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This volume concerns various aspects of research that contributes to the knowl-

edge of a large number of engineering processes and also some natural processes that 
involve the transformation and transport of momentum, matter and energy. Those 
problems constitute the basis of the studies performed within the Project of the Minis-
try of Higher Education and Science  Grant No. 2 P04D 026 29; it has also been the 
basic theme of the 27th International School of Hydraulics held from 18th to 21st Sep-
tember 2007 in Hucisko in the Jura Region in Southern Poland. It has been decided to 
combine the experience gained by the participants of the meeting and the results 
achieved within the project to provide the reader with a broad overview of the men-
tioned problems.  

In hydraulics one may deal with various aspects of transport processes. It is a well-
known notion that the hydraulic transport concerns a transport method where solid 
particles are suspended in a fluid and transported through pipelines. But we have been 
definitely interested in a much broader range of problems. Our aim has been to discuss 
research that involves the development of fundamental engineering principles, mathe-
matical models, and experimental techniques, with an emphasis on approaches that 
have the potential for innovation and broad application in areas such as the hydraulic 
engineering and environmental hydraulics. Of particular interest has been the physics 
of transport of various constituents in flowing surface waters. All the mixing mecha-
nisms such as advection, molecular diffusion and turbulent diffusion have been con-
sidered from various perspectives. Mathematical models and experimental results that 
account for all the transport processes and reflect the principle of conservation of mass 
have been discussed. We realize that all transport processes in aquatic environment are 
governed by water flow itself, so all the problems related to the water movement un-
der steady and unsteady conditions were of interest as well. The problems of the in-
herent uncertainties were also presented. 
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We do realize how important are the problems of transport of matter, from cogni-
tive but also from practical viewpoints. Substantial amounts of solids (sand, gravel, 
clay, coal, tailings or mineral ores) are transported hydraulically all over the world 
and, for example, the dredging companies are the ones to handle a great deal of the 
transported solids. Then the economy and safety are of major concern in the planning 
and executing of solids transport projects. In nature we deal with sediments and a va-
riety of pollutants that are transported by streams and those processes are also of great 
importance and inspire researchers, engineers, environmentalists and designers to gain 
more understanding and to find solutions to different problems. The need to predict 
and control the transport of mass and energy requires greater knowledge of the proc-
esses that govern the flow of a solids-water mixture in such various environments. 

This volume gathers the experience of numerous researchers from all over Europe 
and various aspects of the problem are considered. With a view to the scope of our 
work and its wide perspective, we were very much aware of the need to put together a 
highly qualified team to provide the reader with a truly up to date overview of the 
subject. The leaders in their fields not only wrote excellent chapters but also delivered 
fantastic lectures during the International School of Hydraulics. I would particularly 
like to acknowledge Keith J. Beven from the Department of Environmental Science of 
Lancaster University (UK), Włodzimierz Czernuszenko from the Institute of Geophys-
ics of the Polish Academy of Sciences, Tom O'Donoghue and Dubravka Pokrajac 
from the Environmental Hydraulics Research Group of the University of Aberdeen 
(UK), Wim S.J. Uijtewaal from Environmental Fluid Mechanics Section of Delft Uni-
versity of Technology (The Netherlands) and Volker Weitbrecht from the Institute of 
Hydromechanics of the University of Karlsruhe (Germany). 

I am sincerely grateful to everyone who has made such important contributions to 
this volume. Let me thank all the authors for their patience, dedication and hard work. 
My particular gratitude goes to all my colleagues from the Institute of Geophysics 
PAS who went above and beyond the call of duty to assist me. Particular thanks go to 
Anna Zdunek, Anna Łukanowska, Monika Kalinowska and Agata Mazurczyk. Their 
enthusiasm and dedication knew no limits. I want also to acknowledge the reviewers 
of all the papers – their hard work ensured high quality of all the contributions. That 
important work was done by Professors Włodzimierz Czernuszenko, Janusz Kubrak, 
Wojciech Majewski, Marek Mitosek, Jarosław Napiórkowski and Romuald Szym-
kiewicz. 

This book was financially supported in part by The Ministry of Higher Education 
and Science Grant No. 2 P04D 026 29 and in part by the Institute of Geophysics, Pol-
ish Academy of Sciences. 
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Abstract  

This paper provides a review of work within the Generalised Likelihood Un-
certainty Estimation (GLUE) methodology on estimating uncertainties in predict-
ing flood frequency, flood inundation, and hydraulic transport of solutes in rivers 
and soils. The issue of prediction uncertainty as an input decision making is also 
discussed. It is concluded that in real applications it is unlikely that a fully objec-
tive approach to uncertainty estimation is possible. It is therefore important that 
the assumptions made are stated explicitly so that they can be agreed or disputed 
with the users of the resulting predictions. It is also important that the modelling 
process be considered as a learning process of constraining uncertainty by adding 
new information. 

1. Uncertainty about uncertainty in flood and transport predictions 

There is currently significant debate about how to estimate the uncertainties associated 
with environmental predictions. This discussion has been prompted by the more wide-
spread availability of computer power, especially Beowulf-type parallel systems of 
cheap PCs, that has allowed the application of Monte Carlo methods of different types 
to a wider range of environmental models. Clearly, there are still some limitations. 
Fine grid scale 2D and 3D hydrologic and hydraulic models with very large numbers 
of elements, still cannot easily be run in Monte Carlo experiments without access to 
very large scale resources, but we can probably expect computer power to continue to 
increase more quickly than changes in modelling concepts for the foreseeable future, 
so that the uncertainty analysis will become feasible for more and more model applica-
tions. 

This raises some interesting questions: in particular, is it possible to agree on an 
uncertainty estimation methodology and how should prediction uncertainties be used 
in decision making? A full discussion of these questions is the subject of a forthcom-
ing book (Beven 2008) and only a brief outline can be given here. Arguments for the 
routine application of uncertainty analysis can be found in Pappenberger and Beven 
(2006). 
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With respect to the first question, the answer is – as yet – no; though some sugges-
tions  can  be  given  about  different  methods  for  use  in  different  circumstances 
(see the Risk and Uncertainty Decision Tree Wiki pages at 
www.floodrisknet.org.uk/methods/Introduction). There are many people who believe 
that statistics is the only way of estimating uncertainties associated with model predic-
tions (see O’Hagan and Oakley 2004, Mantovan and Todini 2006) but it is clear that in 
many applications of environmental models there are sources of uncertainty that are 
not statistical (aleatory) in nature (see Beven 2005, 2006a) and the use of formal statis-
tical assumptions might lead to misleading results even in near-ideal cases (Beven et 
al. 2007). In non-ideal cases (i.e. nearly all real applications), non-statistical (epis-
temic) uncertainties may dominate. Examples of epistemic uncertainties are bias and 
nonstationarity in input errors, model structural errors and commensurability errors 
(where a variable or parameter in a model is different to an equivalent quantity that 
can be measured in the field, see Beven 1989, 2002, 2006a, b, Freer et al. 1996, 2004). 

It can be easily shown that in all real applications it is impossible to separate out 
different sources of aleatory and epistemic uncertainties unless very strong (and diffi-
cult to justify) assumptions are made (Beven 2006a). This leaves plenty of scope for 
uncertainty about how to estimate prediction uncertainties. In what follows we will 
consider only one methodology, the Generalised Likelihood Uncertainty Estimation 
(GLUE) first proposed by Beven and Binley (1992). This is a very flexible technique 
for model conditioning given some past observations of system responses (it includes 
both formal statistical and fuzzy methods as special cases) but one that has been criti-
cised as being based on too many subjective assumptions. It is based on the equifinal-
ity thesis: the concept that in real applications there may be many different model 
structures and sets of parameter values for each model structure that produce accept-
able or behavioural predictions of the system of interest (Beven 1993, 2006a). Equifi-
nality can be visualised in plots of some evaluation measure, such as residual variance 
or Nash-Sutcliffe efficiency, against single parameter values (e.g. Figs. 1 and 2). Such 
plots represent projections of points on a response surface in the model space onto the 
single parameter axes. As such they cannot reveal all the complex parameter interac-
tions within a model structure that lead to behavioural or non-behavioural perform-
ance; they can reveal that very often the best model performances are found across a 
wide range of individual parameter values.  

The GLUE methodology is essentially very simple in concept. A large number of 
runs of a model are made using randomly generated sets of effective parameter values 
(chosen from defined prior distributions if that information is available, otherwise 
from uniform prior distributions). The outputs from each model run are compared with 
the observational data, taking account of observational error where appropriate (see, 
e.g. Beven 2006a, Freer et al. 2004). Those models providing acceptable or behav-
ioural results are retained for use in prediction; those that do not are rejected. Each 
behavioural model is assigned a likelihood weight dependent on performance (zero for 
non-behavioural models) that is used to weight the predictions of that model in a for-
mal cumulative distribution of predictions over the whole set of behavioural models. 
Different model structures as well as different parameter sets can be included in this 
process if the same methods of evaluation and likelihood assignment can be applied. 
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Different types of evaluation (analogous to multi-criteria calibration) are easily com-
bined in this methodology, using either Bayes equation or some other chosen combi- 
nation method (e.g. fuzzy union/intersection). Demonstration software for GLUE can 
be found at http://www.es.lancs.ac.uk/hfdg/freeware/hfdg_freeware_glue.htm. 

