of the natural coor-
dinate system is that the longitudinal coordinate axis approximately follows
the meandering longitudinal direction of channel flow. Yet such an approach
brings about problems of another kind, connected with the determination of
coefficients describing the geometry of the channel, especially if we deal with
a complex geometry. Those coefficients are the so-called metric coefficients in-
troduced to correct for differences between distances along curved coordinate
surfaces and those measured along the respective axes. Very often those coeffi-
cients are taken to be equal to unity which is far from being true, particularly
in sharp bends or in wide meandering rivers. To avoid those problems, the
traditional Cartesian coordinate system has been adopted in this study.

3.2 Determination of the dispersion tensor coeffi-
cients

From the data and empirical formulae available in the literature, or on the basis
of experimental data, we obtain information on the longitudinal DL and trans-
verse DT dispersion coefficient for a given river or channel. If it is impossible
to direct the axes of the coordinate system along the main flow directions (see
fig. 3.1) then, based on them, all the elements of the dispersion tensor have
to be determined for each flow point (Dxx, Dxy, Dyx, Dyy), transforming the
diagonal tensor DD into the non-diagonal tensor D:

DD =

DL 0

0 DT

 −→ D =
Dxx Dxy
Dyx Dyy

 . (3.1)

The correct way of determining those coefficients, which is the rotation of
the tensor – Rotation for short, and the simplified methods of determining
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3.2 Determination of the dispersion tensor coefficients

(a) x-axis of the coordinate system directed
along the flow direction

(b) x-axis of the coordinate system directed off the
flow direction

Figure 3.1: Schematic representation of the dispersion tensor in the Cartesian coor-
dinate system

elements Dxx and Dyy (without off-diagonal elements) conventionally called:
Quasi rotation , Identity transformation and Vector-like rotation are
described below.

3.2.1 Rotation

DD =

DL 0

0 DT

 TENSOR ROTATION−−−−−−−−−−−−−−→ D =

Dxx Dxy
Dyx Dyy

 (3.2)
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3. SIMPLIFICATIONS OF 2D MASS TRANSPORT EQUATION

The correct approach allowing for obtaining the full dispersion tensor D is the
rotation of the diagonal tensor, DD (fig. 3.2) by the angle created at a given
point by the velocity (flow direction) vector with the x-axis of the coordinate
system:

D = R(α) ·DD ·R−1(α) ; (3.3)

where:

R(α) =

cosα − sinα
sinα cosα

 – rotation matrix,
α – the angle between the
flow direction (velocity vec-
tor) and the x-axis in a
given point.

sinα =
vy
|v|

cosα =
vx
|v|

The rotation of the tensor leads to the following relationships:

Dxx = DT +D
v2x
v2
, Dxy = Dyx = D

|vxvy|
v2
, Dyy = DT +D

v2y
v2
; (3.4)

where:
D = DL −DT , v =

√
v2x + v2y .

Figure 3.2: DD tensor rotation by angle α

26



3.2 Determination of the dispersion tensor coefficients

3.2.2 Quasi rotation

DD =

DL 0

0 DT

 TENSOR ROTATION−−−−−−−−−−−−−−→ D =

Dxx HHHDxy
HHHDyx Dyy

 (3.5)

In this approach, the correct way of determining the components of the tensor
is applied as defined by (3.3). In order for the resultant tensor to be diagonal,
the off-diagonal elements are disregarded (it is arbitrarily assumed that they
equal 0). Therefore, the tensor components are, respectively:

Dxx = DT +D
v2x
v2
, Dxy = Dyx = 0 , Dyy = DT +D

v2y
v2
. (3.6)

This simplification is met in situations when unwanted equation terms with
mixed derivatives are disregarded – with the assumption that the off-diagonal
elements of the dispersion tensor are very small. However, complex geometry
of a channel often makes such an assumption impossible.

3.2.3 Vector-like rotation

DV =

DL
DT

 VECTOR-LIKE ROTATION−−−−−−−−−−−−−−−−−−→ D =

Dxx
Dyy

 (3.7)

It is assumed that elements DL and DT create vector DV (fig. 3.3). Coefficients
Dxx and Dyy are obtained by rotating DV according to the vector rotation rule
(fig. 3.4) by the angle it creates at a given point by the velocity (flow direction)
vector with the x-axis of the coordinate system:

D = R(α) ·DV . (3.8)

If, after rotation, the value of any component of the vector is negative, then
its absolute value is to be taken into consideration. The values of the determined
coefficients will be:

Dxx =
∣∣∣∣DL vxv −DT vyv

∣∣∣∣ , Dxy = Dyx = 0 , Dyy = ∣∣∣∣DL vyv +DT vxv
∣∣∣∣ . (3.9)

Such an approach is incorrect, because the matrix of dispersion coefficients
makes a second-order tensor. This simplification is usually used unintentionally.
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3. SIMPLIFICATIONS OF 2D MASS TRANSPORT EQUATION

Figure 3.3: Diagram representation of DV = [DL, DT ] for a rectangular channel
whose main axis is not parallel to the x-axis

Figure 3.4: Vector DV rotation by angle α
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3.3 Computational tests

3.2.4 Identity transformation

D =

Dxx Dxy
Dyx Dyy

 IDENTITY TRANSFORMATION≡ DD =

DL 0

0 DT

 (3.10)
In this approach, we simply assume that the elements Dxx and Dyy are

equal to longitudinal and transverse dispersion coefficients, respectively, without
taking into consideration coefficients Dxy and Dyx:

Dxx = DL , Dxy = Dyx = 0 , Dyy = DT . (3.11)

It is the practice often applied in the literature on the subject, in many cases
without the awareness of the consequences and the influence upon the obtained
results.

Each of the simplifications described above introduces some error. Further
considerations allow to determine and compare the values of the introduced
error in situations equivalent to instantaneous and continuous release of solute.
In order to simplify the notation, the following symbols have been adopted

for the charts presented in the further part of this book:

� Rotation – R,

� Quasi rotation – Q,

� Identity transformation – T,

� Vector-like rotation – V.

3.3 Computational tests

The tests for the methods described above were carried out for a broad rectan-
gular channel whose axis formed various angles with the coordinate system. An
area situated far away from the banks was taken into consideration for which an-
alytical solution of the problem (eq. 2.16) is known. Figure 3.5 presents schemat-
ically the geometry in question. The analyses were carried out for a number of
values of angle α within the range between 0 and 90 degrees. The calculations
were performed with the use of the implemented RivMix computer program
described in detail in Chapter 6. The Alternating Direction Implicit method
(see Section 4.3.3), was used, which, as demonstrated in Chapter 5, was proven
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3. SIMPLIFICATIONS OF 2D MASS TRANSPORT EQUATION

to be an exact, stable and relatively fast method. All methods of determina-
tion of the dispersion tensor for various angles α, described in Section 3.2, were
compared. In order to simplify the interpretation of the results, a uniform dis-
tribution of velocity of |v| = 0.15 ms , was assumed, directed parallel to the axis
of the channel. The depth of the channel was assumed constant. The parameters
of simulation are presented in table 3.1.
Table 3.2 contains the values of dispersion coefficients Dxx, Dxy and Dyy ob-

tained with the methods described above for the given DL = 0.75 m
2

s and DT =
0.1 m

2

s . It can be observed that the differences between the coefficients are the
smallest for angles close to 0 and 90 degrees. The exception is the identity trans-
formation, for which the difference for the angle of 90 degrees is the biggest. The
significant values of the off-diagonal dispersion coefficients for angles α close to
45 degrees in case of correct determination of the off-diagonal tensor coefficient
(rotation) are also worth stressing. The dependency of the Dxy coefficient on
the angle α was shown in figure 3.6. Particularly for the values of α close to
45◦, Dxy is of the order of magnitude of DL.
It also does matter whether the case in question relates to instantaneous

Figure 3.5: Scheme of straight, rectangular channel, used for computations
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Table 3.1: Simulation parameters used in the numerical tests

Velocity Dispersion Spatial Time
components coefficient steps Steps

vx
[m
s

]
vy
[m
s

]
DL

[
m2
s

]
DT

[
m2
s

]
∆x[m] ∆y[m] ∆t[s]

0.15 cosα 0.15 sinα 0.75 0.1 1 1 1

Table 3.2: Dispersion coefficients (in m
2

s ) calculated for various α on the basis of the
considered methods

Method of determination of the dispersion tensor

Vector-like Identity
Rotation Quasi rotation rotation transformation

α Dxx Dxy Dyy Dxx Dxy Dyy Dxx Dxy Dyy Dxx Dxy Dyy

0◦ 0.75 0 0.1 0.75 0 0.1 0.75 0 0.1 0.75 0 0.1

5◦ 0.745 0.056 0.105 0.745 0 0.105 0.738 0 0.165 0.75 0 0.1

10◦ 0.730 0.111 0.119 0.730 0 0.119 0.721 0 0.229 0.75 0 0.1

15◦ 0.706 0.162 0.143 0.706 0 0.143 0.698 0 0.290 0.75 0 0.1

30◦ 0.587 0.281 0.262 0.587 0 0.262 0.599 0 0.461 0.75 0 0.1

45◦ 0.425 0.325 0.425 0.425 0 0.425 0.460 0 0.601 0.75 0 0.1

60◦ 0.262 0.281 0.587 0.262 0 0.587 0.288 0 0.699 0.75 0 0.1

90◦ 0.1 0 0.75 0.1 0 0.75 0.1 0 0.75 0.75 0 0.1

– calculations were made for DL = 0.75 m
2

s and DT = 0.1
m2

s
– values were rounded off to the nearest thousandth
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Coefficients Dxy

Figure 3.6: Dependence of the Dxy coefficient on the angle α for the considered
methods; DL = 0.75 m

2

s and DT = 0.1
m2

s

or continuous discharge of solute. Therefore, the two cases were analysed sepa-
rately below.

3.3.1 Instantaneous release of solute

The two-dimensional mass transport equation (2.13) with the initial conditions
set by the Dirac delta describes a situation equivalent to instantaneous release of
solute. By the moment of reaching the banks of the channel by the substance,
the distribution of concentration at time t after the discharge can be deter-
mined using the analytical solution given by equation (2.16). In the considered
situation the discharge of mass M = 10 a.u. took place at point x0 = 50m,
y0 = 50m. To avoid the errors resulting from a large gradient of concentration
on the computational grid, the analytical solution after 200 seconds was used
as the initial condition in the tests (t0 = 200 s). Unwanted oscillations appear
in the numerical solution if the initial concentration distribution (at the time
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t0 = 0 s) was given by Dirac delta. Below the numerical solutions with the
application of each discussed method of determination of the dispersion tensor
are discussed.
The solutions for angle α = 45◦ after 400 steps of simulation are presented

in figures 3.8, 3.10, 3.12 and 3.14. The obtained results can be compared with
the exact analytical solution (fig. 3.7) equivalent to them. The errors (differ-
ences between the numerical and analytical solutions) for each of the considered
methods are presented in figures 3.9, 3.11, 3.13 and 3.15.
It is difficult to notice a difference between the distributions of concentra-

tions presenting the analytical solution (fig. 3.7) and the numerical solution
by means of rotation method (fig. 3.8). The maximum difference is of order
of 10−6 (see fig. 3.9). In case of other methods the difference is conspicuous
both in the shape of distribution of concentrations and in the obtained val-
ues. Figures 3.8 – 3.15 illustrate the most extreme situation for angle α = 45◦,
when the divergences between the methods in question are the most visible.
The values “Mean x” and “Mean y” marked in the charts denote the location
of maximum concentration in the given area (its value is represented by the
“Max” variable). The value “Integral” represents the total mass present in the
area shown in the chart. In case of vector-like rotation and identity transfor-
mation it is smaller than the initial 10 arbitrary units. It means that a part

Analytical solution, t = 400 s

Figure 3.7: Analytical solution for the pulse release of the substance after 400 seconds
from t0
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Rotation, t = 400 s

Figure 3.8: Numerical solution by means
of full tensor rotation method for the
pulse release after 400 time steps, α = 45◦

Error

Figure 3.9: Difference between the ana-
lytical and numerical (rotation) solutions,
for the pulse release after 400 time steps,
α = 45◦

Quasi rotation, t = 400 s

Figure 3.10: Numerical solution by
means of quasi rotation method for the
pulse release after 400 time steps, α = 45◦

Error

Figure 3.11: Difference between the an-
alytical and numerical (quasi rotation) so-
lutions, for the pulse release after 400 time
steps, α = 45◦
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Vector-like rotation, t = 400 s

Figure 3.12: Numerical solution by
means of vector-like rotation method for
the pulse release after 400 time steps,
α = 45◦

Error

Figure 3.13: Difference between the an-
alytical and numerical (vector-like rota-
tion) solutions, for the pulse release after
400 time steps, α = 45◦

Identity transformation, t = 400 s

Figure 3.14: Numerical solution by
means of identity transformation method
for the pulse release after 400 time steps,
α = 45◦

Error

Figure 3.15: Difference between the an-
alytical and numerical (identity transfor-
mation) solutions, for the pulse release af-
ter 400 time steps, α = 45◦

35



3. SIMPLIFICATIONS OF 2D MASS TRANSPORT EQUATION

of small values of concentration lies outside the area presented in the charts.
Distributions of concentrations for other angles (0◦, 5◦, 15◦, 30◦, 60◦, 90◦) can
be found in Appendix C.

All methods lead to a result identical to that obtained analytically in case
when the angle α is equal to 0 or 90 degrees (except for identity transformation
for the angle of 90 degrees). For all the remaining angles (0◦ < α < 90◦) only
the rotation of the tensor, taking into account the off-diagonal elements gives
the same results as the analytical solution. The difference between the numer-
ical solution and the analytical one depends both on the selected method to
determine the tensor and the angle α. The maximum values of the obtained
errors (∆c) after 400 seconds of simulation as a function of the angle α are
presented in figure 3.16.

Maximum Error, t = 400 s

Figure 3.16: Maximum difference (∆c) between the analytical and the numerical
solutions for the discussed methods of determining the dispersion tensor after 400
seconds of simulation in case of pulse release; the difference is plotted as a function of
angle α
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In case of identity transformation the error grows with growing the value of
angle α. For quasi rotation the error is symmetrical against the 45 degrees angle
and decreases when the angle gets close to 0 or 90 degrees. Vector-like rotation
causes large differences in the solutions and they significantly decrease when α
approaches 0 or 90 degrees. In this case the maximum error occurs for the angle
of (45◦ − β), where β is the angle between the DV = [DL, DT ] vector and the
flow direction. For vector-like rotation in considered case, the maximum error
will be obtained for the angle of ca. 38 degrees. In case of full tensor rotation,
the maximum error is very small, of 10−5 – 10−6 order of magnitude. It is not
visible in the presented figure 3.16.
In case of spreading of the pollutants in rivers and open channels, it is impor-

tant to know the maximum concentration values for pollutants. This measure
may be the key one in the decision making process in case of a possible contam-
ination. Figure 3.17(a) shows the maximum concentration values (cmax) after
400 seconds of simulation, depending on the angle α. It is worth noting that the
maximum of concentration distribution transfers correctly (in the same way as
the maximum of the analytical solution) for all discussed methods, as indicated
by the values describing its location: “Mean x” and “Mean y” (see figs. 3.8,
3.10, 3.14, 3.12 and 3.7). The maximum values, however, depend strongly on
the selected method and the angle α. They are correctly defined by the identity
transformation and rotation. The small discrepancies visible in zoomed view in
figure 3.17(b) are a numerical effect. In case of quasi rotation and vector-like
rotation, the maximum concentration value error may reach as much as 35.55%
and 47.93%, respectively (see table 3.3). The error is defined as the difference
between the maximum concentration value in analytical solution (canalmax) and
the numerical one (cnummax ), and normalised to the first one (c

anal
max):

canalmax − cnummax
canalmax

,

where the maximum value in case of analytical solution in considered situation
was canalmax = 0.00484 a.u. (see fig. 3.7).

Observations demonstrate that if in the discussed situation the information
on the maximum concentration is the most important one, then solving the
simplified equation (2.8) with identity transformation we will obtain equally
good results as in case of solving the full transport equation (2.9) with rotation.
It must be kept in mind, however, that simplified methods do not allow to
obtain correct forms of concentration distributions.
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3. SIMPLIFICATIONS OF 2D MASS TRANSPORT EQUATION

Maximum concentration, t = 400 s

(a)

(b) Zoom on the area visible on chart (a) from cmax = 0.00483 a.u. to cmax = 0.00486
a.u.

Figure 3.17: Maximum concentration (cmax) after 400 seconds of simulation, depend-
ing on the angle α in case of pulse release
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Table 3.3: Maximum concentration value error expressed in percents defined as
(canalmax− cnummax )/canalmax, where c

anal
max is the maximum concentration value in the analytical

solution, and cnummax in the numerical one; maximum errors for individual methods are
in bold, and the highest obtained errors are underlined

Quasi Vector-like Identity
α Rotation rotation rotation transformation

0◦ 0.10 % 0.10% 0.10% 0.10 %

5◦ 0.07% 1.99% 21.50% 0.07%

10◦ 0.05% 7.30% 32.54% 0.05%

15◦ 0.04% 13.93% 39.19% 0.09%

30◦ 0.06% 30.24% 47.93 % 0.07%

45◦ 0.11 % 35.55% 47.89% 0.01%

60◦ 0.06% 30.24% 39.01% 0.04%

3.3.2 Continuous inflow of solute

In case of continuous inflow of solute, the initial and boundary conditions were
set in such a way as to obtain continuous inflow of solute with the discharge
of 1 arbitrary unit per second. The source was situated at point x0 = 100m,
y0 = 100m. In the discussed situation, it is not easy to obtain an analytic
solution, and therefore all simplified methods of determination of the tensor
were compared with the correct method, that is the rotation. Below, like in
the case of instantaneous release, the results for the most extreme situation are
presented, when the angle α is equal to 45 degrees. Figures 3.18, 3.19, 3.21,
3.23 illustrate numerical solutions after 1000 seconds since the commencement
of continuous discharge. It is easy to notice that the simplified methods cause
bigger “spread” of the patch of pollutants. In case of identity transformation the
distribution of concentration is additionally strongly sloped towards the right-
hand bank (see fig. 3.23). Figures 3.20, 3.22 and 3.24 present the differences
between the solutions obtained with the application of the rotation method and
the solutions obtained with the application of individual simplified methods.