The use of GLUE will be demonstrated in applications to flood frequency estima-
tion, flood inundation predictions for risk mapping, and hydraulic transport predic-
tions. A final section considers the use of prediction uncertainties in decision making, 
with a focus on inundation predictions. 
 

 

Fig. 1. Dotty plots of a coefficient of determination in a pesticide transport model fitted to 
observed atrazine concentrations in a large undisturbed soil column. Each dot represents one 
run of the model with different randomly chosen parameter values. The four parameters are: 
(top) an effective pore water velocity, a dispersion coefficient (the ranges for which were 
previously determined by fitting bromide concentration data assumed to be a near conservative 
tracer on the same kolumn), (bottom) a retardation coefficient and a degradation coefficient. 
The best models of the realisations simulated by uniform sampling in the model space are at 
the top of each plot. The error bars shown on the bottom plots are ± 2 standard errors on the 
parameters estimated by nonlinear regression (after Zhang et al. 2006). 

2. Uncertainty in flood frequency estimation 
Flood frequency estimation is often considered as a statistical problem. Given a se-
quence of historical flood events, a statistical distribution is fitted using either annual 
maximum  or peaks  over threshold data  so that  an estimate  of the flood peak for any  
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given return period can be estimated. If done properly, this can also yield a statistical 
estimation of the uncertainty in the predicted peak discharges, the uncertainty that in-
creases rapidly for return periods longer than the length of the historical series (and 
that therefore might be important in decisions based on 100 year return period events 
or longer). 

 

Fig. 2. Dotty plots for channel and flood plain roughness coefficients in an application of the 
1D HEC-RAS model for the flood of 1997 on the River Morava, Czech Republic. Each dot 
represents one run of the model with randomly chosen roughness coefficients, assumed 
constant for the whole reach. The combined likelihood reflects model performance in 
reproducing both observed inundation extent and the downstream hydrograph (after Pappen-
berger et al. 2005a). 

This is a nice example where different sources of uncertainty and statistical as-
sumptions might affect the result significantly. There is little agreement in the litera-
ture on what distribution should be chosen, and different distributions fitting the data 
more or less equally well might result in quite different predictions at higher return 
periods (this is an epistemic uncertainty analogous to model structural error). It is 
(usually) necessary to assume that the historical flood data are correct, even though it 
is known that out-of-bank flows are notoriously difficult to estimate accurately (again 
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a form of epistemic uncertainty). It is necessary to assume that the historical data are 
samples from a stationary distribution even where a catchment is known to have un-
dergone significant land use change and been subject to longer time scale climate vari-
ability (again a form of epistemic uncertainty). Fitting a statistical distribution also 
necessarily deals with any hydrological and hydraulic process changes in different 
flood events (e.g., extent of surface and subsurface runoff contributing areas, transition 
to overbank flow) implicitly (again a form of epistemic uncertainty – though there 
have been rare examples of trying to fit mixed distributions for different runoff gen-
eration mechanisms, where the distributional assumptions then apply to each mecha-
nism). Finally, it is not often realised that the parameter values for the fitted distribu-
tion (and consequent predictions and uncertainties) depend strongly on very specific 
assumptions about the statistical nature of the residuals that may or may not be valid – 
they are rarely checked. 
 

 

Fig. 3. Flood frequency predictions for the Dolni Kralovice sub-catchment of the Zelivka River 
catchment, Czech Republic, using continuous 10000 year Topmodel simulations driven by a 
stochastic rainfall model using behavioural parameter sets after conditioning on observed flood 
peaks, flow duration curves and maximum snow water equivalents, combined within GLUE 
using a fuzzy rules method. Grey lines represent frequencies predicted by different parameter 
sets, dashed lines the 5 and 95% likelihood weighted prediction bounds derived from these 
simulations, circles represent frequencies estimated from observed annual maxima, dotted lines 
represent statistical estimates based on observed annual maxima assuming a Wakeby 
distribution (after Blazkova and Beven 2004). 
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This is clearly not only a statistical problem − even if we have been happy to use 
statistical fitting for convenience in the past – there are too many epistemic uncertain-
ties. There is an alternative approach which can reflect the nonlinearities in the hydro-
logical and hydraulic responses more directly and, as a result, might be more useful in 
predicting the effects of future change. This is the continuous simulation rainfall-
runoff modelling approach, first used by Beven (1986, 1987) and more recently by 
Cameron et al. 1999, 2000, Lamb 1999, Blazkova et al. 2002, 2004, Lamb and Kay 
2004, Cameron 2006). The papers by Cameron and Blazkova have applied this ap-
proach within the GLUE methodology (Figs. 3 and 4). 
 

 

Fig. 4. River Wye catchment, Wales: Cumulative distributions of the 100 year return period 
flood peak estimated within the GLUE methodology using 1000 year continuous simulations 
with different behavioural parameter sets in the rainfall-runoff model Topmodel driven by a 
stochastic rainfall model for different climate change scenarios. Scenario Z (current 
conditions); Scenario A1 (2020s); Scenario B1 (2050s); Scenario C1 (2080s) (after Cameron et 
al. 2000). 

3. Uncertainty in flood inundation predictions 

Flood inundation predictions are required for a variety of purposes including flood risk 
mapping and real-time forecasting. Many different 1D and 2D models are available for 
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making these predictions which are often presented without any attempt to assess the 
associated uncertainties. There are again, however, a number of different sources of 
epistemic (non-statistical) uncertainties in real applications of such models. These in-
clude the uncertainty in the estimation of the upstream hydrograph, the estimation of 
effective roughness coefficients for different sections of channel and flood plain 
(which might be quite different from estimates derived at single points on the chan-
nel), the representation of the flood plain geometry, the effects of infrastructure on the 
flood plain, and the implementation of the numerical algorithm (where different algo-
rithms generally involve more or less numerical dispersion). In real-time predictions 
there might also be issues of embankment failures, blockages of culverts and bridges, 
predictions of wind and surge effects in tidal situations, etc. that might also have a 
significant effect on flood levels. Again, it is difficult to allow that these types of un-
certainties are easily handled by a purely statistical approach. 1D and 2D flood inun-
dation models have been applied in the GLUE methodology by Romanowicz et al. 
1996, Romanowicz and Beven 1998, 2003, Aronica et al. 1998, Bates et al. 2004, 
Pappenberger et al. 2004, 2005a, b, 2006a, b (see Figs. 5 and 6).  
 

 
Fig. 5. The 5 and 95% Inundation Quantiles for an example reach of the River Morava, Czech 
Republic, determined within the GLUE methodology using the HEC-RAS model after 
conditioning on both observed inundation and downstream hydrograph data (see also Fig. 2) 
(after Pappenberger et al. 2005a). 
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Fig. 6. Flood hazard map for part of the flood plain of the Alzette River, Luxembourg, 
conditioned on inundation extent derived from EnviSat ASAR images for a flood event in 
January 2003. 5% and 95% quantiles determined within the GLUE methodology using the 1D 
HEC-RAS model are shown (after Pappenberger et al. 2006a). 
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The experience of using such distributed hydraulic models within GLUE has been 
interesting. In particular, it rapidly becomes clear that equifinality is an issue in the 
application of such models when used with global or individual reach scale evaluation 
measures (e.g. Fig. 2 above). It also becomes clear that there are some reaches or 
cross-sections where it is very difficult for any of the models tried to reproduce the 
historical flood data. This might be a problem of the observational data itself (in one 
case in the application of Pappenberger et al. 2005a, this was obvious as the recorded 
water levels on the two banks of the large Morava river were 10 m different at one 
cross-section but in many cases this might not be so obvious). It might also be a result 
of any of the other sources of epistemic uncertainty noted above. In such cases, all the 
models tried could be rejected as non-behavioural. This could provoke a review of the 
modelling strategy and data – it is perhaps more likely, however, to result in the ne-
glect of extreme errors as “outliers” or the use of global evaluation measures where 
the effects of local failures are not so obvious (e.g. Romanowicz et al. 1998, Ro-
manowicz and Beven 2003, Bates et al. 2004, Hunter et al. 2005). Rejecting all the 
models is not a good result in presenting a report to a decision maker, of course. One 
strategy for retrieving such a situation is discussed in Section 5 below. 

4. Uncertainty in hydraulic transport predictions 

Similar issues arise in distributed hydraulic solute transport predictions. Such predic-
tions are often based on an implementation of the advection-dispersion equation 
(ADE), either assuming a steady discharge in the channel or linked to the velocities 
predicted by a hydraulic flow model. The ADE can be justified theoretically on the 
basis of shear dispersion due to a logarithmic vertical velocity profile, once a solute is 
well mixed with the flow (e.g. Rutherford 1994). For steady flow conditions it predicts 
a concentration distribution for an impulse input that is Gaussian in space at any par-
ticular point in time, and slightly skewed in time at any particular cross-section down-
stream of the mixing length. These characteristics are often quite different from obser-
vations of real tracer concentration curves which very often are skewed in both time 
and space and have very long tails. It seems that in real rivers shear mixing is often 
dominated by “dead zone” mixing. The result is that a simple transfer function model 
might provide much more accurate predictions than the ADE, which simply has the 
wrong process assumptions (see, for example, the review of Young and Wallis 1993). 
The ADE can be modified to include dead zone effects (e.g. Bencala and Walters 
1983) at the expense of adding additional parameters that will need to be fitted in the 
same way as the roughness coefficients in flood inundation models above, and which 
will be subject to similar equifinality. Dispersion model calibration within the GLUE 
framework has been considered by Hankin and Beven 1998a, b, Hankin et al. 2001, 
2002, Kettle and Beven 2002, Kettle et al. 2002 (e.g. Fig. 7), and for the case of solute 
transport in soils by Zhang et al. 2006 (see Figs. 1 and 8). 

5. Uncertain predictions as an input to decision making 

There are two main reasons for using models in hydrology and hydraulics. The first is 
to show that  we understand how  a system  is working  (although even if a model does  
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A 

 
B 

 
Fig. 7. 2D predictions of tracer transport in a short reach of the River Severn at Leighton, UK, based on 
velocity fields produced by Telemac-2D. A. Concentration patterns at time 600 s after end of tracer input 
for 8 different runs of the model using randomly chosen parameter values. B. Pattern of uncertainty in 
concentration predictions, relative to mean concentration field after fuzzy conditioning on point tracer 
concentration observations (after Hankin et al. 2001, copyright John Wiley and Sons Limited. 
Reproduced with permission). 
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Fig. 8. A comparison of prediction bounds from GLUE and CXTFIT (which uses a nonlinear 
regression method) after fitting parameters to atrazine pesticide breakthrough curves from four 
large undisturbed soil columns (see also Fig. 1). The model is the same in both cases. Dots are 
observed data (after Zhang et al. 2006). 

give good predictions of the available observations it might still not be doing so for 
the right reason Beven 2001, Kirchner 2004). The second is to provide predictions to 
inform a decision. But if, as argued above, predictions of hydrological and hydraulic 
models are intrinsically uncertain, how should estimates of that uncertainty be pre-
sented to decision makers and used in the decision making process, especially when 
there are many ways of estimating the uncertainty? This has caused some recent de-
bate in the hydrological literature (Beven 2006, Hall et al. 2007, Mantovan et al. 
2007). Uncertainty appears at first sight to making the decision making more difficult, 
but this is not necessarily the case. Decision makers always make decisions under un-
certainty, whether they do so formally or informally. Most will already have a healthy 
scepticism about any predictions provided to them by the modeller, whether the pre-
dictions are presented as a single deterministic outcome or as an uncertain (probabilis-
tic or possibilistic) range.  

In fact, what the decision maker is really interested in is not the uncertainty of a 
prediction but the risk of a potential outcome and its potential impact or consequences 
for the decision. There is no doubt that taking proper account of such risks can affect 
the decision made (see for example Todini 2004). This is therefore a reason why un-
certainty estimation should be part of any and every modelling exercise. The debate 
arises because the risk, in formal risk-based decision making theory, is normally de-
fined as the product of probability * consequences (very often economic conse-
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quences). This would appear to be a major argument for the use of probabilistic as-
sessments of uncertainties. Thinking more deeply, however, if the assumptions re-
quired for such a formal probabilistic assessment cannot easily be justified in the face 
of the type of epistemic uncertainties described above, then perhaps other approaches 
might be useful (see for example the evidential reasoning approach of Wang et al. 
2006, and the Info-Gap approach of Ben-Haim 2006). Use of these alternative deci-
sion making techniques is described in more detail in those references and Beven 
(2008). 

6. Uncertain futures 

Many decisions are, of course, concerned with the impacts of future change. Particular 
current issues are the impacts of land management practices and future climate 
change. Assessing such changes necessarily depends on assumptions both about the 
changes to boundary conditions and changes in model structure or effective values of 
parameters. The type of conditioning against data, such as that of Figs. 1 and 2, can 
only be carried out for current (or historical) conditions. There is an implication, how-
ever, that if the complex interactions between parameters and boundary conditions that 
lead to behavioural models for current conditions, then similarly the complex interac-
tions will be involved in making predictions of future conditions. Such interactions are 
local in the model space, not easily described by either a single point or global covari-
ance matrices. 

In some cases where only the boundary conditions are assumed to change (e.g., in 
assessing the impacts of climate change on flood frequency in Cameron et al. 2000, 
Cameron 2006), then the behavioural parameter sets for current conditions can be used 
in predicting future impacts. Where it is expected that future change will result in 
changed parameter values, then it might not be possible to change single parameter 
values independently of others to form new “behavioural” parameter sets. What is 
needed is to “drift” the (complex) cloud of behavioural parameters sets through the 
model space to where they might best represent the new conditions. There does not as 
yet seem to be an easy way of doing this, but the task can be set up as a learning proc-
ess. We know the starting point (the best estimate of a set of behavioural models under 
current conditions). As time evolves and more data is gathered we can start to study 
whether any resultant drift is apparent in the evolving parameter sets. 

A similar approach can be taken to the ungauged site problem. Initial estimates of 
parameter sets can be conditioned on either quantitative or qualitative observations to 
gradually refine the representations of the site: in particular, parameter sets that are 
clearly inconsistent with the observations can be rejected (this might sometimes be all 
the models tried, e.g. Choi and Beven 2007). This type of learning process will be-
come increasingly necessary as models of everywhere are implemented (Beven 2007). 

This brief review of uncertainty estimation for flood inundation and transport cal-
culations based on the GLUE methodology can only serve as an illustrated introduc-
tion to a complex subject area where the answers you get are dependent on the as-
sumptions you make. Since it is difficult to be at all sure about the real nature of dif-
ferent sources of uncertainty in real applications then many different sets of assump-
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tions could be argued for. It is unlikely in real applications that a fully objective ap-
proach to uncertainty estimation is possible. It is therefore important that the assump-
tions made are stated explicitly so that they can be agreed or disputed with the users of 
the resulting predictions. In the present state of the science, this requirement of making 
assumptions quite open to encourage a thoughtful approach to uncertainty estimation 
is probably more important than the differences between different methods. The topic 
will be discussed in much more detail in Beven (2008). 
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Abstract

A numerical model for the random process of the particle impact and rebound
from the regular channel bed based on Lagrangian approach is developed. This model
reflects the balance of drag force, lift force, gravity, buoyancy, virtual mass force,
Magnus force. Stochastic method of collision angle and bed-load velocity based on
Monte Carlo simulation is used. Possible trajectories of various particles in an open
channel flow are discussed. It is shown that the particle-bed collision mechanism
depends on particle sizes and position at the beginning of saltation. An influence of
the Magnus effect on saltation height is shown.

1 Introduction

To describe the behavior of particles suspended or entrainded into a flowing water, most
researchers use the equation of motion of a single spherical particle in a fluid. Two works
are the most important: Tchen (1947) who synthesized the work of Basset, Boussinesq
and Oseen and Maxey and Riley (1983) based on an analysis similar to that of Corssin
and Lumley (1956).

This paper presents the gravel saltation model. A governing equation of this model
is shown, together with the collision process of the particle impact and rebound from the
channel bed. A more realistic random process of particle impact and rebound is proposed.
The numerical description of trajectories followed by saltating particles in water allows to
describe mean saltation length and height. Possible trajectories of a particle are discussed.
At the end of this work, influence of Magnus effect is considered.



2 System of equations for particle saltation

Using the Maxey and Riley (1983) form of the governing equations for the motion of a
small spherical particle in an unbounded fluid, Niño and Garcia (1994b) proposed the fol-
lowing system of dimensionless equations for 2D mean trajectory of the saltating particle
in a turbulent boundary layer:

d2up

dt2
= −3

4
λCD|Vr |(up − u f ) + λCm

du f

dy
vp +

λ sin α
τ∗

+ FB; (1)

d2vp

dt2
= −3

4
λCD|Vr |vp +

3
4
λCL

(
|Vr |2T − |Vr |2B

)
− λ cosα

τ∗
+ FM + FB; (2)

where the variables have been made dimensionless using the particle diameter, d, as a
length scale, the flow shear velocity, u∗, as a velocity scale and the ratio d/u∗ as a time
scale. The first terms on the right in eq. (1) and eq. (2) represent the drag force FD, the
second terms in eq. (1) the virtual mass force FV and in eq. (2) the lift force FL, and the
third terms denote submerged weight FG; FM is the Magnus force and FB is the Basset
force.

FL

FD

FG

Vr

Fv FB+ +

w

a

Figure 1: Forces acting on saltating particle

Other symbols have the following meaning: up and vp denote the dimensionless longitu-
dinal and vertical velocities of particles, u f is longitudinal velocity of water, ω is angular
velocity of the particle, α is a slope of the channel, and Vr denotes the dimensionless
magnitude of the particle slip velocity evaluated at the particle centroid, defined as:

|Vr | =
√

(up − u f )2 + v2
p , (3)

with |Vr |T and |Vr |B denoting the dimensionless magnitude of the particle slip velocity
evaluated on the top and bottom of the particle, CL = 0.2 and Cm = 0.5 denote the lift
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and added mass coefficients, respectively, and CD is drag coefficient defined by Niño and
Garcia (1994b) as:

CD =
24
Rep

(
1 + 0.15(Rep)1/2 + 0.017Rep

)
− 0.208

1 + 104Re−0.5p
. (4)

The dimensionless parameters appearing in the above equations are defined as:

λ = (1+R+Cm)−1, R = (ρs/ρ f −1), τ∗ = u2
∗ /(gRd), Rep = |Vr |d/ν, (5)

where Rep is particle Reynolds number, τ∗ is bed shear stress, ρs and ρ f denote particle and
fluid densities, respectively, g denotes the gravitation acceleration, d the particle diameter
and ν denotes the fluid kinematic viscosity.

The flow velocity distribution can be described by the logarithmic law (Schlichting,
1968):

u f (z)
u∗

=
1
κ

ln
z
ks

+ 5.3, (6)

where κ = 0.4 is Karman’s constant.