39



3. SIMPLIFICATIONS OF 2D MASS TRANSPORT EQUATION

Rotation, t = 1000 s

Figure 3.18: Numerical solution by
means of rotation method for the continu-
ous release after 1000 time steps, α = 45◦

Quasi rotation, t = 1000 s

Figure 3.19: Numerical solution by
means of quasi rotation method for the
continuous release after 1000 time steps,
α = 45◦

Error

Figure 3.20: Difference between the so-
lution by means of rotation and the solu-
tion by means of quasi rotation, after 1000
time steps, α = 45◦
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Vector-like rotation, t = 1000 s

Figure 3.21: Numerical solution by
means of vector-like rotation method for
the continuous release after 1000 time
steps, α = 45◦

Error

Figure 3.22: Difference between the so-
lution by means of rotation and the solu-
tion by means of vector-like rotation, after
1000 time steps, α = 45◦

Identity transformation, t = 1000 s

Figure 3.23: Numerical solution by
means of identity transformation method
for the continuous release after 1000 time
steps, α = 45◦

Error

Figure 3.24: Difference between the so-
lution by means of rotation and the solu-
tion by means of identity transformation,
after 1000 time steps, α = 45◦
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3. SIMPLIFICATIONS OF 2D MASS TRANSPORT EQUATION

The maximum difference (∆c) in the function of the angle α is presented in
figure 3.25. The results are similar to those of instantaneous release.

Considering the values of maximum concentration (“Max” value in figures
3.18, 3.19, 3.21, and 3.23), the variations between the individual methods are
clearly visible. Figure 3.26 shows the values of maximum concentration (cmax)
as functions of the angle α. All the methods predict the proper value of max-
imum concentration for the angle of 0 and 90 degrees, except for the identity
transformation in case of α = 90◦. Identity transformation method, unlike in
case of instantaneous discharge, wrongly shows the maximum values for all the
angles α > 0◦.

The difference between the obtained value and the correct value increases
together with the angle α. In case of quasi rotation and vector-like rotation,
the dependency of maximum concentration on the angle behaves analogically

Maximum difference, t = 1000 s

Figure 3.25: Maximum difference (∆c) between the tensor rotation and the other
discussed methods of determining the dispersion tensor after 1000 seconds of simulation
in case of continuous release; the difference is plotted as a function of the angle α
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Maximum concentration, t = 1000 s

Figure 3.26: Maximum concentration (cmax) after 1000 seconds of simulation, de-
pending on the angle α in case of continuous release

to the case of pulse release. Small oscillations of the maximum value visible in
case of tensor rotation are connected with the method of discretization of the
concentration values on the rectangular grid. Each method causes the maximum
concentration stabilizes at a different level (fig. 3.27). For the angle of 0 degrees
(fig. 3.27(a)) we obtain the same correct values for all methods. For other angles
(figs. 3.27(b) – 3.27(f)) the maximum concentration values of the admixture are
different and closely depend on the methods applied. The visible differences are
the biggest for the angle of 45 degrees (fig. 3.27(d)). The charts demonstrate
that in case of continuous release of pollutants, the application of simplified
methods causes greater dispersion of the pollutants cloud and by the same,
significant lowering of maximum concentration values.
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3. SIMPLIFICATIONS OF 2D MASS TRANSPORT EQUATION

(a) α = 0◦ (b) α = 5◦

(c) α = 15◦ (d) α = 45◦

(e) α = 60◦ (f) α = 90◦

Figure 3.27: Maximum concentration values during the simulation of continuous re-
lease for various angles α
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Chapter 4

Numerical Methods of Solving
Two-Dimensional Mass
Transport Equation

4.1 Introduction

In natural flow conditions, the transport equation (2.8), with appropriate bound-
ary and initial conditions does not have an analytical solution and has, therefore,
to be solved numerically. The development of research concerning transport pro-
cesses in open channels, and still expanding computational possibilities result in
the growth of demands concerning the exactness and effectiveness of solutions,
and what follows, continuous need for new and better numerical schemes whose
accuracy, stability and speed we are able to determine.
Looking for numerical solutions of partial differential equations, we can spec-

ify three basic approaches consisting in transformation of a continuous area,
where we are looking for solution, into a discrete area. These are:

� Finite Difference Method (FDM),

� Finite Element Method (FEM),

� Finite Volume Method (FVM).

Finally, we obtain an equation or a system of linear algebraic equations and
after solving them we get the information on the searched values in the nodes
of the grid. Description of all methods and differences between them could be
found, e.g. in (Chung, 2002). In case of open channels, the approaches with
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4. NUMERICAL METHODS FOR 2D TRANSPORT EQUATION

the application of Finite Difference Method and Finite Element Method pre-
vail. The description of the finite element method in application to advection-
diffusion equations can be found in (Gresho & Sani, 2000).
The subject of considerations in this book is the Finite Difference Method,

the simplest in concept, and what follows – often appropriate. The review
of the finite difference methods in application to the one-dimensional advection-
diffusion equation was presented, for example, by Fletcher (1991); Islam &
Chaudhry (1997); Szymkiewicz (2000); Wang & Hutter (2001). In the case of a
two-dimensional equation (without mixed derivatives), various numerical meth-
ods are described by, for example, Noye & Tan (1989); Noye (1984).

4.2 Finite Difference Method

Figure 4.1: Diagram for solving partial dif-
ferential equation by means of Finite Differ-
ence Method

The Finite Difference Method was
first proposed in the 1920-s by
Thom (Thom & Apelt, 1961).
It was then called square method ,
and was later applied in many
branches of science, including equa-
tions describing processes of trans-
port of solutes in open channels.
The Finite Difference Method

consists in direct replacement of a
differential equation by an appro-
priate difference equation (differen-
tial operators are replaced with dif-
ference operators) whose solution
gives an approximate solution to
the differential equation (fig. 4.1).
The continuous solution domain is
replaced with a discrete domain (a
one-dimensional case was presented
in fig. 4.2), then individual partial
derivatives are approximated with
the application of the so-called
difference quotients. Those quo-
tients result from the function ex-
pansion into Taylor series. If a func-
tion with one variable c(x) is con-
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4.2 Finite Difference Method

Figure 4.2: One-dimensional, homogenous discretization grid

tinuous and differentiable within the range 〈xi, xi +∆x〉, then such a function
can be expanded into Taylor series (Bronsztejn & Siemiendiajew, 1997):

c(xi +∆x) = c(xi) + ∆x
∂c

∂x

∣∣∣
xi
+
∆x2

2
∂2c

∂x2

∣∣∣
xi
+
∆x3

6
∂2c

∂x2

∣∣∣
xi
+ . . . . (4.1)

The value of the continuous first derivative
∂c

∂x
in the i-th node of the grid can

be approximated by:

� forward difference quotient:

∂c

∂x
=
ci+1 − ci
∆x

+O(∆x), (4.2)
x

i-1
x

i+1
x

i

� backward difference quotient:

∂c

∂x
=
ci − ci−1
∆x

+O(∆x), (4.3)
x

i-1
x

i+1
x

i

� central difference quotient

∂c

∂x
=
ci+1 − ci−1
2∆x

+O(∆x2), (4.4)
x

i-1
x

i+1
x

i

where:
O – denotes order of approximation accuracy;
ci−1, ci, ci+1 – concentration values in points xi−1, xi, xi+1, respectively.
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4. NUMERICAL METHODS FOR 2D TRANSPORT EQUATION

Table 4.1: Difference quotients applied for the approximation of the first and the
second derivative; tables from (a) through (e) include coefficients at the concentra-
tion values in the prescribed grid nodes in case of approximation with the following
difference quotients: (a) and (c) – forward, (b) and (d) – backward, (e) – central

(a) Forward approximation O(∆x)

ci ci+1 ci+2

∆x
∂c

∂x
-1 1 –

∆x2
∂2c

∂x2
1 -2 1

(b) Backward approximation O(∆x)

ci−2 ci−1 ci

∆x
∂c

∂x
– 1 -1

∆x2
∂2c

∂x2
1 -2 1

(c) Forward approximation O(∆x2)

ci ci+1 ci+2 ci+3

2∆x
∂c

∂x
-3 4 -1 –

∆x2
∂2c

∂x2
2 -5 4 -1

(d) Backward approximation O(∆x2)

ci−3 ci−2 ci−1 ci

2∆x
∂c

∂x
– 1 -4 3

∆x2
∂2c

∂x2
-1 4 -5 2

(e) Central approximation O(∆x2)

ci−1 ci ci+1

2∆x
∂c

∂x
-1 0 1

∆x2
∂2c

∂x2
1 -2 1
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4.3 Discretization of 2D transport equation

The approximation order is connected with the so-called truncation error
in series expansion, occurring during the creation of difference quotients. It can
be seen that in case of backward and forward difference quotients (for ∆x � 0)
the error decreases in a linear way with ∆x. In case of central quotient, the
truncation error decreases with ∆x2. Analogically, the second derivative can
be approximated in different ways (see table 4.1). The details concerning the
creation of difference quotients can be found in works by, e.g. (Fletcher, 1991;
Peyret & Taylor, 1986; Szymkiewicz, 2000, 2003). All difference quotients used
in this study are collected in table B.1 in Appendix B.
After the approximation of all partial derivatives, a set of difference equa-

tions is obtained, which with appropriate discrete boundary conditions should
be solved for the computational grid parameters selected in such a way as to
provide for the necessary accuracy and stability as well as possibly low com-
putation costs. The final effect will be an approximate solution to the initial
differential equation in the nodes of the given grid. In the study, a rectangular
discretization grid on (x, y) plane was used, with the mesh size of ∆x × ∆y
(see fig. 4.3).

4.3 Discretization of 2D transport equation

Using a rectangular grid on (x, y) plane (schematically presented on fig. 4.3) we
can approximate the partial differential equation (2.13) in the general case by

Figure 4.3: Rectangular discretization grid of ∆x and ∆y unit size on the (x, y) plane
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means of the difference equation:

cn+1i,j − cni,j
∆t

= Dxx
[
(1− θ) δ2xcni,j + θδ2xcn+1i,j

]
+Dyy

[
(1− θ) δ2ycni,j + θδ2ycn+1i,j

]
+ 2Dxy

[
(1− θ) δxycni,j + θδxycn+1i,j

]
− vx

[
(1− θ)∆xcni,j + θ∆xcn+1i,j

]
− vy

[
(1− θ)∆ycni,j + θ∆ycn+1i,j

]
;

(4.5)
where:

∆x,∆y – grid spacing,
∆t – time step,
θ ∈ 〈0, 1〉 – weighting parameter,
δ2xci,j , δ

2
yci,j , δxyci,j , ∆xci,j , ∆yci,j – difference operators.

Difference operators for the second-order spatial derivatives have the following
form:

δ2xci,j =
ci−1,j − 2ci,j + ci+1,j

∆x2
, δ2yci,j =

ci,j−1 − 2ci,j + ci,j+1
∆y2

. (4.6a)

The mixed derivatives and first-order spatial derivatives are discretized as:

δxyci,j =
ci+1,j+1 − ci+1,j−1 − ci−1,j+1 + ci−1,j−1

4∆x∆y
, (4.6b)

∆xci,j =
(1− α1)ci,j + α1ci+1,j − (1− α1)ci−1,j − α1ci,j

∆x
,

∆yci,j =
(1− α2)ci,j + α2ci,j+1 − (1− α2)ci,j−1 − α2ci,j

∆y
,

(4.6c)

where:
α1, α2 – spatial weighting parameters with values within the range of 〈0, 1〉.

The weighting parameter θ present in equation (4.5) determines the aver-
aging in time:

� when θ = 0 – we obtain the explicit scheme;

� when θ ∈ (0, 1〉 – the implicit scheme, particularly for:

– θ = 1 the Fully Implicit scheme,

– θ = 12 the Crank-Nicolson scheme.
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4.3 Discretization of 2D transport equation

Parameters αi, for i ∈ {1, 2}, determine the approximation method of the first
space derivative:

� with backward difference quotient (4.3) when αi = 0;

� with central difference quotient (4.4) when αi = 12 ;

� with forward difference quotient (4.2) when αi = 1.

In particular, for appropriately selected parameters θ and α1 and α2, the fol-
lowing numerical schemes can be obtained:

ä Upwind – explicit, forward/backward space scheme

– when θ = 0, α1 =

{
0, for vx > 0

1, for vx < 0
and α2 =

{
0, for vy > 0

1, for vy < 0
;

ä Explicit scheme with central finite difference spatial approxima-
tion

– when θ = 0, α1 = α2 = 12 ;

ä Crank-Nicolson scheme with central finite difference spatial ap-
proximation

– when θ = α1 = α2 = 12 ;

ä Alternating Directions Implicit method with central finite dif-
ference spatial approximation

– when θ = α1 = α2 = 12 ;

ä Fully Implicit scheme with central finite difference spatial ap-
proximation

– when θ = 1, α1 = α2 = 12 .

In the implemented RivMix model of spreading of solutes (described further in
the book), it is possible to use: Upwind explicit scheme, Crank-Nicolson scheme,
and Alternating Directions Implicit Method with central difference quotient.
Those methods, collected in table 4.2, are described in detail below.
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Table 4.2: Methods implemented in the RivMix model

Method Order of accuracy

Upwind (UP) explicit O(∆x,∆y,∆t)

Crank-Nicolson (CN) implicit O(∆x2,∆y2,∆t2)

Alternating Directions Implicit (ADI) implicit O(∆x2,∆y2,∆t2)

Alternating Directions Implicit
version 2 (ADI2) implicit O(∆x2,∆y2,∆t2)

4.3.1 Upwind explicit, forward/backward space scheme

The Upwind scheme is named after the application of the first spatial derivative
of the backward (4.3) or forward (4.2) difference quotients for approximation
– depending on the sign of velocity in the given point (αi = 0, where the
appropriate velocity component is greater than or equal to zero and αi = 1,
for a component less than zero). To simplify the notation, this scheme will be
referred to as UP further on in the book. In the considered case the UP scheme
is explicit (θ = 0), which means that in the difference equation there is only one
unknown in the (n+1)-th time step cn+1i,j , which can be directly determined on
the basis of concentration values in the previous time step n:

cn+1i,j = f
(
cni,j , c

n
i+1,j , c

n
i−1,j , c

n
i,j+1, c

n
i,j−1, c

n
i+1,j+1, c

n
i+1,j−1, c

n
i−1,j+1, c

n
i−1,j−1

)
.

The values in n + 1 time step in the internal nodes of the grid are therefore
calculated with the difference equation:

cn+1i,j =
[
1− vx∆t∇x − vy∆t∇y+Dxx∆tδ2x + 2Dxy∆tδxy +Dyy∆tδ2y

]
cni,j .

(4.7)
This equation, after taking into consideration appropriate difference operators,
assumes the following form:

cn+1i,j = c
n
i,j + Cr dx

[
cni+1,j − 2cni,j + cni−1,j

]
+ Cr dy

[
cni,j+1 − 2cni,j + cni,j−1

]
+ Cr dxy

[
cni+1,j+1 − cni+1,j−1 − cni−1,j+1 + cni−1,j−1

]
− Cr ax

[
(1− 2α1)cni,j + α1cni+1,j − (1− α1)cni−1,j

]
− Cr ay

[
(1− 2α2)cni,j + α2cni,j+1 − (1− α2)cni,j−1

]
;

(4.8)
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4.3 Discretization of 2D transport equation

where:
Cr ax =

vx∆t
∆x , Cr ay =

vy∆t
∆y – advection Courant numbers;

Cr dx =
Dxx∆t
∆x2 , Cr dxy =

Dxy∆t
4∆x∆y , Cr dy =

Dyy∆t
∆y2 – diffusion Courant numbers.

In case of UP scheme after ordering, for vx > 0 and vy > 0 (for other cases –
see table 4.3) we obtain:

cn+1i,j =
(
1− Cr ax − 2Cr dx − Cr ay − 2Cr dy

)
cni,j

+
(

Cr dx
)
cni+1,j +

(
Cr ax + Cr dx

)
cni−1,j

+
(

Cr dy
)
cni,j+1 +

(
Cr ay + Cr dy

)
cni,j−1

+
(
2Cr dxy

)
cni+1,j+1 +

(
−2Cr dxy

)
cni+1,j−1

+
(
−2Cr dxy

)
cni−1,j+1 +

(
2Cr dxy

)
cni−1,j−1 .

(4.9)

The determination of concentration values in points situated at the edges of
the calculation grid requires special treatment. The problem is discussed in the
further part of the book (Section 4.4). Another example of an explicit scheme
is the previously mentioned explicit scheme with central difference approxima-
tion. In this scheme, the first spatial derivatives are approximated with central
difference quotients (4.4).

Table 4.3: Coefficients in equation (4.9) depending on the signs of velocity components

Coefficients before:

cni,j cni+1,j cni−1,j cni,j+1 cni,j−1

vx  0 1− Crax − 2Crdx Crdx Crax + Crdx Crdy Cray + Crdy
vy  0 −Cray − 2Crdy
vx  0 1− Crax − 2Crdx Crdx Crax + Crdx −Cray + Crdy Crdy
vy < 0 +Cray − 2Crdy
vx < 0 1 + Crax − 2Crdx −Crax + Crdx Crdx Crdy Cray + Crdy
vy  0 −Cray − 2Crdy
vx < 0 1 + Crax − 2Crdx −Crax + Crdx Crdx −Cray + Crdy Crdy
vy < 0 +Cray − 2Crdy
Coefficients in front of: cni+1,j+1, c

n
i+1,j−1, c

n
i−1,j+1 and c

n
i−1,j−1 do not depend on velocity

sign
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4.3.2 Crank-Nicolson scheme with central finite difference spa-
tial approximation

The Crank-Nicolson scheme (CN) proposed in 1947 (Crank & Nicolson, 1947)
is an example of an implicit scheme. An implicit formula is obtained when the
weighting parameter θ is other than 0. If θ = 1 we will obtain a Fully Implicit
(FI) – scheme:[
1 + vx∆t∇x + vy∆t∇y −Dxx∆tδ2x+ −2Dxy∆tδxy −Dyy∆tδ2y

]
cn+1i,j = c

n
i,j .

The Crank-Nicolson scheme is obtained for parameter θ = 12 . In this case the
difference equation for internal points of the grid assumes the following form:[
1 +
vx∆t
2
∇x +

vy∆t
2
∇y −

Dxx∆t
2
δ2x −Dxy∆tδxy −

Dyy∆t
2
δ2y

]
cn+1i,j =

=
[
1− vx∆t

2
∇x −

vy∆t
2
∇y +

Dxx∆t
2
δ2x +Dxy∆tδxy +

Dyy∆t
2
δ2y

]
cni,j .