3 Initial and boundary condition of saltation

The striking particle velocity is resolved into normal and tangential components with re-
spect to the collision surface uN|in and uT|in, respectively, and it is assumed that these
components are reduced after the collision, so that (Niño and Garcia, 1994a):

uN|in = f uN|out uT|in = −euT|out (7)

where e and f are restitution and friction coefficients, respectively. In such a case, the
particle rebounds with an angle θr given by

tanθr =
e
f

tan (θin + θb) (8)

where θin is the angle of incidence of collision, θb is the angle between tangent in the
point of collision to the contact surface (all three angles are defined in Figure 2):

The particle velocity components immediately after the collision, up|out and vp|out, can
be expressed in terms of the particle velocity components before the collision, up|in and
vp|in, as follows (Niño and Garcia, 1994a):

up|out = f

√(
u2

p|in + v2
p|in

)
cos (θin + θb)

cos (θr + θb)
cosθr.

(9)
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vp|out = f

√(
u2

p|in + v2
p|in

)
cos (θin + θb)

sin (θr + θb)
cosθr.

(10)

Q

Qr

In
Qb

Figure 2: Scheme of a particle collision with the bed

Based on the analysis of experimental results presented by Niño and Garcia (1994b),
a constant value of the friction coefficient f = 0.73 is used in the numerical simulation, as
well as a linear relationship for the variation of the restitution coefficient e with τ∗, which
can be expressed as:

e = A − Bτ∗ for A = 0.84 and B = 4.84. (11)
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Figure 3: (a) Incidence and takeoff angles at collision θout = θb + θr, (b) Maximum
and minimum values of θb as a function of θin, dotted line represents the values obtained
by Niño and Garcia (1994a), dashed lines represent values obtained by Rowiński and
Czernuszenko (1999), and solid line represents values obtained with formula 12.
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Based on the work by Rowiński and Czernuszenko (1999) and geometrical consider-
ations, the following expression for the lower limit of the angle θb|in was obtained:

θb|in = arctan


a2 + a

√
a2 + 1 ±

√
−a

(
a +

√
2(a2 + 1)

)

a ± a
√
−a

(
a + 2

√
a2 + 1

)
+
√

a2 + 1


, (12)

where a = − tanθin. Index b|in denotes the conditional probability of the obtained θb if
the θin appeared. This result differs from the ones obtained by Niño and Garcia (1994a)
and Rowiński and Czernuszenko (1999). According to this work, takeoff angles can be
also negative and the θb boundary should be lower.

4 Analysis of the equation for the particle saltation

Equation 1 and 2 are easily solved numerically using a fourth-order Runge-Kutta scheme.
The initial condition are: xp = 0, zp = 0.6d, up = 2u∗ and vp = 2u∗. The θb angle is
determined with the use of a random number generator.

4.1 Example trajectories

A succession of simulated saltation of a sediment particle is shown in Fig. 4 as an example
of the results obtained. We can see the difference between saltation of particles with
different diameters (Figs. 4 and 5). For smaller particles, mean saltation length and height
is higher than for bigger ones. Table 1 shows that the momentum equations are preserved
after collision.

Table 1: Sample collision parameters

C. No. uin[m
s ] uout[m

s ] vin[m
s ] vout[m

s ] |uin| |uout| θin[◦] θb[◦] θr[◦]
1 1.22 0.91 -0.38 -0.18 1.29 0.93 17.4 -12.1 0.9
2 0.91 0.64 -0.19 0.11 0.93 0.65 11.2 6.35 3.0
3 0.95 0.54 -0.11 -0.35 0.95 0.65 6.7 -28.7 -3.8
4 0.54 0.33 -0.35 0.11 0.65 0.36 32.5 9.2 8.3
5 0.71 0.51 -0.12 -0.09 0.72 0.53 9.35 -9.7 -0.05
6 0.51 0.31 -0.09 0.12 0.52 0.34 9.8 18.42 5.0
7 0.45 0.31 -0.25 0.17 0.55 0.35 18.5 10.2 7.3
8 0.31 0.14 -0.22 0.12 0.34 0.18 10.35 9.7 6.05
9 0.62 0.41 -0.19 0.12 0.65 0.48 9.8 11.42 2.9

25



0 100 200 300 400 500
0

1

2

3

4

5

x/d

z/
d

0 100 200 300 400 500
0

1

2

3

4

5

x/d

z/
d

d=0.015m, τ
*
=0.15

d=0.03m, τ
*
=0.15

Figure 4: Simulated succession of saltation
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Figure 5: Mean values of saltation length and height as a function of bed shear stress
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4.2 Including Magnus effect

The Magnus force is produced by a rotating particle in which the rotation produces a
transverse pressure differential and a lift force. Rubinov and Keller (1961) derived the
equation for the Magnus lift force on a sphere moving in a non-rotating fluid as:

FM = CMρ f d3|Vr |ω, (13)

where CM = 3/4 is the lift coefficient.

Niño and Garcia (1997) proposed the following expression for Magnus force:

FM =
3
4
λCL|VR|

(
S − 1

2
∇ × v f

)
, (14)

where the mean value of S is:

S = 5.11 − 1.11τ∗/τc. (15)
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In Fig. (6) we show the influence of the Magnus effect on the characteristics of the
particle saltation. A comparison of this result with the case without including the Magnus
effect shows that the saltation length and height increase for the larger particles by about
20% and 7%, respectively. For the particles with diameter about d = 0.015m, this effect
may be neglected.

5 Conclusion

A mathematical model to calculate the saltation trajectory, particularly particle-bed colli-
sion model was considered. The model shows that takeoff angles can be also negative and
the θb boundary should be lower than proposed by Niño and Garcia (1994a) and Rowiński
and Czernuszenko (1999), as showed in Figure 3. The study also showed that the mean
saltation length and height is higher for particles bigger than d = 0.015. Mean values of
Hs are in the range from 0.5 to 2.2, mean values of λs are in the range from 4 to 20. The
Magnus effect increases the saltation height and length by to 20% for particles larger than
d = 0.015m, for smaller ones can be neglected. This present study is a preliminary work
to build a model of solid particles transport in turbulent open-channel flows.
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Abstract

The curvature of a meandering river influences both the level of the water sur-
face and the topography of the river bed. This work discusses how the interaction
between these two factors determines an exchange of water between the river and the
hyporheic zone through the bed surface. An analytical solution for the exchange flux
that is valid for low-curvature streams is presented. The model allows to describe
the main features of the pattern of hyporheic exchange, and provides a useful tool to
investigate the links between the river geometry and its effects on the ecology of the
hyporheic zone.

1 Introduction

In the last years, the exchange of water and solutes between the river and the surround-
ing aquifer – i.e., the hyporheic zone – has become a relevant research topic. The main
reason is the relevance of the hyporheic exchange for the stream ecology. The hyporheic
zone constitute an ecotone that receives oxygen and nutrients from the river and hosts a
great variety of microorganisms in its pores (Boulton et al., 1998; Hancock et al., 2005).
The low velocity in the hyporheic zone provides long contact times between the water-
borne nutrients and the microorganisms on the surface of the sediment grains (Jones and
Mulholland, ed., 2000).

Unfortunately, a clear understanding of the ecological effects of the hyporheic ex-
change has often been prevented by the complexity of the interactions between surface
and subsurface water. To overcome these difficulties, a number of studies have investi-
gated the physical processes that induce an exchange flow between rivers and hyporheic



zones. It is now recognized that surface-subsurface exchange arise, when the stream in-
teracts with morphological features of different size. The resulting pattern of hyporheic
flow covers a very wide range of scales. Local exchange flow usually occurs because of
smaller features like bedforms (Elliott and Brooks, 1997; Marion et al., 2002; Boano et
al., 2007) and step-and-pool sequences (e.g., Harvey and Bencala, 1993; Tonina and Buff-
ington, 2007). Land topography induces longer hyporheic flowpaths up to the catchment
scale (Wörman et al., 2006; Cardenas, 2007; Wörman et al., 2007). The identification of
the manifold processes that generate an exchange with the hyporheic zone is thus improv-
ing our understanding of the stream ecology.

A theoretical analysis of the vertical hyporheic exchange in a meandering river is here
described. The river sinuosity has already been observed to induce an exchange of water in
a few field studies (e.g., Wroblicky et al., 1998; Kasahara and Wondzell, 2003). This flux
can be divided in a horizontal component at the scale of the meander wavelength (Boano
et al., 2006), and a vertical one at the shorter scale of the stream width (Cardenas et al.,
2004). This work presents an analytical, physically-based model for the evaluation of the
vertical component of the hyporheic flux through the stream bed. The hydraulic head in
the stream and the topography of the stream bed are obtained from a previously published
morphodynamic model (Zolezzi and Seminara, 2001), and a solution for the induced flux
of water through stream-sediment interface is then derived.

2 Model

In a meandering river, the river bed topography is modified by the development of point
bars at the inner side of each bend because of the localized deposition and erosion pro-
cesses. The water surface profile is influenced by the centrifugal forces that act on the
water particles, that induce a lateral slope of the water surface. The gradients of the eleva-
tion of the stream surface are the cause of the water exchange flux through the stream bed.
These gradients are a direct consequence of the sinuosity of the river itself. The resulting
water flux through the bed surface is expected to be strongly correlated with the shape of
the river planimetry.

A sinuous river with wavelength λ̃ is considered in order to analyze the main features
of the patterns of hyporheic exchange in meandering rivers. The river bed is formed by a
layer of sediments of thickness γ̃ and hydraulic conductivity K̃. The tilde symbol means
that the corresponding variables are dimensional. Seepage of water in the subsurface is
governed by the Laplace equation, ∇2h̃ = 0, where h̃(x̃, ỹ, z̃) is the hydraulic head in the
subsurface. This equation should be solved in a sediment domain that is characterized by a
complex geometry. This problem can be avoided switching from the Cartesian coordinate
system, {x̃, ỹ, z̃}, to the intrinsic system, {s̃, ñ, z̃}, where s̃ and ñ are the streamwise and
spanwise coordinates, respectively. A further simplification derives from the introduction



of the normalized quantities

x, y, s,n,C =
x̃, ỹ, s̃, ñ, C̃

b̃
z, h, η, γ =

z̃, h̃, η̃, γ̃

D̃
ζ =

z − η
η + γ

(1)

where C̃(s̃) is the local stream curvature, i.e., the inverse of the local curvature radius, b̃ is
the river half-width, D̃ is the average stream depth, and η(s,n) is the bed topography. In
the new system {s,n, ζ}, the Laplace equation becomes

N
∂2h
∂s2 +N

3 ∂
2h
∂n2 + β

2 N
2

η + γ
∂2h
∂z2 − n

∂C
∂s
∂h
∂s
+ CN2 ∂h

∂n
= 0 (2)

whereN(s,n) = 1 + nC(s) is a metric coefficient, and β = b̃/D̃ is the river aspect ratio.

The gradients of the stream surface that are responsible of the hyporheic exchange
must be considered in order to correctly determine the exchange between the river and the
hyporheic zone. In this work, the stream surface level, H̃, and the bed topography, η̃, have
been modeled with the solutions provided by Zolezzi and Seminara (2001):

H(s,n) =
H̃
D̃
= H0 − βSs + 2ν

∞∑
m=0

Hmm sin(Mn) exp(iαs) (3)

η(s,n) = νη1(s,n) = 2ν
∞∑

m=0

ηmm sin(Mn) exp(iαs) (4)

where H0 is the dimensionless elevation of the stream surface at s = 0, S is the slope of
river bed, ν = b̃/R̃ is the dimensionless maximum stream curvature, α = 2πb̃/λ̃ is the
dimensionless river wavenumber, M = (2m + 1)π/2, and the coefficients Hmm and ηmm
can be found in Zolezzi and Seminara (2001). Notice that the complex notation is used for
the sake of convenience, and only the real part of (3)-(4) is meaningful.

Equation (2) should be solved for s ∈ [0, λ̃/b̃], n ∈ [−1, 1], and ζ ∈ [−1, 0], together
with the forcing on the stream bed imposed by the surface water elevation,

h(s,n, 0) = H(s,n) (5)

where the level of the river surface is given by (3). At the bottom of the domain a no-flow
condition is imposed

∂h(s,n,−1)
∂ζ

= 0. (6)

The exchange flux is also influenced by the level of the groundwater table in the surround-
ing aquifer, that depends on the watershed properties and on the rainfall history. In order
to better focus on the exchange driven by the river sinuosity, the boundary condition

∂h(s,±1, ζ)
∂n

= 0 (7)



is imposed. This means that the effect of the groundwater table on the hyporheic exchange
is not considered in the present analysis. This assumption is not restrictive as the lateral
exchange flux can be evaluated separately (e.g., Boano et al. (2006)) and then summed
in virtue of the linearity of equation (2). The last boundary condition derives from the
periodicity of the domain

h(s,n, ζ) = h
(
s +
λ̃

b̃
,n, ζ

)
+ βS

λ̃

b̃
(8)

where the second term represents the head loss that occurs along a wavelength because of
friction within the stream.

Equation (2) is the physically-based partial differential equation that governs the con-
sidered problem. Its analytical solution cannot be straightforwardly obtained because of
its complexity. However, since the curvature of a meandering river is often small, a pertur-
bation method can be applied to linearize equation (2). The parameter that is used for the
linearization is the (dimensionless) maximum stream curvature, ν = b̃/R̃ � 1. A solution
is sought in the form h = h0 + νh1 + ν2h2 + O(ν3). Substitution in eq. (2), together with
(3)-(4) and the boundary conditions (5)-(8), leads to n coupled differential equations that
can be analytically solved, obtaining

h0(s) = H0 − βSs (9)

h1(s,n, ζ) = 2
∞∑

m=0

(
a1 + a2 cosh[a3(1 + ζ)]

)
sin(Mn) exp(iαs) (10)

h2(s,n, ζ) = 2
∞∑

m=0

[(
a4 + a2 cosh[a3(1 + ζ)] + a5 cosh[a6(1 + ζ)]

)
n sin(Mn]) +

+
(
a7 + a8 cosh[a3(1 + ζ)] + a9 cosh[a6(1 + ζ)] +

+a10

(
ζ sinh[a6(2 + ζ)] + (2 + ζ) sinh[a6 ζ]

))
cos(M n)

+a11(1 + ζ) sinh[a3(1 + ζ)] sin(M n)2
]
exp(i2αs) (11)

where the symbols a1, . . . , a11 are listed in the Appendix.

The solution for the hydraulic head in the subsurface allows to evaluate the hyporheic
exchange flux, q̃(s̃, ñ). The latter is defined as the water flux per unit stream bed area, and
is given by

q̃ = ṽ · Ñ (z̃ = η̃) (12)



where the vector ṽ(s̃, ñ, z̃ = η̃) is the Darcy velocity at the stream-sediment interface,
and Ñ is a unit vector normal to the bed surface. The Darcy velocity is evaluated as
ṽ = −K̃∇h̃, where the (dimensionless) head is given by (9)-(11), and it can be expressed
as ṽ = ṽ0 + ν ṽ1 + ν2ṽ2 + O(ν3). The stream-sediment interface is described by (4),
and its normal vector can be written in the form Ñ0 + ν Ñ1 + ν2Ñ2 + O(ν3). From these
expansions, it results that the hyporheic exchange flux given by (12) can be expressed as

q̃ = ν q̃1 + ν
2q̃2 +O(ν3), (13)

where

q̃1 =
K̃S
β

∂η1

∂s
+

K̃
γ
∂h1

∂ζ
(ζ = 0) (14)

q̃2 = −
K̃
β2

(
∂η1

∂s
∂h1

∂s
+
∂η1

∂n
∂h1

∂n

)
+

K̃
γ

(
∂h2

∂ζ
−
η1

γ
∂h1

∂ζ

)
(ζ = 0) (15)

where the derivatives of the bed topography and the head can be evaluated from equations
(4) and (10)-(11), respectively.

3 Example

The results of a numerical example that considers a river with constant width, 2b̃ = 30 m,
and normal depth D̃ = 1 m, are described. The river bed has an average slope S = 7 ·10−4,
and it is formed by non-cohesive sediments with characteristic diameter d̃s = 5 mm and
hydraulic conductivity K̃ = 10−3 m/s. The presence of an impervious bedrock at depth
γ̃ = 5 m under the sediment layer is assumed. This stream develops a meandering pattern
because of a straight planimetric configuration is unstable. A meander wavelength λ̃ = 130
m, that corresponds to the dimensionless wavenumber α = 0.05, is estimated from the
results of the theory of morphodynamic evolution (e.g., Zolezzi and Seminara, 2001). The
chosen value of the dimensionless curvature is ν = 4 · 10−3.

The exchange flux with the hyporheic zone is estimated as the real part of (13)-(15).
The first of these equations states that the exchange flux increases with the stream curva-
ture, ν, that in turn grows as the meander evolves. This happens because the head gradients
that induce the hyporheic exchange are proportional to the river sinuosity, as expressed by
eq. (3). However, the solution has been derived with a perturbation method and it may not
be valid when the stream curvature is high.

The first-order approximation of the exchange flux, ν · q̃1, for the examined river is
presented in Fig. 1. The figure shows the pattern of hyporheic exchange that is induced
by the stream curvature. The exchange flux is higher in correspondence the bends, while
it tends to decrease in the straight parts of the reach. Downwelling of water into the



hyporheic zone mainly occurs at the outer side of each bank, while the inner sides are
characterized by an upwelling of water to river.

Figure 1: First-order approximation of the hyporheic exchange flux through the stream
bed (L/day/m2). Positive values indicate downwelling. The scales of the x and the y axes
are different.

Figure 2: Second-order correction to the hyporheic exchange flux through the stream bed
(L/day/m2). Positive values indicate downwelling. The scales of the x and the y axes are
different.

The contribution of second-order correction to the exchange flux, ν2q̃2, is shown in
Fig. 2. Comparison with Fig. 1 reveals that the second-order term can practically be ne-
glected. This means that the overall flux could be estimated just as q̃ ≈ ν q̃1, at least when



the value stream curvature is small. The second-order correction determines a more com-
plex pattern of hyporheic flux, that is characterized by an exchange of water the central
part of the river. This pattern suggests that the ecological importance of these zones is
likely to increase in rivers with higher sinuosity, i.e., when the values of ν are higher.