(4.10)

After taking into consideration appropriate difference quotients and ordering,
the following equation is obtained for each internal point:

cn+1i,j

(
1 + Cr dx + Cr dy

)
+ cn+1i+1,j

(
Cr ax
4
− Cr dx
2

)
+ cn+1i−1,j

(
−Cr ax
4
− Cr dx
2

)

+cn+1i,j+1

(
Cr ay
4
−

Cr dy
2

)
+ cn+1i,j−1

(
−

Cr ay
4
−

Cr dy
2

)
+cn+1i+1,j+1

(
−Cr dxy

)
+ cn+1i+1,j−1

(
Cr dxy

)
+ cn+1i−1,j+1

(
Cr dxy

)
+ cn+1i−1,j−1

(
−Cr dxy

)

= cni,j
(
1− Cr dx − Cr dy

)
+ cni+1,j

(
−Cr ax
4
+

Cr dx
2

)
+ cni−1,j

(
Cr ax
4
+

Cr dx
2

)

+cni,j+1

(
−

Cr ay
4
+

Cr dy
2

)
+ cni,j−1

(
Cr ay
4
+

Cr dy
2

)
+cni+1,j+1

(
Cr dxy

)
+ cni+1,j−1

(
−Cr dxy

)
+cni−1,j+1

(
−Cr dxy

)
+ cni−1,j−1

(
Cr dxy

)


Fi,j

(4.11)
where:

Fi,j – the value calculated on the basis of known concentration values in
the n-th time step.
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We can observe that concentration values in the (n + 1)-th time step (cn+1i,j )
depend both on concentration values in the previous, the n-th step, and on
those in the (n+1)-th time step in question. The determination of values in the
(n+ 1)-th time step is therefore more difficult than in case of explicit schemes
and requires solution of a system of linear equations.
For simplification, equation (4.11) can be written in the following form:

acn+1i,j + bc
n+1
i+1,j + cc

n+1
i−1,j + dc

n+1
i,j+1 + ec

n+1
i,j−1

+fcn+1i+1,j+1 + gc
n+1
i+1,j−1 + hc

n+1
i−1,j+1 + ic

n+1
i−1,j−1 = Fi,j ;

(4.12)

where the coefficients assume the form of:

a = 1 + Cr dx + Cr dy, d =
Cr ay
4
−

Cr dy
2
, g = Cr dxy,

b =
Cr ax
4
− Cr dx
2
, e = −

Cr ay
4
−

Cr dy
2
, h = Cr dxy,

c = −Cr ax
4
− Cr dx
2
, f = −Cr dxy, i = −Cr dxy.

Assigning numbers to the nodes of the grid in the way shown in figure 4.4,
where a pair of integers (i, j) is replaced with the number of the node, we can
note the searched concentration value vector in the (n+ 1)-th time step in the
form of:

X = (c0, c1, c2, · · · , cm)T ,

Figure 4.4: Example of transformation of coordinates of a point in the grid into its
number (only the inner points from the discretization grid are taken into consideration)
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4. NUMERICAL METHODS FOR 2D TRANSPORT EQUATION

Figure 4.5: Schematic representa-
tion of the matrix of coefficients for
the equation system obtained after
the application of CN scheme.

and the Fi,j values, respectively, as a
vector:

F = (F0, F1, F2, · · · , Fm);

where:
(m + 1) – the number of the
grid nodes.

The equation system to be solved as-
sumes the following form:

AX = F;

where:
A – band matrix of coefficients
in the system (see fig. 4.5).

The matrix A has the structure
as shown in figure 4.5 in which all
elements not shown are zero.

There are two types of solution methods for the obtained system of linear
algebraic equations: the direct ones, such as Gauss elimination method or
the iterative ones, such as Jacobi method. In case of a large number of grid
nodes that we usually encounter, the solution of the obtained equation system
in each time step, using the direct methods, results in high computation costs.
Then, in practice, iterative methods are applied to solve it. These methods start
from the initial approximation (X0), and then the approximation is gradually
improved (a series of consecutive approximations is created: X1, X2, · · · ), until
the stopping condition is fulfilled (the difference between the iterations becomes
small). Below, the implemented methods (Jacobi, Gauss-Seidel and Successive
Over Relaxation) are presented:

� Jacobi method (J)

ck+1p =

−
m∑

q=1,p6=q
ap,qc

k
q + Fp

ap,p
; (4.13)
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4.3 Discretization of 2D transport equation

� Gauss-Seidel method (GS)

ck+1p =

points for which
the values in k+1 iteration
have already been determined︷ ︸︸ ︷

−
p−1∑
q=1

ap,qc
k+1
q

points for which
we do not know

values in k+1 iteration︷ ︸︸ ︷
−

m∑
q=p+1

ap,qc
k
q +Fp

ap,p
; (4.14)

� Successive Over Relaxation method (SOR)

ck+1p = ckp + ωr
k
p ;

rkp =

−
p−1∑
q=1

ap,qc
k+1
q −

m∑
q=p
ap,qc

k
q + Fp

ap,p
;

(4.15)

where:
k – iteration number;
p, q = {0, 1, 2, · · · ,m};
0 < ω < 2 – relaxation parameter (for ω = 1 we obtain the GS method);
c0p – initial approximation, e.g.: c

0
p = 0.

The detailed description of those methods could be found, e.g. in (Björc &
Dahlquist, 1987).
The simplest iterative method is the Jacobi method (4.13); this method,

however, is not sufficiently quickly convergent. In order to obtain a result with
the required accuracy, a vast number of iterations is required. Therefore, the
Gauss-Seidel method (4.14) or the Successful Over Relaxation method (4.15)
are usually used. Table 4.4 presents the number of iterations in a single time
step for two example sets of parameters, necessary for obtaining a solution
with the prescribed accuracy with the application of various iteration methods.
The calculations were carried out until the sum of absolute values |δp| was less
than 10−15:

m∑
p=0

|δp| < 10−15, where: δp = ck+1p − ckp. (4.16)
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4. NUMERICAL METHODS FOR 2D TRANSPORT EQUATION

Table 4.4: The number of iterations in a single time step while solving the equation
system obtained in CN scheme for example simulation parameters; in both cases: ∆x =
∆y = 1m, ∆t = 0.5 s and m = 62500 nodes, the number of iterations with the optimal
relaxation parameter ω is displayed in bold letters; the quoted iteration number was
stable after a few time steps

Method: J GS SOR

Relaxation parameter - 1 1.1 1.15 1.2 1.5 1.7 1.8

Number of iterations:

vx = vy = 0.2 ms 29 18 12 9 12 39 99 >200

DL = 0.5 m
2

s

DT = 0.5 m
2

s

Number of iterations:

vx = vy = 0.11 ms 27-31 16-20 11-27 13-31 15-35 47-79 143-179 >200

DL = 0.75 m
2

s

DT = 0.1 m
2

s

The SOR method allows to obtain the solution with a relatively small num-
ber of iterations, but it requires the specification of the so-called relaxation
parameter which, when wrongly selected, may significantly prolong the calcu-
lation time. The method is convergent only when 0 < ω < 2. The desired result
is obtained in a smaller number of iterations than with the application of GS
method only when ω > 1. A special method was implemented in the RivMix
model (described in Chapter 6) which selects the relaxation parameter which
according to the tests carried out depends not only on the size of the calcula-
tion grid but also on the other parameters of the simulation. For example sets
of parameters the smallest number of iterations obtained with appropriately
selected ω is displayed in bold in table 4.4.

4.3.3 Alternating Direction Implicit method with central finite
difference spatial approximation

Despite application of iteration methods for solution of equation systems ob-
tained in CN method, receiving a solution is a time consuming process (see
Section 5.3). A significant acceleration of the whole calculation process without
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4.3 Discretization of 2D transport equation

any loss of accuracy can be obtained with the application of the Alternating
Directions Implicit method (ADI) with central finite difference spatial approx-
imation.

Figure 4.6: Schematically presented
ADI method

The ADI method was first proposed
by Douglas (1955) and Peaceman & Rach-
ford (1955) for solving a two-dimensional
heat transport equation. The basis of the
method is solving an equation with the
application of an implicit formula in two
steps. The division into steps is made in
such a way that each stage is implicit only
in one spatial direction (fig. 4.6).
In the case discussed in this volume,

the ADI method is based on the implicit
Crank-Nicolson scheme. This scheme, af-
ter necessary modifications allowing for
the splitting of the solution into two steps,
can be written down in the form (McKee
et al., 1996):

[
1 +
vx∆t
2
∇x −

Dxx∆t
2
δ2x

] [
1 +
vy∆t
2
∇y −

Dyy∆t
2
δ2y

]
cn+1i,j

=
{[
1− vx∆t

2
∇x +

Dxx∆t
2
δ2x

] [
1− vy∆t

2
∇y +

Dyy∆t
2
δ2y

]
+ 2Dxy∆tδxy

}
cni,j .

(4.17)

Applying the ADI method following the Douglas-Rachford algorithm (Douglas
& Rachford, 1956), the equation can be divided into two steps in the following
way:

STEP I – implicit in x direction, explicit in y direction:[
1 +
vx∆t
2
∆x −

Dxx∆t
2
δ2x

]
c
n+ 12
i,j

=
[
1− vy∆t∆y +Dyy∆tδy2 −

vx∆t
2
∆x +

Dxx∆t
2
δ2x +Dxy∆tδxy

]
cni,j ;

(4.18)
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4. NUMERICAL METHODS FOR 2D TRANSPORT EQUATION

STEP II – explicit in x direction, implicit in y direction:[
1 +
vy∆t
2
∆y −

Dyy∆t
2
δ2y

]
cn+1i,j = c

n+ 12
i,j −

[
−vy∆t
2
∆y +

Dyy∆t
2
δy2
]
cni,j .

(4.19)

It may be shown that formulae (4.18) and (4.19) are equivalent to the initial one
(4.17). Other ways of splitting the equation into two steps may also be found
in the literature, described mainly in case of diffusion equation (e.g. McKee &
Mitchell, 1970, 1971). In the implemented model it is also possible to apply the
ADI method in the second version, called here ADI2 in short. The splitting
way here is similar to that presented in the work by Smith & Yongming (2001)
for the solution to the two-dimensional advection-diffusion equation with the
source term and the reaction term. The approximation formula, after adapting
it to the two-dimensional advection-diffusion equation considered herein (2.13),
assumes the following form:

[
1 +
vx∆t
2
∇x −

Dxx∆t
2
δ2x

] [
1 +
vy∆t
2
∇y −

Dyy∆t
2
δ2y

]
cn+1i,j

=
{[
1− vx∆t

2
∇x +

Dxx∆t
2
δ2x

] [
1− vy∆t

2
∇y +

Dyy∆t
2
δ2y

]
+2Dxy∆t

[(
∇x −

vx∆t
2
δ2x

)(
∇y −

vy∆t
2
δ2y

)]}
cni,j .

(4.20)

The splitting into two stages is done in the following way:

STEP I – implicit in x direction, explicit in y direction:

[
1 +
vx∆t
2
∆x −

Dxx∆t
2
δ2x

]
C
n+ 12
i,j

=
{[
1− vx∆t

2
∇x +

Dxx∆t
2
δ2x

] [
1− vy∆t

2
∇y +

Dyy∆t
2
δ2y

]
+2Dxy∆t

[(
∇x −

vx∆t
2
δ2x

)(
∇y −

vy∆t
2
δ2y

)]}
cni,j ;

(4.21)

STEP II – explicit in x direction, implicit in y direction:

[
1 +
vy∆t
2
∆y −

Dyy∆t
2
δ2y

]
Cn+1i,j = C

n+ 12
i,j . (4.22)
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4.3 Discretization of 2D transport equation

Due to absence of significant differences in solutions obtained with the ap-
plication of ADI and ADI2 methods respectively (see fig. 4.7), the first of the
two methods is further analysed in this book (equation 4.17).
Formulae (4.18) and (4.19) can be written down as:

STEP I :

c
n+ 12
i,j

(
1 + Cr dx

)
+ c
n+ 12
i+1,j

(
Cr ax
4
− Cr dx
2

)
+ c
n+ 12
i−1,j

(
−Cr ax
4
− Cr dx
2

)

= cni,j
(
1− Cr dx − 2Cr dy

)
+ cni+1,j

(
−Cr ax
4
+

Cr dx
2

)
+ cni−1,j

(
Cr ax
4
+

Cr dx
2

)

+cni,j+1

(
−

Cr ay
4
+ Cr dy

)
+ cni,j−1

(Cr ay
4
+ Cr dy

)
+cni+1,j+1

(
Cr dxy

)
+ cni+1,j−1

(
−Cr dxy

)
+cni−1,j+1

(
−Cr dxy

)
+ cni−1,j−1

(
Cr dxy

)


F Ii,j

(4.23)

STEP II :

cn+1i,j

(
1 + Cr dy

)
+ cn+1i,j+1

(
Cr ay
4
−

Cr dy
2

)
+ cn+1i,j−1

(
−

Cr ay
4
−

Cr dy
2

)
=

= c
n+ 12
i,j + c

n
i,j

(
Cr dy
)
+ cni,j+1

(
Cr ay
4
−

Cr dy
2

)
+ cni,j−1

(
−

Cr ay
4
−

Cr dy
2

)
︸ ︷︷ ︸

F IIi,j
(4.24)

where:
F Ii,j and F

II
i,j – value calculated on the basis of the known concentration

values in the n-th time step.

Instead of one big equation system like for CN scheme, in case of ADI method we
obtain two systems which can be solved much faster. The matrices of coefficients
of the equation systems obtained at both stages were schematically presented
in figure 4.8. Due to their specific tridiagonal arrangement, we can apply the
special analytical Thomas method to solve the systems of equations.
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4. NUMERICAL METHODS FOR 2D TRANSPORT EQUATION

ADI, t = 600 s Analytical - ADI, t = 600 s

(a) Numerical solution, scheme ADI (b) Difference between the analytical and
numerical solutions with the application of
ADI scheme

ADI2, t = 600 s Analytical - ADI2, t = 600 s

(c) Numerical solution, scheme ADI2 (d) Difference between the analytical and
numerical solutions with the application of
ADI2 scheme

Figure 4.7: The numerical solution with the application of the ADI method (a) and
ADI2 method (c) after 600 seconds; simulation parameters: ∆x = ∆y = 1m and
∆t = 0.5 s, vx = vy = 0.106 ms , Dxx = Dyy = 0.425

m2

s , Dxy = Dyx = 0.325
m2

s ; mass
M = 10 a. u. was discharged at point x0 = 50m, y0 = 50m at time t0 = 0 s; figures (b)
and (d) illustrate the difference between the analytical and the numerical solutions
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4.3 Discretization of 2D transport equation

(a) STEP I (b) STEP II

Figure 4.8: Schematically presented matrices of coefficients in the equation systems
obtained with the application of ADI scheme

� Thomas method (Fletcher, 1991; Szymkiewicz, 2003)

A tridiagonal matrix A:

A =



a1 b1 0 . . . . . . . . . 0

c2 a2 b2 0 . . . . . . 0

0 c3 a3 b3 0 . . . 0
...
...
...
...

...
...

...

. . . . . . . . . . . . . . . . . .
...
...
...
...

...
...

...

0 . . . . . . 0 cm−1 am−1 bm−1

0 . . . . . . . . . 0 cm am



(4.25)

is decomposed into two matrices – upper triangular matrix U (has el-
ements only on the diagonal and above) and lower triangular matrix L
(has elements only on the diagonal and below):

A = LU; (4.26)
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L =



1 0 . . . . . . . . . 0

l2 1 0 . . . . . . 0

0 l3 1 0 . . . 0
...
...
...

...
...
...

. . . . . . . . . . . .
...
...
...

...
...
...

0 . . . 0 lm−1 1 0

0 . . . . . . 0 lm 1



, (4.27)

U =



u1 b1 0 . . . . . . . . . 0

0 u2 b2 0 . . . . . . 0

0 0 u3 b3 0 . . . 0
...
...
...
...
...

...
...

. . . . . . . . . . . . . . . . .
...
...
...
...
...

...
...

0 . . . . . . 0 0 um−1 bm−1

0 . . . . . . . . . 0 0 um



; (4.28)

where:

u1 = a1,

lp =
cp
up−1
, (4.29)

up = ap − lpbp−1, p = 2, 3, · · · ,m .

The obtained system:
LUX = F, (4.30)

is equivalent to two systems:

LY = F,

UX = Y; (4.31)
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4.4 Initial and boundary conditions

which are solved with the application of the following recurrent formulae:

y1 = F1; (4.32)

yp = Fp − lpyp−1; p = 2, 3, · · · ,m;

cm =
ym
um
;

cp =
yp − bpcp+1
up

; p = m− 1,m− 2, · · · , 1 .

Performing a small number of arithmetical operations, namely, 3(m − 1)
additions and multiplications and (2m − 1) divisions (Szymkiewicz, 2003), we
obtain exact solution to both equation systems. Therefore, the algorithm is very
fast in comparison to iteration methods used in case of CN scheme. Comparison
of example calculation times is presented in Section 5.3.

4.4 Initial and boundary conditions

The difference equation being solved must be supplemented with boundary and
initial conditions.
The initial conditions define the values assigned to all system variables

at the “start time” and depend on the considered situation. Usually at time
t = 0 for each grid point, we will have to set the concentration at a given point
to some value:

c(x, y, 0) = c0(x, y) ; (4.33)

where:
c0(x, y) – initial concentration value at a given point (x, y).

The boundary conditions are specified at each moment in time for all
boundary points and depend on the kind of the considered banks. In cases
described in this volume in situations when there is water inflow at the edge of
the grid (at the boundary point), the value of concentration is prescribed to this
point at each moment in time. It is the so-called Dirichlet boundary condition
(Fletcher, 1991; Szymkiewicz, 2000), and can be written as follows:

c(xB, yB, t) = cBxB ,yB (t) ; (4.34)

where:
xB, yB – the boundary point coordinates,
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4. NUMERICAL METHODS FOR 2D TRANSPORT EQUATION

cBxB ,yB (t) – the concentration value at a given boundary point xB, yB in
time t.

In the outflow situation, it is assumed that the concentration gradient on the
bank is constant (the so-called Neumann boundary conditions):

∂c

∂n

∣∣∣∣
xB ,yB

= const , (4.35)

Figure 4.9: Schematic representation of
the right-hand border edge of the calcula-
tion grid

so, for example, in case when the out-
flow is situated on the right bank
(parallel to y axis):

cB,j = 2cB−1,j − cB−2,j , (4.36)

where:
B – has been used here to denote the
point index (see fig. 4.4).

In case of physical banks, assuming that we deal with impermeable banks, the
values at the edges of the grid would be calculated with the application of
coefficients presented in Appendix D in tables: D.1 (for UP scheme); D.2, D.3
(for CN) and D.4, D.5 (for ADI). In the numerical tests carried out, also periodic
boundary conditions were applied in some cases. In case of continuous release it
was also necessary to setup the so-called inner boundary conditions, defining
the concentration value at the source point (or points) in each time step.
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Chapter 5

Properties of Considered
Numerical Schemes

5.1 Introduction

Nowadays, when the computer sciences are much developed, the numerical sim-
ulation could be used to support the expensive laboratory and field experiments.
Such simulations are cheaper and faster and first of all they can simulate sit-
uations and physical phenomena which cannot be done experimentally or an-
alytically. Therefore, numerical methods are often used in many branches of
science including hydrodynamics, but using them we have to remember that
they give us not the exact solution but approximate one (often good enough for
our purposes). It is not always easy to choose the proper method for our case.
When applying numerical methods, we can encounter many problems, such as:

� numerical diffusion and numerical dispersion,

� limitation of computation time and disc space,

� instability of the schemes used.

These problems make the selection of the method appropriate for solving a given
equation even more difficult. First of all, the required accuracy and computa-
tion costs must be taken into account, and the main attention in this chapter
is paid to this issue. It is of extreme importance for the interpretation of the
results, as it may happen that values treated as physical were only the result
of numerical errors.
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5.2 Accuracy – truncation error

The accuracy of the solution is a very important element during numerical
solution of the initial-boundary issue. Ferziger (1988) wrote “Knowledge of the
accuracy of any procedure is essential to successful use of the method. This is
especially true of numerical methods for solving partial differential equations (...)”
in a special note concerning numerical accuracy.

The root of the finite difference methods are difference quotients created on
the basis of expansions of the function into Taylor series (see Section 4.2). Due to
the fact that not all elements of the series may be taken into account, truncated
series are used for the construction of numerical schemes, which is the source of
dissipation and dispersion errors influencing the obtained solution. The dissi-
pation error can cause excessive smoothing of the solution, while the dispersion
error creates oscillations of non-physical nature (Fletcher, 1991; Szymkiewicz,
2006; Thomas, 1995). Understanding the truncation error is therefore neces-
sary for finding out the accuracy of the method and selecting the appropriate
numerical scheme.

Most discussions in the literature state only the approximation order of a
numerical method, which does not provide any information on the value and
the nature of the error. However, detailed analyses concerning numerical er-
rors in finite difference methods used to solve advection-diffusion equations
are usually carried out for one-dimensional problems (like in case of works by:
Ataie-Ashtiani et al., 1996, 1999; Dehghan, 2004; Karahan, 2006). Compre-
hensive compilation of numerical schemes used to one-dimensional advection-
diffusion equation, together with the determined truncation errors is presented
by Fletcher (1991). In a two-dimensional case, the truncation errors were de-
termined for the equations disregarding mixed derivatives (e.g. Noye & Tan,
1989), which limits the discussion to certain specific situations (as demonstrated
in Chapter 3). At this point, attention should be paid to the latest analyses
by Ataie-Ashtiani & Hosseini (2005a,b), where full 2D advection-diffusion in-
cluding additional terms is discussed. The authors, however, focus only on the
numerical diffusion error (dissipation error, if only second-order derivatives are
taken into account in error analysis, is often called the numerical diffusion error).
Numerical dispersion – also connected with the truncation of Taylor series – is
also an unwanted effect present at the application of numerical schemes used in
hydromechanics. Both kinds of errors are discussed in works of: Bielecka-Kieloch
(1998); Szymkiewicz (2006) for two-dimensional advection equation.

Much attention was paid in this study to determination of numerical dif-
fusion and numerical dispersion errors, in case of full 2D advection-diffusion
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5.2 Accuracy – truncation error

equation (including mixed derivatives). The determination method and anal-
ysis of the errors referred to the above will, therefore, be the subject of fur-
ther discussion.

5.2.1 Modified Equation Approach

The accuracy of difference methods used for solving a transport equation can
be determined by means of Modified Equation Approach – MEA. This
method, presented in 1974 by Warming & Hyett, allows to determine the er-
ror resulting from truncation of Taylor series during the discretization of the
equation. The error is, in fact, the difference between the real solution and the
one obtained after the approximation of the equation with the given numerical
scheme. MEA was used in hydromechanics by Abbott & Basco (1989); Fischer
et al. (1979); Peyret & Taylor (1986); Szymkiewicz (2006), among others. If we
label differential equation (4.5) as EDys = 0, and T is the truncation error, then
the modified equation (which we solve in practice) can be defined as:

EMod = EDys + T = 0 . (5.1)

In order to create a modified equation for the schemes discussed in this study,
the procedure presented in figure 5.1 has to be completed. Before commencing

Figure 5.1: Modified Equation Approach – diagram
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the construction of EMod equation (4.5) can be written down in the following
form, for simplicity:

b0c
n+1
i,j + b1c

n+1
i+1,j + b2c

n+1
i−1,j + b3c

n+1
i,j+1 + b4c

n+1
i,j−1

+b5cn+1i+1,j+1 + b6c
n+1
i+1,j−1 + b7c

n+1
i−1,j+1 + b8c

n+1
i−1,j−1

= a0cni,j + a1c
n
i+1,j + a2c

n
i−1,j + a3c

n
i,j+1 + a4c

n
i,j−1

+a5cni+1,j+1 + a6c
n
i+1,j−1 + a7c

n
i−1,j+1 + a8c

n
i−1,j−1 .

(5.2)

The coefficients of this equation are, respectively:

b0 = 1 + θ
[
2
(

Cr dx + Cr dy
)
+ Cr ax (1− 2α1) + Cr ay (1− 2α2)

]
,

a0 = 1 + (1− θ)
[
−2
(

Cr dx + Cr dy
)
+ Cr ax (2α1 − 1) + Cr ay (2α2 − 1)

]
,

b1 = θ
(
−Cr dx + α1Cr ax

)
,

a1 = (1− θ)
(

Cr dx − α1Cr ax
)
,

b2 = θ
(
−Cr dx − (1− α1) Cr ax

)
,

a2 = (1− θ)
[
Cr dx + (1− α1) Cr ax

]
,

b3 = θ
(
−Cr dy + α2Cr ay

)
,

a3 = (1− θ)
(

Cr dy − α2Cr ay
)
,

b4 = θ
(
−Cr dy − (1− α2) Cr ay

)
,

a4 = (1− θ)
[
Cr dy + (1− α2) Cr ay

]
,

b5 = −2θCr dxy , a5 = 2 (1− θ) Cr dxy , (5.3)

b6 = 2θCr dxy , a6 = −2 (1− θ) Cr dxy ,

b7 = 2θCr dxy , a7 = −2 (1− θ) Cr dxy ,

b8 = −2θCr dxy , a8 = 2 (1− θ) Cr dxy .

The whole procedure starts with replacing each term of equation (5.2) by
its expansion in Taylor series about the point (x = i∆x, y = j∆y, t = n∆t).
We assume at the same time the existence of a continuous and differentiable
function c(x, y, t), which is equal to the solution to equation (2.13) in the grid
nodes (Warming & Hyett, 1974).
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5.2 Accuracy – truncation error

The expansions of individual terms into Taylor series in the n-th time step
can be written down in the following way:

cni±1,j = c
n
i,j ±∆x

∂c

∂x
+
∆x2

2
∂2c

∂x2
± ∆x

3

6
∂3c

∂x3
+ . . . , (5.4a)

cni,j±1 = c
n
i,j ±∆y

∂c

∂y
+
∆y2

2
∂2c

∂y2
± ∆y

3

6
∂3c

∂y3
+ . . . , (5.4b)

cni±1,j±1 = c
n
i,j ±∆x

∂c

∂x
±∆y ∂c

∂y
+
∆x2

2
∂2c

∂x2
+ (±∆x)(±∆y) ∂

2c

∂x∂y
+
∆y2

2
∂2c

∂y2

± ∆x
3

6
∂3c

∂x3
± ∆x

2∆y
2

∂3c

∂x2∂y
± ∆x∆y

2

2
∂3c

∂x∂y2
± ∆y

3

6
∂3c

∂y3
+ . . . .

(5.4c)

In the (n+ 1)-th time step they assume the following form:

cn+1i,j = c
n
i,j +∆t

∂c

∂t
+
∆t2

2
∂2c

∂t2
+
∆t3

6
∂3c

∂t3
+ . . . , (5.5a)

cn+1i±1,j = c
n
i,j +∆t

∂c

∂t
±∆x ∂c

∂x
+
∆t2

2
∂2c

∂t2
±∆t∆x ∂

2c

∂x∂t
+
∆x2

2
∂2c

∂x2

+
∆t3

6
∂3c

∂t3
± ∆t

2∆x
2

∂3c

∂x∂t2
+
∆t∆x2

2
∂3c

∂x2∂t
± ∆x

3

6
∂3c

∂x3
+ . . . , (5.5b)

cn+1i,j±1 = c
n
i,j +∆t

∂c

∂t
±∆y ∂c

∂y
+
∆t2

2
∂2c

∂t2
±∆t∆y ∂

2c

∂y∂t
+
∆y2

2
∂2c

∂y2

+
∆t3

6
∂3c

∂t3
± ∆t

2∆y
2

∂3c

∂y∂t2
+
∆t∆y2

2
∂3c

∂y2∂t
± ∆y

3

6
∂3c

∂y3
+ . . . , (5.5c)

cn+1i±1,j±1 = c
n
i,j +∆t

∂c

∂t
±∆x ∂c

∂x
±∆y ∂c

∂y
+
∆t2

2
∂2c

∂t2
+
∆x2

2
∂2c

∂x2
+
∆y2

2
∂2c

∂y2

+ (±∆x)(±∆y) ∂
2c

∂x∂y
±∆x∆t ∂

2c

∂x∂t
±∆y∆t ∂

2c

∂y∂t

+
∆t3

6
∂3c

∂t3
± ∆x

3

6
∂3c

∂x3
± ∆y

3

6
∂3c

∂y3
+∆t(±∆x)(±∆y) ∂

3c

∂x∂y∂t

± ∆x
2∆y
2

∂3c

∂x2∂y
± ∆x∆y

2

2
∂3c

∂x∂y2
+
∆t∆x2

2
∂3c

∂x2∂t

+
∆t∆y2

2
∂3c

∂y2∂t
± ∆t

2∆x
2

∂3c

∂x∂t2
± ∆t

2∆y
2

∂3c

∂y∂t2
+ . . . . (5.5d)
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Inserting expansions (5.4) and (5.5) to the equation (5.2), after the reduction
we obtain:

∂c

∂t
+ vx
∂c

∂x
+ vy
∂c

∂y
+
∆t
2
∂2c

∂t2

+
[
−Dxx + (2α1 − 1)

vx∆x
2

]
∂2c

∂x2
+
[
−Dyy + (2α2 − 1)

vy∆y
2

]
∂2c

∂y2

− 2Dxy
∂2c

∂x∂y
+ θvx∆t

∂2c

∂x∂t
+ θvy∆t

∂2c

∂y∂t

+
∆t2

6
∂3c

∂t3
+
vx∆x2

6
∂3c

∂x3
+
vy∆y2

6
∂3c

∂y3

− 2θDxy∆t
∂3c

∂x∂y∂t
+ θ∆t

[
−2Dxx + (2α1 − 1)

vx∆x
2

]
∂3c

∂x2∂t

+ θ∆t
[
−2Dyy + (2α2 − 1)

vy∆y
2

]
∂3c

∂y2∂t

+ θ
vx∆t2

2
∂3c

∂x∂t2
+ θ
vy∆t2

2
∂3c

∂y∂t2
= 0 . (5.6)

During the transformations, the derivatives of the fourth-order and higher were
omitted. For the details of the derivation of equation (5.6) and the proposed
table facilitating transformations, see Appendix E. The obtained equation is the
sought modified equation (EMod). For the simplicity of notation, the following
symbols were introduced for coefficients before the respective partial derivatives:

a =
vx∆x2

6
, l = θvx∆t,

b =
vy∆y2

6
, m = θvy∆t,

d = vx, n =
∆t2

6
,

e = vy, o = −2θDxy∆t,

f =
∆t
2
, p = θ∆t

(
−2Dxx + (2α1 − 1)

vx∆x
2

)
, (5.7)

g = −Dxx + (2α1 − 1)
vx∆x
2
, q = θ∆t

(
−2Dyy + (2α2 − 1)

vy∆y
2

)
,

h = −Dyy + (2α2 − 1)
vy∆y
2
, r = θ

vx∆t2

2
,

k = −2Dxy, z = θ
vy∆t2

2
.
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The modified equation (5.6) assumes then the following form:

∂c

∂t
+ d
∂c

∂x
+ e
∂c

∂y
+ f
∂2c

∂t2
+ g
∂2c

∂x2
+ h
∂2c

∂y2
+ k
∂2c

∂x∂y
+ l
∂2c

∂x∂t
+m

∂2c

∂y∂t

+n
∂3c

∂t3
+a
∂3c

∂x3
+b
∂3c

∂y3
+o

∂3c

∂x∂y∂t
+p
∂3c

∂x2∂t
+q
∂3c

∂y2∂t
+r
∂3c

∂x∂t2
+z
∂3c

∂y∂t2
= 0 .

(5.8)

The next key point is the elimination of higher order time derivatives:

∂2c

∂t2
,
∂3c

∂t3
,
∂2c

∂x∂t
,
∂3c

∂x2∂t
,
∂3c

∂x∂t2
,
∂2c

∂y∂t
,
∂3c

∂y2∂t
,
∂3c

∂y∂t2
, and

∂3c

∂x∂y∂t
. (5.9)

This operation, leading to leaving only the first derivative
∂c

∂t
and space deriva-

tives, will allow to interpret the truncation error. In order to obtain appropriate
expressions for time derivatives, appropriate differentiation operations must be
performed on the modified equation (Thomas, 1995). In order to replace the
terms:

∂2c

∂x∂t
,
∂3c

∂x2∂t
,
∂3c

∂x∂t2
,
∂3c

∂x∂y∂t
(5.10)

we differentiate equation (5.6) successively with respect to:

∂

∂x
,
∂2

∂x2
,
∂2

∂x∂t
,
∂2

∂x∂y
. (5.11)

We proceed analogically to obtain the terms:

∂2c

∂y∂t
,
∂3c

∂y2∂t
,
∂3c

∂y∂t2
. (5.12)

In order to find relevant expressions for:

∂2c

∂t2
,
∂3c

∂t3
(5.13)

we differentiate equation (5.6) with respect to:

∂

∂t
,
∂2

∂t2
. (5.14)
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After appropriate transformation and taking into consideration third-order deriva-
tives, we obtain:

∂2c

∂t2
= d2
∂2c

∂x2
+ e2
∂2c

∂y2
+ 2de

∂2c

∂x∂y
+ 2d(fd2 + g − ld) ∂

3c

∂x3
+

+ 2e(fe2 + h− em)∂
3c

∂y3
+ 2(3d2ef + kd− 2dle−md2 + eg) ∂

3c

∂x2∂y
+

+ 2(3fde2 + hd− 2emd+ kd− le2) ∂
3c

∂x∂y2
,

(5.15a)

∂3c

∂t3
= −d3 ∂

3c

∂x3
− e3 ∂

3c

∂y3
− 3d2e ∂

3c

∂x2∂y
− 3de2 ∂

3c

∂x∂y2
, (5.15b)

∂2c

∂x∂t
= −d ∂

2c

∂x2
− e ∂

2c

∂x∂y
+ (−fd2 − g + ld) ∂

3c

∂x3
+

+ (−2def − k + le+ dm) ∂
3c

∂x2∂y
+ (−fe2 − h+ em) ∂

3c

∂x∂y2
,

(5.15c)

∂3c

∂x2∂t
= −d ∂

3c

∂x3
− e ∂

3c

∂x2∂y
, (5.15d)

∂3c

∂x∂t2
= d2
∂3c

∂x3
+ 2de

∂3c

∂x2∂y
+ e2

∂3c

∂x∂y2
, (5.15e)

∂2c

∂y∂t
= −d ∂

2c

∂x∂y
− e ∂

2c

∂y2
+ (−fd2 − g + dl) ∂

3c

∂x2∂y
+

+ (−2def − k + le+md) ∂
3c

∂x∂y2
+ (−fe2 − h+ em)∂

3c

∂y3
,

(5.15f)

∂3c

∂y2∂t
= −d ∂

3c

∂x∂y2
− e ∂

3c

∂y3
, (5.15g)

∂3c

∂y∂t2
= d2

∂3c

∂x2∂y
+ 2de

∂3c

∂x∂y2
+ e2
∂3c

∂y3
, (5.15h)

∂3c

∂x∂y∂t
= −d ∂

3c

∂x2∂y
− e ∂

3c

∂x∂y2
. (5.15i)
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In various analyses, an error often occurs which Thomas (1995) pays his
attention to, and it consists in the application of elimination of time derivatives
of the solved original equation (in the discussed situation, equation (2.13)), in-
stead of the modified equation (here equation (5.6)). It may also happen that
in some cases the result will be the same – irrespective of the equation applied
by us. Often, however, as in case of the analysed two-dimensional advection-
diffusion equation, this leads to neglecting some terms in formulae (5.15), and
as a result – modification of the truncation error which is the aim of the dis-
cussion. For the considered equation, in case of the second derivative in time
∂2c

∂t2
, differentiating the initial equation (2.13) with respect to

∂

∂t
, instead of the

modified equation (5.6), the following relation may be obtained erroneously:

∂2c

∂t2
= (−2Dxxvx)

∂3c

∂x3
+ (−2Dyyvy)

∂3c

∂y3

+ (−2Dxxvy − 4Dxyvx)
∂3c

∂x2∂y

+ (−2Dyyvx − 4Dxyvy)
∂3c

∂x∂y2

+ v2x
∂2c

∂x2
+ 2vxvy

∂2c

∂x∂y
+ v2y
∂2c

∂y2
; (5.16)

instead of relation (5.15a). In case of mixed derivatives, one obtains the relations

∂2c

∂x∂t
= Dxx

∂3c

∂x3
+Dyy

∂3c

∂x∂y2
+ 2Dxy

∂3c

∂x2∂y
− vx
∂2c

∂x2
− vy

∂2c

∂x∂y
; (5.17)

∂2c

∂y∂t
= Dxx

∂3c

∂x2∂y
+Dyy

∂3c

∂y3
+ 2Dxy

∂3c

∂x∂y2
− vx

∂2c

∂x∂y
− vy
∂2c

∂y2
; (5.18)

instead of (5.15c) and (5.15f). The expressions (5.16), (5.17) and (5.18) are
true only for equation (2.13) and not for the considered modified equation (5.6)
(Thomas, 1995). Differences occur in the obtained coefficients before the third-
order spatial derivatives.
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After inserting the appropriate expressions (5.15) to the modified equation
(5.6), the equation assumes the form:

∂c

∂t
+ vx
∂c

∂x
+ vy
∂c

∂y
− 2Dxy

∂2c

∂x∂y
−Dxx

∂2c

∂x2
−Dyy

∂2c

∂y2

= 2
[
vxvy∆t

(
θ − 1
2

)]
∂2c

∂x∂y

+
[
v2x∆t

(
θ − 1
2

)
− vx∆x
2
(2α1 − 1)

]
∂2c

∂x2

+
[
v2y∆t

(
θ − 1
2

)
− vy∆y
2
(2α2 − 1)

]
∂2c

∂y2

−
[
+
v3x∆t

2

3
η − v2x∆t∆x

(
θ − 1
2

)
(2α1 − 1) +

vx∆x2

6
+ vx∆tDxxξ

]
∂3c

∂x3

−
[
+
v3y∆t

2

3
η − v2y∆t∆y

(
θ − 1
2

)
(2α2 − 1) +

vy∆y2

6
+ vy∆tDyyξ

]
∂3c

∂y3

−
[
+v2xvy∆t

2η − vxvy∆t∆x
(
θ − 1
2

)
(2α1 − 1)

+vy∆tDxxξ + 4vx∆tDxy

(
θ − 1
2

)]
∂3c

∂x2∂y

−
[
+vxv2y∆t

2η − vxvy∆t∆y
(
θ − 1
2

)
(2α2 − 1)

+vx∆tDyyξ + 4vy∆tDxy

(
θ − 1
2

)]
∂3c

∂x∂y2
; (5.19)

where:
η =

(
1− 3θ + 3θ2

)
, ξ = (3θ − 1).