4 Conclusion

A model has been presented for the evaluation of the hyporheic exchange in a meandering
river. The model considers the exchange of water through the river bed, and it predicts
the occurrence of a pattern of hyporheic flux induced by the gradients of water surface
elevation. Water exchange is localized at the bends of low-curvature streams, with down-
welling (upwelling) of water occurring at the outer (inner) banks. It should be stressed that
other factors – e.g., bedforms – that induce hyporheic exchange exist in natural streams,
and they are likely to generate more complex patterns. In these cases, the fluxes induced
by the different factors can be separately evaluated and then summed together. In this
context, our approach allows to gain a better understanding of the hydrodynamics of the
hyporheic zone in a meandering river, and will contribute to develop more reliable tools
for the analysis of the coupling between surface and subsurface water systems.

5 Appendix: Coefficients

a1 =
iAmαβS
M2 + α2 a2 =

Hmm − a1

cosh(a3)
a3 =

γ
√

M2 + α2

β
a4 = −

3a1M2

M2 + 4α2 (16)

a5 = −
a2 cosh(a3) + a4

3 cosh(a6)
a6 =

γ
√

M2 + 4α2

β
a7 =

M(a1 + 2a4)
M2 + 4α2 a8 =

a2M
α2 (17)

a9 = −
[a7 + a8 cosh(a3)]

cosh(a6)
a10 = −

a5Mγ2

2a6β2 cosh(a6))
a11 =

a2a3ηmm

γ
Am =

2(−1)m

M2 (18)
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Abstract  

The paper presents a method of calculation of the grain diameter which 
should be used for the evaluation of sediment stream according to Ackers-White 
formulae. Based upon sieve curve for the sediment taken from the river bottom, 
the authors give the formula how to calculate Dopt which should be taken to the 
Ackers-White method instead of the recommended D35 which is not satisfactory.  

1. Mathematical description of flow phenomenon 

The Chezy relation for the river flow in the uniform steady motion is defined by the 
relationship: 

 .Hc R I=υ  (1) 

For the river breadth B ≥ 15 H it is assumed that RH = H is the depth, and I denotes 
free water surface slope in the river 

 

H  ,1 2B1 B2H   ,

{D  ; p   }i i
(2) (2){D  ; p   }i i

(1) (1)

Q ⇐

1 2

1 2

x
 

Fig. 1. Scheme of flow elements assumed for analysis. 
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In each cross-section of the river, υ is the velocity of flowing water B is the 
breadth of the river bed and {Di ; pi} is the set of values representing sieve curve, i.e., 
the diameter of certain fraction and percentage.  

For further consideration two cross-sections in the river were taken, 1 and 2. In 
uniform flow the slope of energy line I* is equal to the free water surface slope in the 
river. To estimate the energy losses, in general case, in the river flow it is commonly 
accepted that if the distance Δx between the two cross-sections, 1 and 2, is small, and 
the term 2Δ( /2 ) Δg xυ  can be neglected, I* can be taken from Chezy equation. So we 
have 

 
2 2

2 10 / 3 .*
sQ nI

B H
=  (2) 

In the above equation, ns denotes roughness coefficient after Manning and Q is the 
flow. The aim of the paper is to consider sediment transport in the river. The sediment 
stream was estimated according to the Ackers-White formulae (Ackers and White 
1973, Meyer 1981). Various formulae of different authors were checked by Pluta and 
Meyer (2003) for Odra river. The Ackers-White formulae are in a good agreement 
with the other results; this has an advantage because it includes two flow factors such 
as mean velocity in the given cross-section υ0 and the shear velocity υ∗. So we have 

 0 ,Q
BH

=υ  (3) 

and 

 * ,b
*gHI= =

τ
υ

ρ
 (4) 

and in further calculation I* can be taken according to the previous assumptions from 
Chezy Eq. (2). 

To introduce to the analysis the sediment grains diameter D, Manning roughness 
coefficient according to Strickler was applied: 

 1 61 .
26sn D=  (5) 

Previous research (Roszak 1998, Kotiasz 2001) indicates that the roughness coef-
ficient ns is a function of the ratio Dz/H. So they proposed to modify Strickler equa-
tion. According to Kotiasz research verified for lower Odra River we have 

 
1/ 6

,z
s

Dn M
H

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (6) 

where M varies practically for lower Odra river from 0.13 to 0.15. The representative 
diameter Dz can be evaluated according to Roszak (1998) in the following form: 



 43

 0

0

1

,
iz p

n

i i

DD
D
D=

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

Π
 (7) 

where the symbol Π denotes multiplication of all the terms from i = 1 till i = n and 

 0
1

(
n

i i
i

).D p D
=

=∑  (8) 

Further research aims to estimate an appropriate value of D which should be taken to 
the sediment stream calculation based on the sieve curve data {pi, Di}. This can be 
achieved by combining two curves: the one representing water flow and the other rep-
resenting sediment stream based upon samples taken from the bottom sediment. The 
curve for water flow based upon Eq. 2 is given in Fig. 2, and the curve for sediment 
stream will be presented in the next section. In Fig. 2, Hm and I*m are the measured 
depth and slope, respectively. 
 

H [m]

I*I*m

mH  

 
Fig. 2. Plot of the function H = H(I*). 

2. Model of sediment transport 

Assuming that flow intensity, sediment transport rate in the cross-section and river 
depth as well as the corresponding slope which has been measured in the steady mo-
tion conditions, are constant, i.e., 

      ,Q const= ,const=ω      ,H const=      I const∗ =   

and using Ackers-White’s method (Ackers and White 1973), the total sediment trans-
port rate in the river can be evaluated as follows: 
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 ,Q g X=ω ρ  (9) 

where: 
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 (11) 

and the values of υ0 and υ∗ were estimated earlier (Eqs. 3 and 4). The value of g is 
acceleration due to gravity and D is grain size diameter which is the matter of consid-
eration, and s is the ratio of density of sediment ρs to the water density ρw. 

Furthermore 

 0.23 0.14,
gr

A
D

= +   

 1 0.56log ,grn D= −   

 
( ) 1/ 3

2

1
,gr

g s
D D

⎡ ⎤−
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⎣ ⎦ν
  

and v = 1.3 ⋅ 10−6 is the kinematics viscosity coefficient of water [m2/s]. 
In dependence on the value of Dgr, the following cases will be considered: 

 − for Dgr ≤ 1 floated sediment (n = 1), 
 − for 1 < Dgr ≤ 60 totally floated and dragged sediment, 
 − for Dgr > 60 only dragged sediment (n = 0; A = 0.17; m = 1.50; C = 0.025). 

In the original Ackers-White’s method it is recommended to put D = D35 (from the 
sieve curve of bottom sediment). From the previous research (Pluta and Meyer 2003) 
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it comes that fixed value of D35 does not allow to calculate properly the sediment 
transport for various river cross-sections (Coufal 1995, Coufal and Meyer 1997).  

The reference value of D which should be taken to the evaluation of sediment 
stream should be the matter of further research, to specify D = Dopt.  

The dependence of the depth H on the value I* for constant ω for various grains 
size diameters D is given in Fig. 3 (Meyer and Skorupska 2004, 2005). On this figure, 
the cure H(I*) from Fig. 2 is additionally plotted. So one can see that if the measured 
depth is equal to Hm and the corresponding slope is equal to I*m , D must be equal to 
Dopt . 
 

H [m]

I*m

H  m

D      =0,6 mmopt

D  =0,5 mm1
D  =0,55 mm2

Dn

D   = 0,7 mm3

I*  
Fig. 3. Optimal diameters satisfying the Chezy equation. 

3. Evaluation of Dopt  

The analyses show that the optimal sediment diameter Dopt which will satisfy the 
Chezy condition and will “close” the equation of Ackers-White’s sediment transport 
model by terms of quantity, can be described for each river cross-section based on the 
determined value of depth and slope.  

The optimal sediment diameter Dopt, was evaluated from the full sieve curve, and 
can be described by the statistical parameters (mean value, standard deviation and 
skewness of the curve) as follows: 

 1 2 3 ( , ) ,
k

opt

z

D
c c c f

D
⎛ ⎞

= + + =⎜ ⎟
⎝ ⎠

δ ε δ ε  (12) 

where the sieve curve distribution factors were chosen as follows: standard deviation 
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= − ⋅∑ε  and D0 is given by Eq. 8. 
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The results of calculations are presented both in Table 1 and some examples in 
Figs. 4 and 5. In Table 1 the values are: Q = 185 m3/s and Im = 0.000283. 

Table 1 

The results of calculations for the set of 554÷566 km 

km B [m] H [m] Dz Dopt Dopt /Dz

552 113.50 2.250 0.0005379 0.00063351 1.1777 
550 107.20 2.020 0.0005447 0.00069001 1.2668 
548 105.85 2.170 0.0007167 0.00084681 1.1815 
546 106.75 2.150 0.0005874 0.00052811 0.8991 
544 109.00 2.210 0.0005327    0.0004904 0.9206 
542   90.25 2.300     0.000589 0.00067484 1.1457 
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Fig. 4. Statistical optimization results for sets of 578÷617 km and 554÷566 km.  
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Fig. 5. Statistical optimization results for all the sets. 
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Combining all the data for all cross-sections over the whole analyzed distance we 
have: C1 = 0.622; C2 = −497.33; C3 = 537.61 and k = 0.31. The resulting formulae 
takes the form 

 
0.31

0.622 497.33 537.61 .opt

z

D
D

⎛ ⎞
= − ⋅ + ⋅⎜ ⎟

⎝ ⎠
δ ε  (13) 

4. Conclusions 

1.  The experimental research of sediment transport in lower Odra River is pre-
sented. The experiments concern estimation of representative grain diameter in 
sediment transport calculation. 