It is easy to notice additional expressions that do not appear in the solved
original equation (2.13). Those expressions represent the terms that have been
neglected in the process of discretization of the original equation, that is the
truncation error sought. Even terms relate to the dissipation error while the
odd terms relate to the dispersion (Fletcher, 1991). For smooth functions, the
value of the truncation error is determined by the value of the first expression
of the truncated part of the series (Szymkiewicz, 2006), therefore, we can limit
our discussion to the lowest orders of even and odd derivatives occurring in
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the truncation error. The error related to the second-order derivatives is called
numerical diffusion , and the error related to the third-order derivatives is
called numerical dispersion, which in the two-dimensional case assume the
tensor form (Szymkiewicz, 2006).

Writing down equation (5.19) in vector-like form, analogously to equation
(2.6), we obtain:

∂c(x, t)
∂t

+ v(x, t) · ∇c(x, t)−∇
[
D(x, t) · ∇c(x, t)

]
= ∇

[
DN(x, t) · ∇c(x, t)

]
+∇

[
TN(x, t) ·∆c(x, t)

]
;

(5.20)

where:

D =


Dxx Dxy

Dyx Dyy

 , DN =


DN11 D

N
12

DN21 D
N
22

 , TN =


TN11 T

N
12

TN21 T
N
22

 .
dispersion tensor numerical diffusion tensor numerical dispersion tensor

Now, the errors of numerical diffusion and dispersion can be easily compared
for the numerical schemes discussed in the study. In the general case for the
advection-diffusion equation (2.6) the coefficients of numerical diffusion and
dispersion tensors are:

DN11 = vx∆x
[

Cr ax

(
θ − 1
2

)
−
(
α1 −

1
2

)]
, (5.21a)

DN12 = vxvy∆t
(
θ − 1
2

)
, (5.21b)

DN21 = vxvy∆t
(
θ − 1
2

)
, (5.21c)

DN22 = vy∆y
[

Cr ay

(
θ − 1
2

)
−
(
α2 −

1
2

)]
, (5.21d)
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TN11 = vx∆x
2

[
−(Cr ax)

2

3
η + Cr ax

(
θ − 1
2

)
(2α1 − 1)−

1
6
− Cr dxξ

]
, (5.21e)

TN12 = vy∆x
2
[
−(Cr ax)

2η + Cr ax

(
θ − 1
2

)
(2α1 − 1)

−Cr dxξ − 16
Cr axCr dxy

Cr ay

(
θ − 1
2

)]
, (5.21f)

TN21 = vx∆y
2
[
−(Cr ay)

2η + Cr ay

(
θ − 1
2

)
(2α2 − 1)

−Cr dyξ − 16
Cr ayCr dxy

Cr ax

(
θ − 1
2

)]
, (5.21g)

TN22 = vy∆y
2

[
−
(Cr ay)

2

3
η + Cr ay

(
θ − 1
2

)
(2α2 − 1)−

1
6
− Cr dyξ

]
. (5.21h)

Assuming appropriate values of weighting parameters, the values of errors for
the schemes in question can be easily calculated and they have been collected
in tables 5.1 (UP) and 5.2 (CN, FI).
As expected, only in case of Crank-Nicolson scheme, we can avoid the serious

problem of numerical diffusion. Nevertheless, with inappropriate selection of
simulation parameters, non-physical oscillations can occur in the solution due
to the numerical dispersion error. In case of Upwind and Fully Implicit schemes,
both numerical diffusion and numerical dispersion tensors are different from
zero.
For illustration, in a straight channel for which the analytical solution can

be obtained, simulations with the application of Crank-Nicolson and Upwind
schemes were carried out. Figure 5.2 presents the results of the simulations
after 1150 seconds for selected parameters, with the application of the UP
(fig. 5.2(b)) and CN (fig. 5.2(c)) methods, respectively, and the analytical so-
lution (fig. 5.2(a)). In case of the CN scheme, there is no visible difference
between the numerical and the analytical solutions, whereas the difference is
conspicuous for the UP scheme. The maximum of concentration is situated at
the same point, but its value and the shape of concentration distribution differ
significantly from the analytical solution and the solution with the application
of the Crank-Nicolson scheme. Numerical diffusion is the reason of the above.
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Analytical, t = 1150 s

(a) Analytical solution

UP, t = 1150 s CN, t = 1150 s

(b) Numerical solution, scheme UP (c) Numerical solution, scheme CN

Figure 5.2: Analytical (a) and numerical solution with the application of UP
scheme (b) and CN scheme (c) after 1150 seconds; simulation parameters: ∆x =
∆y = 1m and ∆t = 0.5 s, vx = vy = 0.106 ms , Dxx = Dyy = 0.425

m2

s , Dxy = Dyx =

0.325 m
2

s ; mass M = 10 a. u. was discharged at point x0 = 50m, y0 = 50m at time
t0 = 0 s
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Table 5.1: Values of coefficients of numerical diffusion and dispersion tensors for UP
scheme

UP

DN11 −vx∆x
[

Cr ax
2
+
(
α1 −

1
2

)]

DN12 −vxvy∆t
2

DN21 −vxvy∆t
2

DN22 −vy∆y
[Cr ay
2
+
(
α2 −

1
2

)]

TN11 vx∆x2
[
−(Cr ax)

2

3
− Cr ax

(
α1 −

1
2

)
− 1
6
+ Cr dx

]

TN12 vy∆x2
[
−(Cr ax)

2 − Cr ax

(
α1 −

1
2

)
+ Cr dx + 8

Cr axCr dxy
Cr ay

]

TN21 vx∆y2
[
−(Cr ay)

2 − Cr ay

(
α2 −

1
2

)
+ Cr dy + 8

Cr ayCr dxy
Cr ax

]

TN22 vy∆y2
[
−
(Cr ay)

2

3
− Cr ay

(
α2 −

1
2

)
− 1
6
+ Cr dy

]

Using the Upwind scheme, we solve the advection-diffusion equation with a
greater diffusion coefficient effectively:

DResi,j = Di,j +D
N
i,j , for i ∈ {1, 2}; (5.22)

where:
Di,j – actual dispersion coefficient,
DNi,j – numerical diffusion coefficient,
DResi,j – resultant (effective) diffusion coefficient.
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Table 5.2: Values of coefficients of numerical diffusion and dispersion tensors for CN
and FI schemes

CN FI

DN11 0
v2x∆t
2

DN12 0
vxvy∆t
2

DN21 0
vxvy∆t
2

DN22 0
v2y∆t

2

TN11 −vx∆x
2

2

[
(Cr ax)

2

6
+
1
3
+ Cr dx

]
−vx∆x2

[
(Cr ax)

2

3
+
1
6
+ 2Cr dx

]

TN12 −vy∆x
2

2

[
(Cr ax)

2

2
+ Cr dx

]
−vy∆x2

[
(Cr ax)

2 + 2Cr dx + 8
Cr axCr dxy

Cr ay

]

TN21 −vx∆y
2

2

[
(Cr ay)

2

2
+ Cr dy

]
−vx∆y2

[
(Cr ay)

2 + 2Cr dy + 8
Cr ayCr dxy

Cr ax

]

TN22 −vy∆y
2

2

[
(Cr ay)

2

6
+
1
3
+ Cr dy

]
−vy∆y2

[
(Cr ay)

2

3
+
1
6
+ 2Cr dy

]

In the example in question, the resultant diffusion tensor is:

DRes =


0.475 0.322

0.322 0.475

 =


0.425 0.325

0.325 0.425

 +

0.05 −0.003

−0.003 0.05

 .
effective diffusion tensor actual dispersion tensor numerical diffusion tensor
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For detailed comparison of both (UP and CN) schemes with analytical solution,
see Chapter 7.
It can be verified that the value of numerical diffusion coefficient resulting

from calculations based on MEA is the same as the value of numerical diffusion
coefficient obtained during the simulation. For simplification, let us consider
the situation where:

vx > 0, vy = 0, Dxy = Dyx = 0 and Dyy = 0. (5.23)

Then the components of numerical diffusion and numerical dispersion tensors
are, respectively:

DN =


−vx
2
(vx∆t−∆x) 0

0 0

 ,

TN =


vx

[
Dxx∆t−

1
6

(
∆x2 −∆t2v2x

)]
0

0 0

 .
The simulation parameters have been selected in such a way that all the compo-
nents of the numerical dispersion tensor be equal 0, for vx 6= 0, i.e. we demand
that:

vx

[
Dxx∆t−

1
6

(
∆x2 −∆t2v2x

)]
= 0 (5.24)

m vx 6= 0 (5.25)

Dxx =
1
6

(
∆x2

∆t
−∆tv2x

)
, (5.26)

that is, for example:

∆x = 1, ∆t = 1⇒ Dxx =
1
6

(
1− v2x

)
; (5.27)

for vx = 0.15 ⇒ Dxx = 0.163 . (5.28)
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5. PROPERTIES OF CONSIDERED NUMERICAL SCHEMES

The comparison of the results obtained on the basis of theoretical discussion and
computer simulations is presented in table 5.3. For simulation results after 100
or 500 time steps the Gauss distribution was adjusted, and then the standard
deviation σS was read out. In the same way the standard deviation σA was
read out for the analytical solution, i.e. solution not affected by the numerical
diffusion error. Standard deviation resulting from the theoretically determined
numerical diffusion coefficient σN was determined on the basis of the known
relation:

σN =
√
2DResxx t . (5.29)

When ∆x 6= 1 and ∆t 6= 1, the above equation reads:

σN =

√
2
DResxx
∆x2
n∆t ; (5.30)

where:
n – number of time steps.

The values of σN are in agreement with the values of σS and, as expexted, are
higher than the values of σA resulting from analytical solution, not affected by
the numerical diffusion error.

5.2.2 Truncation error for Alternating Direction Implicit method

In case of Alternating Direction Implicit method (ADI), the calculations are
carried out in two stages: (4.18) and (4.19). In order to determine the truncation
error, we need to step back to the formula equivalent to both equations (4.17),
which, for the sake of simplification, (like in case of equation (4.5)) we shall
note as:

b0c
n+1
i,j + b1c

n+1
i+1,j + b2c

n+1
i−1,j + b3c

n+1
i,j+1 + b4c

n+1
i,j−1

+b5cn+1i+1,j+1 + b6c
n+1
i+1,j−1 + b7c

n+1
i−1,j+1 + b8c

n+1
i−1,j−1

= a0cni,j + a1c
n
i+1,j + a2c

n
i−1,j + a3c

n
i,j+1 + a4c

n
i,j−1

+a5cni+1,j+1 + a6c
n
i+1,j−1 + a7c

n
i−1,j+1 + a8c

n
i−1,j−1 .

(5.31)

The coefficients are, in this case, respectively:
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5.2 Accuracy – truncation error

b0 = 1 + Cr dy + Cr dx + Cr dxCr dy,

b1 =
Cr ax
4
− Cr dx
2
+

Cr axCr dy
4
−

Cr dxCr dy
2
,

b2 = −
Cr ax
4
− Cr dx
2
−

Cr axCr dy
4
−

Cr dxCr dy
2
,

b3 =
Cr ay
4
−

Cr dy
2
+

Cr ayCr dx
4
−

Cr dxCr dy
2
,

b4 = −
Cr ay
4
−

Cr dy
2
−

Cr ayCr dx
4
−

Cr dxCr dy
2
,

b5 =
Cr axCr ay
16

−
Cr axCr dy
8
−

Cr ayCr dx
8
+

Cr dxCr dy
4
,

b6 = −
Cr axCr ay
16

−
Cr axCr dy
8
+

Cr ayCr dx
8
+

Cr dxCr dy
4
,

b7 = −
Cr axCr ay
16
+

Cr axCr dy
8
−

Cr ayCr dx
8
+

Cr dxCr dy
4
,

b8 =
Cr axCr ay
16
+

Cr axCr dy
8
+

Cr ayCr dx
8
+

Cr dxCr dy
4
, (5.32)

a0 = 1− Cr dy − Cr dx + Cr dxCr dy,

a1 = −
Cr ax
4
+

Cr dx
2
+

Cr axCr dy
4
−

Cr dxCr dy
2
,

a2 =
Cr ax
4
+

Cr dx
2
−

Cr axCr dy
4
−

Cr dxCr dy
2
,

a3 = −
Cr ay
4
+

Cr dy
2
+

Cr ayCr dx
4
−

Cr dxCr dy
2
,

a4 =
Cr ay
4
+

Cr dy
2
−

Cr ayCr dx
4
−

Cr dxCr dy
2
,

a5 =
Cr axCr ay
16

−
Cr axCr dy
8
−

Cr ayCr dx
8
+

Cr dxCr dy
4
+ 2Cr dxy,

a6 = −
Cr axCr ay
16

−
Cr axCr dy
8
+

Cr ayCr dx
8
+

Cr dxCr dy
4
− 2Cr dxy,

a7 = −
Cr axCr ay
16
+

Cr axCr dy
8
−

Cr ayCr dx
8
+

Cr dxCr dy
4
− 2Cr dxy,

a8 =
Cr axCr ay
16
+

Cr axCr dy
8
+

Cr ayCr dx
8
+

Cr dxCr dy
4
+ 2Cr dxy.

85



5. PROPERTIES OF CONSIDERED NUMERICAL SCHEMES

We perform subsequent stages in the same way as in case of general dis-
cretization, i.e. at the beginning, each term of equation (5.31) is substituted
with its expansion into Taylor series.
Applying (5.4) and (5.5), after simplification, we obtain a modified equation

for the ADI method:

∂c

∂t
+ vx
∂c

∂x
+ vy
∂c

∂y
+
∆t
2
∂2c

∂t2
−Dxx

∂2c

∂x2
−Dyy

∂2c

∂y2
− 2Dxy

∂2c

∂x∂y

+
vx∆t
2
∂2c

∂x∂t
+
vy∆t
2
∂2c

∂y∂t
+
∆t2

6
∂3c

∂t3
+
vx∆x2

6
∂3c

∂x3
+
vy∆y2

6
∂3c

∂y3
+
vxvy∆t2

4
∂3c

∂x∂y∂t

− Dxx∆t
2

∂3c

∂x2∂t
− Dyy∆t

2
∂3c

∂y2∂t
+
vx∆t2

4
∂3c

∂x∂t2
+
vy∆t2

4
∂3c

∂y∂t2
= 0 . (5.33)

The equation can be also written in the same form as equation (5.8), but this
time the coefficients are:

a =
vx∆x2

6
, l =

vx∆t
2
,

b =
vy∆y2

6
, m =

vy∆t
2
,

d = vx, n =
∆t2

6
,

e = vy, o =
vxvy∆t2

4
,

f =
∆t
2
, p = −Dxx∆t

2
, (5.34)

g = −Dxx, q = −Dyy∆t
2
,

h = −Dyy, r =
vx∆t2

4
,

k = −2Dxy, z =
vy∆t2

4
.

After the elimination of time derivatives, replaced with the formulae (5.15)
determined in the previous section (remembering about different values of coef-
ficients a, b, ..., z), after transformations taking into account third-order deriva-
tives, we obtain a modified equation in the form enabling the interpretation of
truncation error:
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∂c

∂t
+ vx
∂c

∂x
+ vy
∂c

∂y
− 2Dxy

∂2c

∂x∂y
−Dxx

∂2c

∂x2
−Dyy

∂2c

∂y2

= −
[
v3x∆t

2

12
+
vx∆x2

6

]
∂3c

∂x3
−
[
v3y∆t

2

12
+
vy∆y2

6

]
∂3c

∂y3

+ vx∆tDxy
∂3c

∂x2∂y
+ vy∆tDxy

∂3c

∂x∂y2
. (5.35)

The components of numerical diffusion and dispersion tensors are presented in
table 5.4. Analogically to the CN scheme, in case of ADI approach, the com-
ponents of numerical diffusion tensor are zero, while the numerical dispersion
coefficients remain non-zero, which, like in case of CN, can cause non-physical
oscillations. Similarly, there is no visible difference between the analytical solu-
tion and the numerical one (see fig. 5.3).
Exact comparison of the numerical solution with the analytical one and with

the other schemes is presented in Chapter 7.

Analytical, t = 1150 s ADI, t = 1150 s

(a) Analytical solution (b) Numerical solution, ADI method

Figure 5.3: Analytical solution (a) and numerical one with the application of ADI
method (b) after 1150 seconds; simulation parameters: vx = vy = 0.106 ms , Dxx =

Dyy = 0.425 m
2

s , Dxy = Dyx = 0.325
m2

s , ∆x = ∆y = 1m and ∆t = 0.5 s; mass
M = 10 a. u. was discharged at point x0 = 50m, y0 = 50m at time t0 = 0 s

87



5. PROPERTIES OF CONSIDERED NUMERICAL SCHEMES

Table 5.4: Values of the coefficients of numerical diffusion and dispersion tensors for
the ADI method

ADI

DN11 0

DN12 0

DN21 0

DN22 0

TN11 −vx∆x
2

2

[
(Cr ax)

2

6
+
1
3

]

TN12 −vxDxy∆t

TN21 −vyDxy∆t

TN22 −vy∆y
2

2

[
(Cr ay)

2

6
+
1
3

]
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5.3 Computation speed and stability

Average CPU time in a single time step

Figure 5.4: Average CPU time in a single time step; processor: Intel(R) Pentium(R)
4 – 2.60 GHz, RAM: 1024 MB; the average was calculated from 100 measurements of
CPU time consumption in a single time step; N – number of nodes in the grid

5.3 Computation speed and stability

An important, from the practical point of view, aspect in numerical solving of
equations is the speed of computations. Especially in an emergency situation
(e.g. sudden catastrophic release of pollutants), we are interested in obtaining
the results determining the predicted distribution of concentrations as soon as
possible. The speed is of crucial importance when the computations are carried
out for large and geometrically complex objects or when the simulations have
to be repeated many times. Table 5.5 illustrates the average CPU (Central
Processing Unit) time and real time in a single time step, for example, simu-
lation parameters with the application of various approaches. The calculations
were performed on a PC computer with Intel(R) Pentium(R) 4 – 2.60 GHz
processor. The bigger the number of nodes of the computation grid (see fig. 5.4),
the more visible the differences between the methods.
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5. PROPERTIES OF CONSIDERED NUMERICAL SCHEMES

The fastest is the explicit UP scheme, which on the other hand is not an
accurate method. It may generate large numerical diffusion, as presented above.
Apart from that, the method is conditionally stable, which imposes limitations
on the selected time step. The stability means here the ability of the numerical
scheme to attenuate incidental interferences to the solution during computation
(Szymkiewicz, 2000, 2003). Such interferences can be, for example, round-off
errors connected with the finite representation of numbers in the computer. We
can generally divide the numerical schemes into:

ä absolutely stable – schemes which are always stable, irrespective of the
selected parameters of computation grid; they do not create rapid increase
in errors during computation;

Table 5.5: Average CPU time and real time in a single time step in case of various
schemes, for exemplary simulation parameters: vx = vy = 0.2 ms , DL = DT = 0.5

m2

s ,
∆t = 0.5 s, ∆x = ∆y = 1.0m; the average CPU time and real time for a single step
was normalized to the average time in case of the fastest method, UP; the tests were
carried out on a computer with the Intel(R) Pentium(R) 4 processor – 2.60 GHz, and
RAM: 1024 MB

Numerical Method of solving Average simulation time in a single step

scheme the set of equations wall clock CPU

(real) time (processor) time

UP – 1 1

CN J 19.98 18.72

CN G-S 12.98 12.29

CN SOR ω=1.1 9.24 8.56

CN SOR ω=1.15 ∗ 6.97 6.55

ADI J 41.40 38.03

ADI G-S 28.41 26.82

ADI SOR ω=1.1∗ 20.02 18.79

ADI T 4.57 4.30

∗ – optimum relaxation parameter for the given formula and simulation param-
eters;
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5.3 Computation speed and stability

ä absolutely unstable – schemes which we always obtain unstable solutions
with, irrespective of the selected size of the computation grid mesh;

ä conditionally stable – schemes providing stable solutions for appropri-
ately selected parameters; the conditions to be met by those parameters
are called stability criteria.

Stable solutions, in case of the UP scheme, are obtained when the following
condition (Dehghan, 2004; Noye & Tan, 1989) is met:

Cr ax + Cr ay + 2
(

Cr dx + Cr dy
)
¬ 1. (5.36)

Table 5.6 comprises examples when the UP formula gives stable or unstable so-
lutions, depending on the selected time step ∆t and other parameters unaltered.
The examples are illustrated in figure 5.5, showing simulation results after 100
time steps. In order to eliminate additional errors related to the high gradient
of concentration values on the computation grid, the initial concentration was
prescribed with Gauss distribution.
Applying the CN or ADI method, the prescribed time step ∆t may be sig-

nificantly greater than in case of UP, which, in practice, means obtaining the
solution quicker. In the case of UP scheme (fig. 5.6(a)) and for the time step

Table 5.6: Stability of schemes for exemplary parameters; stability was determined
on the basis of simulations carried out for: vx = vy = 0.106 ms and DL = 0.75

m2

s ,

DT = 0.1 m
2

s ; results of simulation after 100 time steps are illustrated in figure 5.7

Parameters Stability criteria, UP Stability

Lp. ∆x = ∆y [m] ∆t [s] Cr ax + Cr ay Cr dx + Cr dy UP CN ADI

1. 1 0.5 0.106 0.425 stable stable stable

2. 1 0.6 0.127 0.510 unstable stable stable

3. 1 0.65 0.138 0.552 unstable stable stable

4. 1 0.7 0.148 0.595 unstable stable stable

5. 1 0.8 0.170 0.680 unstable stable stable

6. 1 1 0.212 0.850 unstable stable stable
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5. PROPERTIES OF CONSIDERED NUMERICAL SCHEMES

UP: ∆ t = 0.5 s UP: ∆ t = 0.6 s

UP: ∆ t = 0.65 s UP: ∆ t = 0.7 s

UP: ∆ t = 0.8 s UP: ∆ t = 1 s

Figure 5.5: Results of simulation with the application of the UP scheme after 100
time steps for various values of time step; simulation parameters: vx = vy = 0.106 ms
DL = 0.75 m

2

s , DT = 0.1
m2

s , ∆x = ∆y = 1m
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5.3 Computation speed and stability

UP: ∆ t = 1 s, 100 time steps

(a)

CN: ∆ t = 1 s, 100 time steps ADI: ∆ t = 1 s, 100 time steps

(b) (c)

Figure 5.6: Results of simulation with the application of UP (a), CN (b) and ADI (c)
schemes after 100 time steps for ∆t = 1 s; simulation parameters: vx = vy = 0.106 ms
and DL = 0.75 m

2

s , DT = 0.1
m2

s , ∆x = ∆y = 1 m
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5. PROPERTIES OF CONSIDERED NUMERICAL SCHEMES

CN: ∆ t = 10 s, 10 time steps ADI: ∆ t = 10 s, 10 time steps

(a) (b)

Figure 5.7: Results of simulation with the application of the CN (a) and ADI (b)
schemes after 10 time steps for ∆t = 10 s; simulation parameters: vx = vy = 0.106 ms
and DL = 0.75 m

2

s , DT = 0.1
m2

s , ∆x = ∆y = 1m

of ∆t = 1 s we obtain unstable solution, in case of CN (fig. 5.6(b)) and ADI
(fig. 5.6(c)) we obtain relatively accurate solution for the same parameters. In-
creasing the time step to ∆t = 10 s, we still obtain high accuracy solutions, but
performing only 10 time steps instead of 100 (fig. 5.7). Therefore, the solution
required after 100 seconds is obtained 10 times faster. This is possible, because
both methods, CN and ADI, are unconditionally stable (Fletcher, 1991; McKee
et al., 1996; Noye & Tan, 1989), and as was demonstrated above, they do not
generate numerical diffusion. Since they are implicit methods, it is necessary to
solve a system of linear equations, as mentioned above, in order to reach the so-
lution, which can be time consuming with a high number of grid nodes. Figure
5.5 illustrates that application of the ADI method leading to two tri-diagonal
equation systems, which can be solved with analytical Thomas method, enables
reaching the solution relatively quickly. Additionally, the selected time step can
be significantly larger than in case of the UP scheme. However, non-physical
oscillations may occur here due to the numerical dispersion discussed earlier.
The problem appears together with the increase of the so-called Peclet num-
ber (fig. 5.8). Peclet number (Pe) defines the proportion of the advection term
to the diffusion term in the transport equation (Szymkiewicz, 2000):

Pe =
U∆x
D
, (5.37)
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5.3 Computation speed and stability

CN: Pex = Pey = 2.49, Pe = 2.85 ADI: Pex = Pey = 2.49, Pe = 2.85

CN: Pex = Pey = 4.99, Pe = 5.71 ADI: Pex = Pey = 4.99, Pe = 5.71

CN: Pex = Pey = 24.94, Pe = 28.55 ADI: Pex = Pey = 24.94, Pe = 28.55

Figure 5.8: Non-physical oscillations of the solution; results of simulation with the
application of CN and ADI schemes after 100 time steps, for various Peclet number
values; ∆x = ∆y = 1m, ∆t = 1 s
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where:
U – average flow velocity,
D – diffusion coefficient.

We can write it, in two dimensions, as:

Pex =
vx∆x
Dxx

, P ey =
vy∆y
Dyy

. (5.38)

The definition of Peclet number in the following form is also encountered (Fab-
ritz, 1995):

Pe =

√
(vx/∆x)2 + (vy/∆y)2

(Dxx/∆x2) + (Dyy/∆y2)− (Dxy/(∆x∆y))
. (5.39)

In case of two-dimensional transport equation discussed in this book, dis-
persion coefficients in the equation are so big that the diffusion term has a
smoothing effect and attenuates oscillations. The problem of oscillations can
also be reduced by decreasing space steps. In case when the advection term in
the equation is the dominant term, other numerical schemes should be used,
like QUICKEST (Quadratic Upstream Interpolation for Convective Kinemat-
ics with Estimated Streaming Terms), ULTIMATE QUICKEST, TVE (Total
Variation Diminishing), ADI-QUICK (Quadratic Upstream Interpolation for
Convective Kinematics) (for details concerning the schemes see: Balzano, 1999;
Guan & Zhang, 2005; Szymkiewicz, 2000; Wu & Falconer, 1998), or improved
UP method where the diffusion term in the equation is corrected on the basis
of the numerical diffusion error determined at each time step.
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Chapter 6

Description of RivMix Model

6.1 Introduction

Two-dimensional numerical model of spreading of pollutants in surface flowing
waters – River Mixing Model (RivMix for short) was implemented with the
application of C++ language under Linux operating system. ROOT (Object
Oriented Data Analysis Framework), a data analysis package created in the
European Organization for Nuclear Research – CERN (Brun & Rademakers,
1997) was used for visualization of results. The data analysis package is written
in C++ programming language, which provides for easy integration with the
numerical model code.
Below, the parameters controlling the course of simulation (Section 6.2),

the structure and the algorithm of the program (Section 6.3) are described in
detail. Those description should help particularly those readers who would like
to use RivMix model or would like to build alike model on their own.

6.2 Simulation parameters

The course of simulation is con-
trolled by a number of parameters
loaded from configuration files. This
way, the shape of the flow area, time
and grid spacing and the numerical
scheme are prescribed, among others.
The basic parameters are contained in
the param.txt file:

param.txt file format

flag

t ∆x ∆y ∆t

Sch tensor

vx vy
DL DT
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6. DESCRIPTION OF RIVMIX MODEL

� flag – parameter determining the format of the input file specifying the
computation grid with proper parameters:

ä flag = 0 – the simu-
lation starts for constant
velocity field and constant
transverse and longitudi-
nal dispersion coefficients
(constant values are read
from the param.txt file);
grid nodes are read from
grid.txt file;

grid.txt file format

x y

x, y – grid nodes indices

ä flag = 1 – simulation
for constant coefficients of
transverse and longitudi-
nal dispersion; velocity field
and grid nodes are read
from v.txt file;

v.txt file format

x y vx vy
vx, vy – velocity components

ä flag = 2 – the veloc-
ity field, the dispersion ten-
sor (Dxx,Dxy,Dyy) and the
grid nodes are read from
data.txt file;

data.txt file format

x y vx vy Dxx Dxy Dyy
Dxx, Dxy , Dyy – dispersion tensor coefficients

ä flag = 3 – simulation
for constant velocity field;
grid nodes and dispersion
tensor are read from d.txt
file;

d.txt file format

x y Dxx Dxy Dyy

� t – number of time steps for which the simulation is to be carried out;

� Sch – numerical scheme which will be used for calculation; possible values:
“cn”, “up”, “adi” or “adi2”, referring to Crank-Nicolson, Upwind and
Alternate Direction Implicit method in two variants;

� ∆t – time step [s];

� ∆x and ∆y – spatial steps defining the size of the mesh of the calculation
grid [m];
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6.3 Algorithm

� vx and vy – values of velocity components
[m
s

]
(valid when these values

are constant over the whole computation grid parameter, flag is 0 or 3);

� DL and DT – values of dispersion coefficients
[
m2
s

]
(valid when these

values are constant over the whole computation grid, parameter flag is
0 or 1);

� tensor – method of determining the components of the dispersion tensor
(Dxx, Dxy, Dyy) on the basis of DL and DT coefficients (rotation, quasi-
rotation, vector-like rotation or identity transformation, see Chapter 3);

� M, ω – method to solve the
system of equations and
relaxation parameter; read
from an additional input
file method.txt if neces-
sary.

method.txt file format

M ω

6.3 Algorithm

The algorithm of the program is presented in diagrams in figures 6.3, 6.4 and 6.5.
Its individual stages are described below:

1. Initialization of simulation parameters
At the first stage, the following simulation parameters are initialized:
flag, number of time steps t, ∆t, ∆x, ∆y, scheme Sch, method of
calculation of the dispersion tensor tensor, vx, vy, DL, DT.

2. Preparation of the computation grid
The computation grid is constructed on the basis of the input files
grid.txt, v.txt, data.txt, or d.txt, and then stored in the container
from C++ Standard Template Library (STL). The kind of the grid is rep-
resented with the application of the object inheritance mechanism avail-
able in C++ programming language. The inheritance pattern is presented
in figure 6.1. If the program were started with flag parameter equal to 0
or 1 the dispersion tensor components would also be determined.

3. Formulation of initial and boundary conditions
Boundary points are selected. The areas where inflow or outflow occurs
are defined on the basis of an additional file InOut.txt. At this stage all
initial concentration values are initialized. Also the maximum values for
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6. DESCRIPTION OF RIVMIX MODEL

Figure 6.1: Inheritance pattern diagram for classes representing the computa-
tion grid

Figure 6.2: Inheritance diagram for classes representing the discussed numerical
approaches

Courant and Peclet numbers
are calculated, whose values are
helpful at checking the stability
condition or the possibility of
occurrence of non-physical os-
cillations (see Chapter 5).

InOut.txt file format

kind x1 x2 y1 y2
kind – defines the input kind;

possible values: „in” or „out”
x1, x2, y1, y2 – x and y coordinates of the
initial and boundary points for the given input

4. Recording initial concentration in a file

Initial concentration is
recorded in a text file
grid Conc Sch 0.txt, where
“Sch” assumes the value of the
applied numerical formula, e.g.
“cn”.

grid Conc Sch 0.txt file format

x y Conc

Conc – concentration value

5. Calculation of concentration values in the next time step
At the next stage, which is performed for the prescribed number of t, the
concentration in the next time step is determined. This stage depends on
the kind of the selected formula and approach to the solution to a system
of equations. It is presented in detail in figure 6.4. Like in the case of
the computation grid – the numerical formula for solving the transport
equation is specified by the inheritance (fig. 6.2) and polymorphism mech-
anisms (Stroustrup, 2000).
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6.3 Algorithm

Figure 6.3: Block diagram of the RivMix model – main program; individual
stages are discussed in Section 6.3; procedure block 5 – Calculation of concen-
tration values in the next time step – is illustrated in figure 6.4
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6. DESCRIPTION OF RIVMIX MODEL

Figure 6.4: Block diagram of theRivMix model – Calculation of concentration
values in the next time step; for description of numerical schemes see Chapter
4; procedure block Iterative solving of the equation system is presented in figure
6.5
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6.3 Algorithm

Depending on the numerical formula selected for calculations:

ä ADI or ADI2 – concentration values at (n+1)-th time step are de-
termined in two stages, depending on the selected method, resultant
equation systems are solved with the application of Thomas algo-
rithm or iteratively (fig. 6.5) with the over-relaxation, Gauss-Seidel
or Jacobi approach;

ä CN – concentration values in (n+1)-th time step are determined with
the application of the selected iterative method (fig. 6.5) of successive
over-relaxation, Gauss-Seidel or Jacobi, to solve the resultant set of
equation system;

ä UP – values in (n + 1)-th time step are determined directly on the
basis of the previous step.

If the successive over-relaxation method is applied, and the relaxation
parameter is not specified in the input file, function selecting an optimal
parameter for the given simulation setup and the size of the computation
grid will be called. A number of simulations are carried out for various
values of the relaxation parameter ω in the first time step. The parameter
for which the smallest number of iterations was performed to reach the
result with the desired accuracy is selected as the optimal one.

6. Recording the calculated values in the file
The concentration values calculated in the next time step are recorded in
a text file. It is possible to record all or only selected time steps in one or
multiple files. The x,
y coordinates of the
point, and the concen-
tration value at this
point are recorded.

grid Conc Sch t.txt file format; option I

x y Conc

Also the component
values of velocity and
dispersion tensor for
each node of the grid
can be recorded.

grid Conc Sch t.txt file format; option II

x y vx vy Dxx Dxy Dyy Conc

It has to be kept in mind, however, that for large size grids the resulting
files may be very big (e.g. for a grid of 250× 250, the size of the file with
the concentration values in a single time step is ca. 1 – 2 MB).

7. STOP
The program stops after performing the prescribed number of time steps t.
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6. DESCRIPTION OF RIVMIX MODEL

Figure 6.5: Block diagram of the RivMix model – Iterative solving of equation
system; k + 1 denotes the next iteration during solving the equation system at a given
time step n; for the description of iterative methods, see Section 4.3.2
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Chapter 7

Model Verification

7.1 Introduction

The operation of the implemented RivMix model, and different numerical
schemes which could be used in it, was verified by comparing the obtained sim-
ulation results with the analytical solution, in case when such solution could be
reached (Section 7.2). Also, the simulation results were compared with concen-
tration distributions obtained during a tracer test in the laboratory compound
channel (Section 7.3). In the first case, the analysis was carried out with the
application of various implemented numerical schemes: UP, CN, and ADIfor
instantaneous and continuous discharge of pollutants. In case of the laboratory
channel with continuous inflow of the tracer, the most effective scheme, ADI,
was used. Apart from the tests presented in this chapter, the operation of the
model is illustrated by the test carried out in Chapter 3, where special emphasis
was put on various methods of determination of the dispersion tensor. In that
chapter, situations of instantaneous and continuous discharge of pollutants in
case of a straight channel situated at various angles in relation to x axis of the
coordinate system is described. Like in the case of the laboratory channel, the
fastest method, ADI, was applied.

7.2 Wide rectangular channel

A wide rectangular channel was selected for the tests, for which it is possible
to reach the analytical solution. The channel was described in Chapter 3 and
schematically presented in figure 3.5. In order to use the analytical solution
(defined by equation 2.16) the calculations were carried out far away from the
banks (boundary conditions at infinity) for constant values of dispersion coef-
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Table 7.1: Simulation parameters used in the tests carried out

Velocity Dispersion Grid Time
components coefficients spacing step

vx
[m
s

]
vy
[m
s

]
DL

[
m2
s

]
DT

[
m2
s

]
∆x[m] ∆y[m] ∆t[s]

0.106 0.106 0.75 0.1 1 1 0.5

ficients, constant velocity field, and constant depth of the channel. Simulation
parameters are presented in table 7.1. The values of flow parameters and lon-
gitudinal dispersion parameters were selected so that they remain in the real
range of those values. In the case in question, they reflect the values determined
in a tracer experiment for the Upper Narew river in its initial section – 5.75
kilometres away from the discharge point. The data were taken from works by
(Rowiński et al., 2003a,b). The time and spatial steps were selected in such a
way that the discussed schemes be stable and no non-physical oscillations occur.
In particular, in order for the UP scheme to be stable, a time step of ∆t = 0.5 s
had to be accepted. The initial concentration was preset in such a way that it
does not influence the accuracy of the obtained results, so that there occur no
large concentration gradients in the computation grid (which appear when the
initial concentration is preset in one point with Dirac delta).
A number of simulations were carried out for so selected set of parame-

ters with the application of the numerical scheme under discussion: UP, CN,
and ADI. In case of instantaneous and continuous discharge, 2000 and 5000
time steps, respectively, were carried out for each discussed scheme. The size
of the computation grid was 400× 400 points in both cases. For instantaneous
discharge of pollutants, the results obtained with different numerical schemes
were compared with the analytical solution. In case of continuous discharge,
the results for different schemes were compared with each other.