2.  The basic assumption of the method was the steady flow and constant sediment 
stream along tested river distance. The sieve curve for sediment samples taken 
from the bottom of the river was the background for verification.  

3.  The statistical analysis of the sieve curves leads to the conclusion that it is pos-
sible to relate the optimal grain-size diameter for sediment stream calculation 
upon sieve curve distribution factors. The mathematical formulae for this rela-
tionship is also given. It gives good agreement with experimental data for the 
whole analyzed distance. 
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Abstract  

The aim of this article is to familiarize the readers (e.g., civil and environ-
mental engineers) with the current statistical theory of turbulence for river flows. 
The authors want to give sufficient theoretical information not only for studying 
the specialized literature but also for experimental investigations on those envi-
ronmental problems in which turbulence plays an essential part, such as erosion 
and sediment transport, resistance to flow, and pollutant dispersion.  

The paper describes comprehensive turbulence measurements in an experi-
mental channel where instantaneous velocities were measured with use of a 
three-component acoustic Doppler velocity meter. The basic definition of the 
primary turbulence parameters as well as methods of estimating those parameters 
are discussed. Also, the fundamental relations for the primary velocity, the dis-
tribution of turbulent intensities, the Reynolds stresses, the autocorrelation func-
tions, the turbulent scales, and the energy spectra are discussed. 

1. Introduction 

Turbulence is the most common, the most important, and the most complicated kind 
of fluid motion. For at least a quarter of century we have observed an increasing rec-
ognition of the role of turbulent fluid motion in controlling river processes of interest 
to engineers. These processes include erosion and sediment transport, resistance to 
flow, and pollutant dispersion. Also, recent investigations emphasize the significance 
of turbulence in river ecology, e.g. Larned et al. (2004). Despite these advances in 
understanding, turbulence remains one of the least understood phenomena in the proc-
ess-based earth sciences, a state of affairs that continues to retard the formulation of 
realistic, physically-based models of sediment transport on the earth’s surface. 
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More than the century ago, Osborne Reynolds proposed the decomposition of un-
steady flow into slowly varying and rapidly fluctuating parts. When substituted into 
the instantaneous Navier-Stokes equations of fluid motion, products of fluctuating 
velocities give rise to additional turbulent stress terms. Since then, much theoretical 
and empirical effort has been directed towards the search for meaningful relations to 
link the time-averaged turbulent stresses with the mean flow. The classical view en-
visages turbulence as a stochastic phenomenon, arising from the superposition of indi-
vidual quasi-periodic fluid motions over a wide range of scales. The concept of ran-
domly interacting scales of motion became embodied in the semi-empirical theories of 
turbulence, wherein the turbulent stresses are linked to the mean flow via an eddy 
viscosity or mixing length. This view of turbulence is consistent with the concept of a 
cascading energy transfer in free-surface shear flows. Energy is most efficiently ex-
tracted from the mean flow by large eddies, with viscous dissipation being largely 
accomplished by the smallest eddies. In effect, an ‘energy cascade’ occurs, driven by 
turbulent eddy motion and dissipated through viscous damping. 

River flows are turbulent, but we have very little knowledge about river turbu-
lence, although a great deal of knowledge about the mean flow has been obtained in 
the field of hydraulics. Part of the reason for this situation is assumed to be the lack of 
suitable instruments for measuring the turbulent velocities accurately in rivers. Prob-
lems of river turbulence are approached by analogy with turbulence in the atmosphere 
or in laboratory wind tunnels and water channels. There is a great deal of knowledge 
for these turbulent flows. However, there is no strong proof that river turbulence is 
similar to turbulence in other fields. River flows are restricted vertically by the free 
surface and bottom and horizontally by the width of the channel. River flows are usu-
ally characterized by large ratios of width to water depth while laboratory channels 
typically have much smaller width-to-depth ratios. This difference can be the source 
of significant differences between river turbulence and turbulence in a laboratory 
flume, and these differences in turn can be a major impediment to the successful trans-
fer to natural river flows of recent theoretical and empirical developments based on 
laboratory experimentation. 

Various fundamental turbulence measurements have been made in laboratory 
flows using hot-film probes, laser velocimeters, and acoustic Doppler velocimeters 
(ADVs). This paper reports the results of measurement made in a laboratory channel 
with an ADV which can also be used in rivers. The measurements and the data analy-
sis demonstrate the types of parameters that could be obtained in rivers using the same 
equipment (Fig. 1, where the white scale lying on the table is about 31 cm long). The 
probe and conditioning module are submersible for this field probe. Newer versions of 
the same type of instrument are available. 

The paper deals with fundamental measurements of turbulence in laboratory con-
ditions. After a brief description of the channel and ADV in Chapter 2, Chapter 3 pre-
sents definitions of the basic characteristics of the statistical theory of turbulence as 
well as the methods of their estimation or calculation from measurements. The reader 
can find here definitions of probability density function and its first four moments, the 
time correlations and turbulence scales as well as Reynolds stresses and the spectral 
density function. Chapter 4 gives the information related to the results of the velocity 



 51

measurements as well as analysis and discussions of these results. One can find here 
some basic information on the logarithmic law, the turbulence intensities, skewness 
and kurtosis, scales of turbulence, turbulent stresses, and the spectral density function. 
 

 
 

 

Fig. 1. ADV probe and conditioning module. 

2. Experimental facilities 

2.1 Channel 
The measurements were made in a rectangular channel which is 1.52 m wide, 0.81 m 
deep, and 33.5 m long, at the University of Texas at Austin, TX, USA (Fig. 2). The 
channel has a concrete bed and concrete-block walls with Manning’s n = 0.011. The 
bed is approximately horizontal. The channel is outdoors but was covered with corru-
gated fiberglass sheets during measurements to minimize wind effects. A tailgate at 
the downstream end of the channel allows modification of the flow depth. The meas-
urement cross section was about 20 m from the channel entrance. This location and 
the channel length meant the flow was established upstream of the measurements and 
also not disturbed by the tail gate. 

The flow rate was determined using propeller-type flow meters installed in the 
three supply pipes. A thin-plate weir in the return channel was used to check the rate 
obtained from the propeller meters. The meters were calibrated volumetrically. The 
static ports in 24 Pitot tubes at 10 cross sections were connected to a manometer board 
inclined at 1V:5H for measuring the water surface elevations. 

conditioning 
module 

cm

probe
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Fig. 2. Experimental channel looking upstream. 

For the experiments, the flow rate was 0.558 m3/s and the flow depth was 48.8 cm, 
giving an average flow velocity of 0.75 m/s. The Reynolds number using four times 
the hydraulic radius was 9×105. The tail gate was adjusted so that the flow was ap-
proximately uniform. Truly uniform flow could not be achieved since the bed was not 
exactly plain and the channel could not be tilted. 

2.2 Acoustic Doppler Velocimeter 
The velocity measurements were made with a downward-looking, three-component 
SonTek 10-MHz Acoustic Doppler Velocimeter (ADV, Fig. 1). The ADV had a Field 
probe with a rigid shaft and a 5-cm sensor and was mounted vertically on a traversing 
mechanism that allowed vertical, transverse, and longitudinal movement. Measure-
ments were made at maximum available rate of 25 Hz, so that the Nyquist frequency 
was 12.5 Hz. A data acquisition program provided by the manufacturer was used to 
collect the velocity data for at least 60.44 seconds for each sampling point. The sam-
pling volume of the probe is about 5 cm below the tip of the probe and, according to 
the manufacturer, the minimum distance to a flat boundary that still permits data col-
lection is 4 to 6 cm. Therefore the probe cannot measure velocities within approxi-
mately the top and bottom 6 cm of the flow depth. The measurement points are shown 
in Fig. 3. 

3. Parameters for turbulence 

3.1 Velocity as a random process 
The instantaneous longitudinal (x) velocity at any point in a turbulent flow is a random 
variable U(t). The values of U(t) are called a time series.  For a large number of sets of  



 53

measurements, there will be a set of random variables or a time series of variables that 
can be indicated by braces, i.e., {U(t)}. The measured velocity at this point at time t is 
one of the infinity of values which U(t) might have at t. The behavior of U(t) can be 
described by a probability density function (pdf). A stochastic process consists of 
{U(t)} and its probability distributions. The area under the pdf for an infinitesimal 
velocity interval represents the probability of occurrence of the value of the velocity at 
the center of the interval. 

Turbulence is inherently three dimensional. While parts of the paper use only the 
longitudinal velocity, the velocity (V) in the transverse (y) direction and the velocity 
(W) in the vertical (z) direction are addressed in several of the sections. The actual 
velocity is a continuous time series, but measurements usually give a discrete time 
series of values measured at some time interval Δt. The type of instrumentation nor-
mally determines whether Δt is constant. In the present measurements, Δt is constant. 
 

 
Fig. 3. Measurement points with flow into the paper. 

The following discussion of each of the statistical parameters begins with the basic 
definition and a physical interpretation. The definitions are based on a continuous time 
series of infinite duration. The estimators used for the discrete, finite time series of 
velocity measurements follow each of the basic discussions. The equations are written 
for the longitudinal velocity, but similar equations apply for the other two components 
also. The pdf and the statistical moments in this paper depend on only the magnitudes 
of the velocity measured at one point in the flow, not on the sequence in which the 
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values occur. The correlation and energy spectrum depend on the sequence in which 
the magnitudes occur. The Reynolds stresses depend on the simultaneous velocities in 
two directions at a point, but not on the sequence of values. 