7.2.1 Instantaneous discharge of pollutants

In case of instantaneous discharge of pollutants, which can occur in an emer-
gency situation, a discharge of mass M = 10 a.u. at point x0 = y0 = 50m was
considered. The initial concentration was prescribed with the application of the
analytical solution determined after 150 seconds for the same parameters as
the simulation parameters. The initial concentration distribution is illustrated
in figure 7.1.
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7.2 Wide rectangular channel

(a)

(b)

Figure 7.1: Initial concentration in the tests carried out with instantaneous discharge
of pollutants (analytical solution after 150 seconds after discharge)

Figures 7.2 – 7.4 present the results of simulation (figs. 7.2(a), 7.3(a) and
7.4(a)) and the analytical solution (fig. 7.5) after 750 seconds from the re-
lease. The charts present two-dimensional concentration distributions c(x, y),
the maximum of which is indicated by values “Mean x” and “Mean y”. “RMS x”
and “RMS y” denote standard deviation of projection of concentration distri-
bution on x and y axis, respectively. The value of the “Integral” variable is the
total mass on computational grid, which does not change during simulation
time (equals the initially discharged value of 10 arbitrary units) as illustrated
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7. MODEL VERIFICATION

(a) Numerical solution after 750 seconds,
UP scheme

(b) Difference between the analytical solu-
tion and the numerical one, UP scheme

(c) Projection of the solution on the straight line perpendicular to y = x
and crossing the point (Mean x , Mean y)

(d) 250 s (e) 500 s (f) 1000 s

Figure 7.2: Results of simulation with the application of the UP scheme after 750
seconds – figs. (a), (b), (c), and figs. (d), (e), (f) illustrating the course of the simulation
in time
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(a) Numerical solution after 750 seconds,
CN scheme

(b) Difference between the analytical solu-
tion and the numerical one, CN scheme

(c) Projection of the solution on the straight line perpendicular to y = x
and crossing the point (Mean x , Mean y)

(d) 250 s (e) 500 s (f) 1000 s

Figure 7.3: Results of simulation with the application of the CN scheme after 750
seconds – figs. (a), (b), (c), and figs. (d), (e), (f) illustrating the course of the simulation
in time
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(a) Numerical solution after 750 seconds,
ADI scheme

(b) Difference between the analytical solu-
tion and the numerical one, ADI scheme

(c) Projection of the solution on the straight line perpendicular to y = x
and crossing the point (Mean x , Mean y)

(d) 250 s (e) 500 s (f) 1000 s

Figure 7.4: Results of simulation with the application of the ADI scheme after 750
seconds – figs. (a), (b), (c), and figs. (d), (e), (f) illustrating the course of the simulation
in time
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7.2 Wide rectangular channel

Figure 7.5: Analytical solution after 750 seconds

in figures 7.2(d) – 7.2(f), 7.3(d) – 7.3(f) and 7.4(d) – 7.4(f), indicating that the
discussed numerical schemes preserve mass. Each concentration distribution –
for a given numerical scheme – is accompanied by a histogram with the differ-
ence between the analytical solution and the numerical one (figs. 7.2(b), 7.3(b)
and 7.4(b)), which gives information on the order of magnitude of the obtained
errors.

In figures 7.2(c), 7.3(c) and 7.4(c) we can see the cross-section of the so-
lution along the straight line perpendicular to y = x and crossing the point
representing the maximum concentration value at a given moment in time. For
comparison, each figure stores both numerical and analytical solutions.

The differences between the analytical solution and the numerical one with
the Upwind scheme are evident. The difference in both the shape and the value
of maximum concentration is very well visible. The maximum difference after
750 seconds (fig. 7.2(b)) equals around 10 % of the maximum concentration
in the analytical solution. In case of Crank-Nicolson and Alternating Direction
Implicit method it is difficult to notice the difference between the obtained nu-
merical solutions and the analytical one. The maximum difference is in both
cases about 0.5 % of the maximum concentration value in the analytical solu-
tion. In projections 7.3(c) and 7.4(c) we can see a perfect agreement with the
analytical solution. In case of the UP scheme 7.2(c) we can observe the effect
of faster spreading of the pollution cloud, which is the result of the numerical
diffusion described in Chapter 5. The difference between the analytical solution
and the numerical one increases with the time of simulation (see fig. 7.6).
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7. MODEL VERIFICATION

(a) 250 seconds – after 200 time steps of the simulation

(b) 500 seconds – after 700 time steps of the simulation

(c) 1000 seconds – after 1700 time steps of the simulation

Figure 7.6: Projection of the numerical solution and the analytical one on the straight
line perpendicular to y = x and crossing the point with the maximum concentration
at a given moment in time
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7.2 Wide rectangular channel

RMS x

Figure 7.7: Difference between the standard deviation of the projection of the numer-
ical solution σSX and the analytical one σ

A
X upon the x axis in consecutive time steps,

normalized by σAX

The spread of the pollution clouds during the simulation can be determined
by observing, for example, the values of standard deviation of concentration
distribution projections upon x and y axes denoted in the figures by “RMS x”
and “RMS y”. Figure 7.7 illustrates the difference between the value of standard
deviation obtained in each time step during the simulation (σSX) and standard
deviation in the analytical solution (σAX). The difference was normalized by
the value of standard deviation for the analytical solution (σAX). The values of
“RMS y” behave in a similar way. For the CN and ADI schemes, the difference
is close to zero, while in case of the UP it increases with the number of time
steps performed.

7.2.2 Continuous inflow of pollutants

Another situation for which numerical tests were carried out is a continuous
inflow of pollutants occurring, for example, at discharge of thermal pollutants
into rivers by heat-and-power plants. Continuous inflow of pollutants was simu-
lated by increasing the mass by 10 arbitrary units at each time step. The source
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7. MODEL VERIFICATION

Initial concentration C0, t = 0 s

Figure 7.8: Initial concentration distribution C0 at time t = 0 s used in the tests with
continuous inflow of pollutants

– like in case of instantaneous discharge – is not situated in one point, but, in
order to avoid high concentration gradients in the computational grid, was dis-
tributed over a number of adjacent points. At each time step the concentration
increases at the appropriate nodes of the grid by a preset value „val”:

� val = 1 a.u. at point x = 100, y = 100;

� val = 0.5 a.u. at 8 points surrounding (x, y) = (100, 100);

� val = 0.3125 a.u. in 16 points.

The distribution of concentration at the initial moment is illustrated in fig-
ure 7.8.
In figure 7.9 we can see the results of simulation after 3000 time steps of sim-

ulation for CN (fig. 7.9(a)), ADI (fig. 7.9(b)) and UP (fig. 7.9(c)). The charts in
figure 7.10 comprise cross-sections along the y = x axis (fig. 7.10(a)) and along
a straight line perpendicular to it and running across the middle of the chan-
nel (fig. 7.10(b)). Like in case of instantaneous discharge, we observe a faster
spreading of the pollutant cloud in case of the UP scheme. The maximum value
of concentration establishes at a different level than in case of ADI and CN
schemes for which we obtain almost identical solutions. The pollutant cloud
reaches the cross-section along the middle of the channel faster in case of UP
scheme than in case of CN and ADI schemes.
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7.2 Wide rectangular channel

CN, t = 1500 s ADI, t = 1500 s

(a) Numerical solution, CN scheme (b) Numerical solution, ADI scheme

UP, t = 1500 s

(c) Numerical solution, UP scheme

Figure 7.9: Results of simulation for continuous discharge of pollutants after 1500
seconds for the discussed schemes
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(a)

(b)

Figure 7.10: Projection of the numerical solution with the application of various
schemes: (a) – on the straight line y = x; (b) – on the straight line perpendicular to
y = x, crossing the middle of the channel
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7.3 Laboratory compound channel

7.3 Laboratory compound channel

Obtaining real-life data for verification of a model requires accurate measure-
ments of the velocity field and carrying out a two-dimensional tracer experi-
ment. In practice, it is an expensive undertaking, requiring application of spe-
cial equipment. The complexity of such experiments is confirmed by the scarce
amount of experimental data concerning the two-dimensional problem of mass
transport in open channels. In order to perform a qualitative verification of
the model for realistic values of velocity field and dispersion coefficients, the
data obtained in a compound laboratory channel at Sheffield Hallam Univer-
sity was used. A tracer experiment with the application of fluorescent tracer
– Rhodamine WT 1, whose concentration was measured with Turner Designs
fluorometer, was carried out in the channel. The velocity of water was mea-
sured with a LDA (Laser Doppler Anemometry). The obtained data comprise
(Guymer, 2006):

� information concerning the geometry of the channel;

� depth-averaged velocity field;

� transverse mixing coefficients determined on the basis of experimental
data;

� values of concentration of the tracer in prescribed profiles.

The discussed laboratory channel consisting of two parts, the main channel
and floodplains, is presented schematically in figure 7.11. The width of the
channel is B = 1.2m, with the width of the main channel b = 0.196m. The
walls of the main channel are inclined at 45◦. The tracer experiment was carried
out for a steady flow Q = 17.2 ls . The average velocity of the water in the
channel was U = 0.478 ms , the depth in the main channel H = 0.0972m, and
h = 0.0318m over the floodplains. The profile of the bottom of the channel is
drawn in figure 7.12. The broken lines denote the start and the end, respectively,
of the section of variable depth between the main channel and the floodplains.
The depth-averaged velocity fields for the whole channel and the distribution
Dyy, being input data for the simulations carried out are presented in figures
7.13 and 7.14 respectively.
The velocity field and the transverse mixing coefficients were used as in-

put data for the simulations carried out, and the concentration values in the

1A tracer often used during the experiments in rivers (see, e.g. Rowiński et al., 2003a,
2007), with color range from red to light-pink – depending on concentration
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Figure 7.11: Schematic representation of the laboratory channel for which the simu-
lations were carried out

Figure 7.12: Profile of the bottom of the channel
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7.3 Laboratory compound channel

Figure 7.13: Depth-averaged (mean velocity) vx distribution in the discussed channel

Figure 7.14: Transverse dispersion coefficient Dyy distribution in the channel
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measured profiles – for verification of the results. It has to be stressed at the
beginning, however, that in case of the tracer experiment carried in the channel
in question, the concentration was measured at one depth, in the first version
at z = 2.11 cm (measured from the water surface), in the second (used here)
– at the bottom of the channel. In case of measurements at one depth, we
cannot speak about depth-averaged concentration values, and it is an obvious
oversimplification at the basis of the model. The transverse mixing coefficients
determined in the laboratory in Sheffield on the basis of measured concentration
distributions with the application of the modified momentum method (Holley
et al., 1972), may also be encumbered with error. Therefore, the discussion
presented in this chapter may be treated only as qualitative checking of the op-
eration of the RivMix model on experimental data with variable velocity field
and variable dispersion coefficients. In order to carry out reliable quantitative
tests, the tracer experiment should comprise measurements of a larger num-
ber of depth-averaged concentration distribution profiles, which would allow
for determination of vertically-averaged concentration values.
The simulation was carried out using the fastest method, ADI, the sim-

ulation parameters are presented in table 7.2. The value of the DL coefficient
(equal Dxx in the case in question) was determined on the basis of the empirical
relationship (Elder, 1959):

Dxx = 5.93hu∗, (7.1)

where:
u∗ – friction velocity;
h – depth.

In the calculations, the values of u∗ determined at Sheffield Hallam University
were used:

� u∗ = 0.0219 ms – for the main channel,

� u∗ = 0.0138 ms – for floodplains.

The distribution of longitudinal dispersion coefficient DL is illustrated in fig-
ure 7.15. This relationship is one of the simplest empirical formulae used for
determining of DL available in the literature (Section 2.4), but its selection
turned out to have insignificant influence upon the obtained distribution of
tracer concentrations.
In the tracer experiment, continuous inflow of pollutants was taken into

consideration, with the source situated in the middle of the channel over the
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Figure 7.15: Longitudinal dispersion coefficient distribution in the channel

Figure 7.16: Transverse dispersion coefficient distribution in the channel
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Table 7.2: Simulation parameters used in the tests carried out

Grid Time
spacing step

∆x[m] ∆y[m] ∆t[s]

0.01 0.005 0.1

surface of the water. The source in the numerical tests was simulated with the
application of Gauss distribution (with standard deviation of σx =

√
3∆x, σy =√

3∆y), increasing the concentration value by 10 arbitrary units at the point
representing the situation of the source in each time step.
In the analysis leading to the determination of Dyy coefficient, a triangular

distribution of dispersion coefficient as a function of the distance from the axis of
the channel was assumed. This dependency was smoothed in the model in order
to avoid numerical problems connected with large variations of the coefficient
between consecutive nodes of the grid (fig. 7.16).
The results of the simulation after 50 time steps are illustrated in figure 7.17.

Numerical tests demonstrated that the distribution of concentration in space
can be considered fixed after 100 time steps, as presented in figure 7.18.
Because the first series of measurements was carried out close to the source

(at distances of 0.112 m, 0.182 m, 0.252 m, 0.322 m and 0.392 m from the
source), where the pollutant cloud is not yet mixed over the channel depth, it
was disregarded. Such a situation should be modeled with the application of a
three-dimensional equation, see Chapter 2. The second series of measurements
was done at a distance of 1.89 m, 2.14 m and 2, 64 m from the source. In this
case, vertical mixing can be assumed (see table 2.2) and the depth-averaged
two-dimensional advection-diffusion equation (2.6) could be used. For such a
situation, the three profiles given, the results of simulation and the results of
measurements were plotted in figures 7.19, 7.21 and 7.23.
Note that the results of simulations were scaled in such a way that the max-

imum concentration value from the simulations be equal to the maximum value
measured in the given profile. Because common normalization for all three pro-
files did not bring about desired results, each profile was normalized separately
in individual profiles. The shapes obtained as a result of the simulation are
characterized with high similarity to the shapes of distribution obtained during
the experiment. The fact that the sides of the distribution are close to the ex-
pected ones (figs. 7.20, 7.22 and 7.24) requires special attention. Obviously, in
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Figure 7.17: Concentration distribution c(x, y) after 50 time steps

Figure 7.18: Concentration distribution c(x, y) after 100 time steps

123



7. MODEL VERIFICATION

Figure 7.19: Concentration distribution after 100 time steps at the distance of 1.89 m
from the source – comparison of simulated and experimental results

Figure 7.20: Concentration distribution after 100 time steps at the distance of 1.89 m
from the source – comparison of simulated and experimental results; logarithmic scale
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Figure 7.21: Concentration distribution after 100 time steps at the distance of 2.14 m
from the source – comparison of simulated and experimental results

Figure 7.22: Concentration distribution after 100 time steps at the distance of 2.14 m
from the source – comparison of simulated and experimental results; logarithmic scale
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Figure 7.23: Concentration distribution after 100 time steps at the distance of 2.64 m
from the source – comparison of simulated and experimental results

Figure 7.24: Concentration distribution after 100 time steps at the distance of 2.64 m
from the source – comparison of simulated and experimental results; logarithmic scale
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ideal situation we would like the maximum values of concentrations obtained
during the simulation to agree with the data, which could not be obtained with-
out assessing possible systematic errors in the collected data and derived Dyy
coefficients. The basic problem here is the fact that the concentrations in the
experiment (measured at the bottom of the channel) may not be representative
for the averaged concentration values, and we obtain such data as a result of
the simulations carried out. The next reason for partial disagreement of the
simulation results with the data may be the uncertainty in the determination
of the Dyy coefficient connected with the momentum method and the assumed
triangular distribution of the dispersion coefficient in the function of distance
from the axis of the channel. The attempts can be made to solve the problem
by independent determination of Dxx and Dyy coefficients, which is in turn a
separate and complex problem which whole volumes are devoted to (e.g. Beak,
2004; Boxall, 2000).
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Chapter 8

Concluding remarks

A computer model (River Mixing Model – RivMix) of transport of passive
solutes, described in the book, can be used for analyses of two-dimensional
spreading of pollutants in rivers and be an effective tool to carry out the assess-
ment of the impact on the environment. TheRivMixmodel enables selection of
one of the four implemented numerical schemes: Upwind (UP), Crank-Nicolson
(CN), and the Alternating Direction Implicit method in two variations marked
as (ADI) and (ADI2). The analysis of properties and speed of the schemes
in question, presented in the book, and first of all the determined accuracy
and comparison of the implemented methods with the analytical solution for
a straight channel will be useful for the model users. They allow to evalu-
ate the usefulness of individual methods and the results obtained with them,
and the selection of the appropriate method depending on the demands of the
specific problem. The analyses can also be useful for people solving numerical
advection-diffusion equation with mixed derivatives, not necessarily applied to
the transport of pollutants in open channels, especially since the number of
publications in which mixed derivatives in two-dimensional advection-diffusion
equation are taken into consideration is small.
Solving the transport equation numerically, attention has to be paid first

of all to the accuracy of the applied method, and, what follows, the obtained
results. What is also often important is the computing cost; the numerical tests
carried out demonstrated that the implicit UP scheme is the fastest of all the
discussed ones. Using it, however, one has to be aware of the numerical diffusion
significantly influencing the exactness of the obtained results. The error mag-
nitude can be estimated using the equations derived in the book. Nevertheless,
in case of an emergency, e.g. instantaneous discharge of pollutants into a river,
the UP scheme can provide us with information on the situation of the maxi-
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mum concentration, and therefore the possibility to take up necessary measures
quickly. In order to obtain an exact solution not affected with the numerical dif-
fusion error, the ADI method has to be used, which is based on the implicit CN
scheme, with the Thomas analytical method for solving the equation systems.
The method is stable and relatively fast. Carrying out numerical calculations,
one has to remember about appropriate selection of simulation parameters –
time step and the size of the mesh in the computation grid. In case of the UP
scheme, attention has to be paid that the scheme be stable, and in case of ADI
and CN that no non-physical oscillations occur. Due to the limitations of the
time step in case of the UP scheme, in some situations, when we are not inter-
ested in high resolution of results, the ADI method may turn out faster since
the time step used in it can be bigger.
While modeling spreading of pollutants, mixed derivatives are often disre-

garded, due to the (not always right) assumption that the dispersion tensor
present in the equation is diagonal. The tests of various methods of simplifica-
tion of a non-diagonal dispersion tensor, carried out in this work, demonstrate
that such assumption can have significant influence upon the obtained solu-
tion. The presented computation tests demonstrate unambiguously that using
the simplified two-dimensional transport equation, the correct solution can be
obtained only in very specific cases. The error will not be big for simple geome-
try if the slope of the axis of the channel changes insignificantly along the length
considered. Only in some situations, e.g. when we are interested in the location
with the maximum concentration of solute, disregarding mixed derivatives will
not influence the expected result – irrespective of the geometry of the channel in
question. When we consider instantaneous discharge of admixture, all methods
correctly indicate the position of maximum concentration, and identity trans-
formations, additionally, maximum concentration value. In other situations we
obtain results divergent from reality. The obtained results can be helpful in
conscious application of simplified versions of dispersion tensor.
The verification of the model carried out with the application of the analyti-

cal solution demonstrates that solutions with high accuracy can be obtained for
CN and ADI schemes, which is confirmed by the preceding analysis of truncation
error. With the application of the UP scheme, the obtained results are affected
by numerical diffusion error. Verification with experimental data confirmed, on
the other hand, the qualitative performance of the model which properly re-
flexes the shapes of concentration distributions in individual profiles. Reliable
qualitative analyses require that an appropriate tracer experiment be carried
out, comprising measurements of the appropriated number of profiles of concen-
tration distributions along the depth, in order to determine vertically-averaged
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concentration values. Carrying out such an experiment shall be the purpose
of further research. The experiments should be carried out for channels with
various geometries.
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Appendix A

2D Transport Equation for
Constant and Variable Depth

The two-dimensional depth-averaged transport equation:

h
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, (A.1)

after differentiating the right side of the equation, becomes:
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A. 2D TRANSPORT EQUATION

After regrouping one obtains:
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+
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(
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1
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− 1
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∂x2
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∂x∂y
+Dyy

∂2c

∂y2
. (A.3)

For the constant depth and constant dispersion coefficients or when the varia-
tions of those between the grid nodes are small we can assume that:

vx = v
′
x,

vy = v
′
y.

In other case values v
′
x and v

′
y must be calculated numerically, e.g. using central

difference quotient (4.4).
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Appendix B

Difference Operators Used in
the Book

Table B.1 contains all difference operators used in the book. Aside the differ-
ential operators the symbols used to mark difference operators and order of
accuracy for particular difference quotients have been written.
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Appendix C

Dispersion Tensor
Simplifications for Different

Angles α

In this appendix the simulation results for tests of different methods of disper-
sion tensor simplification described in Chapter 3, for angles α: 0◦, 5◦, 15◦, 30◦

and 60◦ have been collected.

C.1 Instantaneous release of solute
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C. DISPERSION TENSOR SIMPLIFICATIONS

Rotation, t = 400 s Quasi-rotation, t = 400 s

Vector-like rotation, t = 400 s Identity transformation, t = 400 s

Figure C.1: Numerical solution with application of different methods of dispersion
tensor transformation for the pulse release after 400 time steps, α = 0◦
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C.1 Instantaneous release of solute

Error, t = 400 s

Figure C.2: Difference between the numerical solution and analytical one for the
pulse release after 400 time steps, α = 0◦; the difference is the same for all methods of
dispersion tensor transformation
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C. DISPERSION TENSOR SIMPLIFICATIONS

Rotation, t = 400 s Quasi-rotation, t = 400 s

Vector-like rotation, t = 400 s Identity transformation, t = 400 s

Figure C.3: Numerical solution with application of different methods of dispersion
tensor transformation for the pulse release after 400 time steps, α = 5◦
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C.1 Instantaneous release of solute

Error: Anal - Rotation, t = 400s Error: Anal - Quasi-rotation, t = 400s

Error: Anal. - Vector-like rotation, t = 400s Error: Anal - Identity transformation, t = 400s

Figure C.4: Difference between the numerical solution and analytical one for different
methods of dispersion tensor transformation for the pulse release after 400 time steps,
α = 5◦
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C. DISPERSION TENSOR SIMPLIFICATIONS

Rotation, t = 400 s Quasi-rotation, t = 400 s

Vector-like rotation, t = 400 s Identity transformation, t = 400 s

Figure C.5: Numerical solution with application of different methods of dispersion
tensor transformation for the pulse release after 400 time steps, α = 15◦
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C.1 Instantaneous release of solute

Error: Anal - Rotation, t = 400s Error: Anal - Quasi-rotation, t = 400s

Error: Anal. - Vector-like rotation, t = 400s Error: Anal - Identity transformation, t = 400s

Figure C.6: Difference between the numerical solution and analytical one for different
methods of dispersion tensor transformation for the pulse release after 400 time steps,
α = 15◦
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C. DISPERSION TENSOR SIMPLIFICATIONS

Rotation, t = 400 s Quasi-rotation, t = 400 s

Vector-like rotation, t = 400 s Identity transformation, t = 400 s

Figure C.7: Numerical solution with application of different methods of dispersion
tensor transformation for the pulse release after 400 time steps, α = 30◦
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C.1 Instantaneous release of solute

Error: Anal - Rotation, t = 400s Error: Anal - Quasi-rotation, t = 400s

Error: Anal. - Vector-like rotation, t = 400s Error: Anal - Identity transformation, t = 400s

Figure C.8: Difference between the numerical solution and analytical one for different
methods of dispersion tensor transformation for the pulse release after 400 time steps,
α = 30◦
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C. DISPERSION TENSOR SIMPLIFICATIONS

Rotation, t = 400 s Quasi-rotation, t = 400 s

Vector-like rotation, t = 400 s Identity transformation, t = 400 s

Figure C.9: Numerical solution with application of different methods of dispersion
tensor transformation for the pulse release after 400 time steps, α = 60◦
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C.1 Instantaneous release of solute

Error: Anal - Rotation, t = 400s Error: Anal - Quasi-rotation, t = 400s

Error: Anal. - Vector-like rotation, t = 400s Error: Anal - Identity transformation, t = 400s

Figure C.10: Difference between the numerical solution and analytical one for different
methods of dispersion tensor transformation for the pulse release after 400 time steps,
α = 60◦
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C. DISPERSION TENSOR SIMPLIFICATIONS

C.2 Continuous inflow of solute

In case of α = 0◦ there is no difference between the solution by means of rotation
and the solution with application of one of different methods of dispersion tensor
simplifications, therefore, in this case the difference hasn’t been plotted.
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C.2 Continuous inflow of solute

Rotation, t = 1000s Quasi-rotation, t = 1000s

Vector-like rotation, t = 1000s Identity transformation, t = 1000s

Figure C.11: Numerical solution with application of different methods of dispersion
tensor transformation for the continuous release after 1000 time steps, α = 0◦
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C. DISPERSION TENSOR SIMPLIFICATIONS

Rotation, t = 1000s Quasi-rotation, t = 1000s

Vector-like rotation, t = 1000s Identity transformation, t = 1000s

Figure C.12: Numerical solution with application of different methods of dispersion
tensor transformation for the continuous release after 1000 time steps, α = 5◦
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C.2 Continuous inflow of solute

Error: Rotation - Quasi-rotation, t = 1000s

Error: Rotation - Vector-like rotation, t = 1000s Error: Rotation - Identity transform, t = 1000s

Figure C.13: Difference between the solution by means of rotation and the solution
with application of one of different methods of dispersion tensor transformation, after
1000 time steps, α = 5◦
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C. DISPERSION TENSOR SIMPLIFICATIONS

Rotation, t = 1000s Quasi-rotation, t = 1000s

Vector-like rotation, t = 1000s Identity transformation, t = 1000s

Figure C.14: Numerical solution with application of different methods of dispersion
tensor transformation for the continuous release after 1000 time steps, α = 15◦
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C.2 Continuous inflow of solute

Error: Rotation - Quasi-rotation, t = 1000s

Error: Rotation - Vector-like rotation, t = 1000s Error: Rotation - Identity transform, t = 1000s

Figure C.15: Difference between the solution by means of rotation and the solution
with application of one of different methods of dispersion tensor transformation, after
1000 time steps, α = 15◦

153



C. DISPERSION TENSOR SIMPLIFICATIONS

Rotation, t = 1000s Quasi-rotation, t = 1000s

Vector-like rotation, t = 1000s Identity transformation, t = 1000s

Figure C.16: Numerical solution with application of different methods of dispersion
tensor transformation for the continuous release after 1000 time steps, α = 30◦
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C.2 Continuous inflow of solute

Error: Rotation - Quasi-rotation, t = 1000s

Error: Rotation - Vector-like rotation, t = 1000s Error: Rotation - Identity transform, t = 1000s

Figure C.17: Difference between the solution by means of rotation and the solution
with application of one of different methods of dispersion tensor transformation, after
1000 time steps, α = 30◦
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C. DISPERSION TENSOR SIMPLIFICATIONS

Rotation, t = 1000s Quasi-rotation, t = 1000s

Vector-like rotation, t = 1000s Identity transformation, t = 1000s

Figure C.18: Numerical solution with application of different methods of dispersion
tensor transformation for the continuous release after 1000 time steps, α = 60◦
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C.2 Continuous inflow of solute

Error: Rotation - Quasi-rotation, t = 1000s

Error: Rotation - Vector-like rotation, t = 1000s Error: Rotation - Identity transform, t = 1000s

Figure C.19: Difference between the solution by means of rotation and the solution
with application of one of different methods of dispersion tensor transformation, after
1000 time steps, α = 60◦
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Appendix D

Boundary Conditions

The appendix presents the concentration coefficients used in difference equa-
tions at the boundary points for all described schemes: UP (eq. 4.9) – table
D.1, CN (eq. 4.11) – tables D.2, D.3 and ADI (eq. 4.23 and 4.24) – tables D.4
and D.5. Table D.6 applies for all schemes.
The following symbols were used to mark the different types of boundaries:

� · – point inside the flow area;

� ↑ – top boundary;

� ↓ – bottom boundary;

� ← – left boundary;

� → – right boundary;

� ↖ – top-left corner;

� ↗ – top-right corner;

� ↙ – bottom-left corner;

� ↘ – bottom-right corner;

� y – top-left edge;

� x – top-right edge;

� q – bottom-left edge;

� p – bottom-right edge.
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D. BOUNDARY CONDITIONS
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Appendix E

Modified Equation

The appendix presents the details of construction of the modified equation,
described in Chapter 5. Table E.1 has been proposed to simplify the calculation
which has to be done during the construction of modified equation. Instructions
how to use the table are presented below.
The first column contains all the terms that can appear in the Taylor ex-

pansions (5.4) and (5.5). The table header contains all the concentration values
in particular points (cn+1i,j , c

n+1
i+1,j , ..., c

n+1
i−1,j−1; c

n
i,j , c

n
i+1,j , ..., c

n
i−1,j−1), which ap-

pear in equation (5.2). Following the procedure described in Chapter 5 the first
step to obtain the modified equation is the expansion of terms of equation (5.2)
into Taylor series. The expansions should be put into the table in the following
way: if in the expansion around a given point a term from the first column
appears, one puts a relevant coefficient from equation (5.2), in the remaining
cells one puts „− ” mark. For example for the cn+1i,j , the expansion into Taylor
series is the following:

cn+1i,j = c
n
i,j +∆t

∂c

∂t
+
∆t2

2
∂2c

∂t2
+
∆t3

6
∂3c

∂t3
+ . . . , (E.1)

In the table one puts coefficient b0 for cni,j , ∆t
∂c

∂t
,
∆t2

2
∂2c

∂t2
and
∆t3

6
∂2c

∂t2
, and in

remaining cells one puts „−”. Following this procedure for all terms of equation
(5.2) one fills the whole table. Next, one summs up all the table rows. At this
step many terms reduce. For such terms the table cells were filed with gray
color. The remaining summed values should be put into last two columns, with
relevant coefficients: (5.3) for the next to last, and (5.32) for the last one.
Modified equation for the general case (5.6) will be obtained by summing up
products of the first and next to last column. For the ADI method one should
sum the products of first and last columns.
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E. MODIFIED EQUATION

Table E.1: The table useful when the Modified Equation is created
cn
+
1

i,
j

cn
+
1

i+
1
,j

cn
+
1

i−
1
,j

cn
+
1

i,
j
+
1

cn
+
1

i,
j
−
1

cn
+
1

i+
1
,j
+
1

cn
+
1

i+
1
,j
−
1

cn
+
1

i−
1
,j
+
1

cn
+
1

i−
1
,j
−
1

cn i
,j

cn i
+
1
,j

cn i
−
1
,j

cni,j b0 b1 b2 b3 b4 b5 b6 b7 b8 a0 a1 a2

∆t
∂c

∂t
b0 b1 b2 b3 b4 b5 b6 b7 b8 - - -

∆x
∂c

∂x
- b1 −b2 - - b5 b6 −b7 −b8 - a1 −a2

∆y
∂c

∂y
- - - b3 −b4 b5 −b6 b7 −b8 - - -

∆t2

2
∂2c

∂t2
b0 b1 b2 b3 b4 b5 b6 b7 b8 - - -

∆x2

2
∂2c

∂x2
- b1 b2 - - b5 b6 b7 b8 - a1 a2

∆y2

2
∂2c

∂y2
- - - b3 b4 b5 b6 b7 b8 - - -

∆x∆y
∂2c

∂x∂y
- - - - - b5 −b6 −b7 b8 - - -

∆x∆t
∂2c

∂x∂t
- b1 −b2 - - b5 b6 −b7 −b8 - - -

∆y∆t
∂2c

∂y∂t
- - - b3 −b4 b5 −b6 b7 −b8 - - -

∆t3

6
∂3c

∂t3
b0 b1 b2 b3 b4 b5 b6 b7 b8 - - -

∆x3

6
∂3c

∂x3
- b1 −b2 - - b5 b6 −b7 −b8 - a1 −a2

∆y3

6
∂3c

∂y3
- - - b3 −b4 b5 −b6 b7 −b8 - - -

∆x∆t∆y
∂3c

∂x∂y∂t
- - - - - b5 −b6 −b7 b8 - - -

∆x2∆y
2

∂3c

∂x2∂y
- - - - - b5 −b6 b7 −b8 - - -

∆x∆y2

2
∂3c

∂x∂y2
- - - - - b5 b6 −b7 −b8 - - -

∆t∆x2

2
∂3c

∂x2∂t
- b1 b2 - - b5 b6 b7 b8 - - -

∆t∆y2

2
∂3c

∂y2∂t
- - - b3 b4 b5 b6 b7 b8 - - -

∆t2∆x
2

∂3c

∂x∂t2
- b1 −b2 - - b5 b6 −b7 −b8 - - -

∆t2∆y
2

∂3c

∂y∂t2
- - - b3 −b4 b5 −b6 b7 −b8 - - -
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Table E.1: The table useful when the Modified Equation is created (continued)
cn i
,j
+
1

cn i
,j
−
1

cn i
+
1
,j
+
1

cn i
+
1
,j
−
1

cn i
−
1
,j
+
1

cn i
−
1
,j
−
1

general ADI

cni,j a3 a4 a5 a6 a7 a8 0 0

∆t
∂c

∂t
- - - - - - 1 1

∆x
∂c

∂x
- - a5 a6 −a7 −a8 Crax Crax

∆y
∂c

∂y
a3 −a4 a5 −a6 a7 −a8 Cray Cray

∆t2

2
∂2c

∂t2
- - - - - - 1 1

∆x2

2
∂2c

∂x2
- - a5 a6 a7 a8 −2Crdx + Crax(2α1 − 1) −2Crdx

∆y2

2
∂2c

∂y2
a3 a4 a5 a6 a7 a8 −2Crdy + Cray(2α2 − 1) −2Crdy

∆x∆y
∂2c

∂x∂y
- - a5 −a6 −a7 a8 −8Crdxy −8Crdxy

∆x∆t
∂2c

∂x∂t
- - - - - - θCrax

Crax
2

∆y∆t
∂2c

∂y∂t
- - - - - - θCray

Cray
2

∆t3

6
∂3c

∂t3
- - - - - - 1 1

∆x3

6
∂3c

∂x3
- - a5 a6 −a7 −a8 Crax Crax

∆y3

6
∂3c

∂y3
a3 −a4 a5 −a6 a7 −a8 Cray Cray

∆x∆t∆y
∂3c

∂x∂y∂t
- - - - - - −8θCrdxy

CraxCray
4

∆x2∆y
2

∂3c

∂x2∂y
- - a5 −a6 a7 −a8 0 0

∆x∆y2

2
∂3c

∂x∂y2
- - a5 a6 −a7 −a8 0 0

∆t∆x2

2
∂3c

∂x2∂t
- - - - - - θ

[
−2Crdx + Crax(2α1 − 1)

]
−Crdx

∆t∆y2

2
∂3c

∂y2∂t
- - - - - - θ

[
−2Crdy + Cray(2α2 − 1)

]
−Crdy

∆t2∆x
2

∂3c

∂x∂t2
- - - - - - θCrax

Crax
2

∆t2∆y
2

∂3c

∂y∂t2
- - - - - - θCray

Cray
2

173





List of symbols

a dimensionless coefficient

B, b [m] width of the river or channel

c
[
kg/m3

]
, [a.u.] concentration

cni,j [a.u.] concentration value at point (i, j) at n-th time step

Crax, Cray advection Courant numbers

Crdx, Crdy, Crdxy diffusion Courant numbers

D
[
m2/s

]
dispersion tensor

DRes
[
m2/s

]
effective (resultant) diffusion tensor

DD
[
m2/s

]
diagonal dispersion tensor

DV
[
m2/s

]
vector of dispersion coefficients

DL
[
m2/s

]
longitudinal dispersion coefficient

DN
[
m2/s

]
numerical diffusion tensor

DN11, D
N
12, D

N
21, D

N
22

[
m2/s

]
coefficients of numerical diffusion tensor
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List of symbols

DT
[
m2/s

]
transverse dispersion coefficient

Dxx, Dxy, Dyx, Dyy
[
m2/s

]
elements of dispersion tensor

g
[
m/s2

]
gravitation

H [m] averaged depth of the river or channel

h [m] local depth of the river or channel

M [kg] , [a.u.] mass of the solute

Pe Peclet number

R [m] hydraulic radius

R(α) rotation matrix with the angle α

S0 [%] , [�] slope of the channel

t [s] time

TN
[
m3/s

]
numerical dispersion tensor

TN11 , T
N
12 , T

N
21 , T

N
22

[
m3/s

]
coefficients of numerical dispersion tensor

u∗ [m/s] friction (shear) velocity

V
[
m3
]

volume of the liquid

v [m/s] velocity vector
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List of symbols

vx [m/s] x component of velocity vector

vy [m/s] y component of velocity vector

x [m] x-coordinate of the Cartesian system

xi i-th point on the discretization grid

y [m] y-coordinate of the Cartesian system

α [◦] angle between the flow direction and x axis of coordinate
system

α1, α2 spatial weighting parameters with the values within the
range 〈0, 1〉 determining the approximation method of the
first space derivative

∆xci,j , ∆yci,j difference operators

δ2xci,j , δ
2
yci,j , δxy difference operators

∆t [s] time step

∆x [m] grid spacing in x direction

∆y [m] grid spacing in y direction

µx [m] x-coordinate of the mean value of the concentration dis-
tribution

µy [m] y-coordinate of the mean value of the concentration dis-
tribution

ω relaxation parameter

σA [m] standard deviation of analytical solution of advection-
diffusion equation

σN [m] standard deviation determined for the resultant diffusion
coefficient taking into account the calculated numerical
diffusion error
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List of symbols

σS [m] standard deviation of the Gauss distribution fitted to the
simulation results

θ weighting parameter with the values within the range
〈0, 1〉 determining the averaging in time
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List of acronyms

ADI Alternating Direction Implicit method

CN Crank-Nicolson scheme

FDM Finite Difference Method

FEM Finite Element Method

FI Fully Implicit scheme

FVM Finite Volume Method

GS Gauss-Seidel method

J Jacobi method

MEA Modified Equation Approach

RivMix River Mixing Model

SOR Successive Over Relaxation method

T Thomas method

UP Upwind scheme
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