3.2 Statistical moments 

Definitions 

An analytical expression for the pdf for turbulent flows is not easy to establish. Never-
theless, for most practical (engineering) purposes, the function can be characterized by 
statistical moments of different orders that can be obtained relatively easily from ex-
periments. A statistical moment of n-th order for data collected at one point for any 
random variable (ξ) can be defined by 

 n nE[ ] p( )d
∞

−∞
ξ = ξ ξ ξ∫  (1) 

where E[ ] represents the expected value, p(ξ) is the pdf, and n = 1,2,3… For a sta-
tionary, ergodic process, E[ξn] is also given by 

 
t To

to

n n n
T

1E[ ] lim dt
T

+

→∞
ξ = ξ = ξ∫  (2) 

where the overbar indicates a time-averaged value, t = to at the beginning of the data 
series being analyzed, and T = duration of the data. 

Equation 1 with n = 1 gives the mean value (also called the expected or time-
averaged value) of a random variable. The mean value is indicated by an overbar, e.g., 
U . The turbulent fluctuations of velocity (u, v, w) in the x, y, z directions are defined 
by 

 

u U U

v V V

w W W

= −

= −

= −

 (3) 

Even in a straight laboratory channel, secondary circulation can cause V  and W  to 
be non-zero. 

The first central moments of the turbulent velocities are zero because the average 
turbulent velocity is zero in each direction. The second moment represents the mean-
square departure from the time-averaged velocity and is called the variance (σ2) or 
mean square, e.g., in the x direction 

 2 2
x uσ =  (4) 

The square root (σ) of the variance is the standard deviation or root-mean-squared 
velocity fluctuation, which is sometimes called the turbulence intensity. The second, 
the third and the forth moments are often replaced by their non-dimensional forms, 
namely 
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2uu '

U
=  (5) 

 
3

x 2 3/ 2

uS
(u )

=  (6) 

 
4

x 2 2

uK 3
(u )

= −  (7) 

These non-dimensional parameters are called relative turbulence intensity (u′), skew-
ness (Sx) and flatness factor, excess, or kurtosis (Kx). These terms have specific physi-
cal interpretations. The skewness is related to the asymmetry in the distribution of 
turbulent velocities. Sx = 0 for a Gaussian distribution and any other symmetrical dis-
tribution. Sx is positive when large positive values of u are less frequent than large 
negative values. The excess is related to the flatness of distribution. For reference, 
Kx = 0 for a Gaussian distribution when the definition in Eq. (7) is used. Larger values 
of Kx imply that p(u) has a narrower peak and broader tails than a Gaussian distribu-
tion with the same standard deviation. That is, both very small and very large values 
of the random variable are more probable than for a normal distribution. 

Calculation 

To determine u using Eq. (3) and the discrete time series of measured U values with 
constant Δt, U  is first calculated from 

 
N

k 1

1U U(k t)
N =

= Δ∑  (8) 

where N = total number of Uk values in the time series. The moments can then be 
estimated from the values of u (Eq. 3) by 

 n
N

n

k 1

1u u (k t)
N =

= Δ∑  (9) 

The most important features of any estimator are the bias, which represents the sys-
tematic portion of the error of the estimation, and the variance, which is the random 
portion of the error. Note that in this paragraph “variance” relates to possible errors in 
the estimator, not to the variance or mean-squared velocity in Eq. (4). Both bias and 
variance contribute to the mean square error of the estimate. It is natural to choose an 
estimator with a small or zero bias, but it is not always wise to insist that an estimator 
be unbiased. Making the bias small usually increases the variance of the estimator. 
Therefore, a compromise is necessary between variance and bias (Jenkins and Watts 
1969). Equation (8) is an unbiased estimator for calculation of the mean velocity. Un-
fortunately, for calculation of the second (n = 2), third (n = 3) and fourth (n = 4) mo-
ments, Eq. (9) is biased estimator. However, for the duration of the observations in 
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these measurements, Eq. (9) has a smaller mean square error than the unbiased estima-
tor. 

3.3 Time correlations and turbulence scales 

Definitions 

We may define an Eulerian autocorrelation coefficient (rE) for the values of a given 
velocity component, say the longitudinal component, at a fixed point in the flow field 
but at two different times t and t′. Since we are working with stationary variables, rE 
can depend only on the time difference τ, which is equal to t′ − t, and it must be a sym-
metrical function of Δt. Using Eq. (2) for time averaging, rE for the longitudinal veloc-
ity is defined by 

 
2

E
E

R ( t)r ( t)
u

Δ
Δ = , (10) 

where 

 ER ( t) u(t)u(t t).Δ = + Δ  (11) 

The maximum value is rE(0) = 1, while rE approaches zero for large Δt, but frequently 
decreasing oscillations are obtained as rE is approaching zero. The autocorrelation 
coefficient can be used to define an Eulerian integral time scale (TE) as 

 E E0
T r ( t)d( t).

∞
= Δ Δ∫  (12) 

TE may be considered as an indication of the time interval over which the longitudinal 
velocity component at a point is correlated with itself. 

Let us consider a stationary and homogeneous turbulent flow with a small relative 
intensity. Then the hypothesis of “frozen turbulence” is valid and an integral length 
scale (Λx) can be calculated from the Eulerian time scale as (Hinze 1975)  

 x EUT .Λ =  (13) 

Calculation 

The sample autocorrelation function for the discrete time series of measured u values 
with a constant Δt between the measurements was estimated from 

 ( )
N m

i i m
i 1

1R̂(m)  u u ,     k 1,2,3,...
N

−

+
=

= =∑  (14) 

where m is the lag number. It can be shown that Eq. (14) is only asymptotically an 
unbiased estimator, but it has a smaller mean square error than the unbiased estimator 
obtained from Eq. (14) with the coefficient 1/N replaced by 1/(N-m) (Jenkins and 
Watts 1969). 
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3.4 Transport of turbulent kinetic energy 

Definition 

The turbulent kinetic energy (TKE) per unit volume of fluid is 

 
2 2 2 2u v w qTKE   ,

2 2
+ +

= ρ ≡ ρ  (15) 

where q2 = u2 + v2 + w2. Although Eq. (15) gives the proper definition of TKE per 
unit volume, frequently the term “energy” or “power” is used when referring to only 

2q  or to 2u  when only one velocity component is being used. The rate at which the 
TKE is transported in each of the coordinate directions by the turbulent velocity fluc-
tuations is 

 
2

jq u
for j x, y,z.

2
ρ =  (16) 

Calculation 

The estimator for the TKE per unit volume using discrete measurements is 

 ( )
N^

2 2 2
i i i

i 1
TKE u v w .

2N =

ρ
= + +∑  (17) 

Similarly, the estimator for the turbulent flux of TKE per unit volume for the velocity 
uj in the j direction is  

 ( )
^

2 N
j 2 2 2

i j i i j i i j i
i 1

q u
u (u ) v (u ) w (u ) .

2 2N =

ρ
ρ = + +∑  (18) 

3.5 Reynolds stresses 

Definitions 

A phenomenological view of turbulence treats the turbulent motion of parcels of fluid 
as being analogous to molecular motion in gases. That is, parcels of fluid can be 
viewed as moving from a region with a higher time-averaged velocity to a region with 
a lower time-averaged velocity and then speeding up the slower moving fluid. When 
only the time-averaged motion of the fluid is considered, this turbulent action appears 
as a shear stress, which is called an apparent, turbulent, or Reynolds stress. 

This apparent stress can be related to the turbulent velocities by using Eq. (3) to 
eliminate the instantaneous velocities in the three-dimensional differential momentum 
equations (or equations of motion) and then time averaging the equation for each co-
ordinate direction. The resulting equations are called the Reynolds equations and give 
the nine stress (τ) terms as  
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xx xy xz
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yx yy yz

2
zx zy zz

U Up u uv uw
y z

V Vvu p v vw
x z
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x y

∂ ∂
τ = − ρ τ = μ − ρ τ = μ − ρ

∂ ∂

∂ ∂
τ = μ − ρ τ = − ρ τ = μ − ρ

∂ ∂
∂ ∂

τ = μ − ρ τ = μ − ρ τ = − ρ
∂ ∂

 (19) 

For each term, the first subscript indicates the normal to the surface on which the 
stress is acting and the second one indicates the direction of action. On the right-hand 
side of each definition, the first term represents the molecular action while the second 
term is the contribution of the turbulence. From basic mechanics, it is known that 

xyτ = yxτ , xzτ = zxτ , and yzτ = zyτ . The Reynolds normal stresses ( xxτ , etc.) are directly 
related to the turbulence intensities in each direction. The Reynolds shear stresses 
come from the cross correlations of orthogonal velocity components.  

Calculations 

The Reynolds shear stresses were calculated in essentially the same way as other simi-
lar terms. For example,  

 
N

xy i i
i 1

ˆ (u v ).
N =

ρ
τ = ∑  (20) 

3.6 Energy spectrum 

Definitions 

The moments (Eq. (1)) and the autocorrelation (Eq. (10)) are useful in analyzing tur-
bulence, and they are relatively easy to obtain from velocity measurements. Spectral 
analysis is another useful tool, but the spectra are more difficult to calculate. The spec-
trum of turbulent kinetic energy and the correlation coefficient are related by the Fou-
rier transformation, e.g, see Hinze (1975). The spectrum and the correlation put em-
phasis on different aspects of the process, but the potential flexibility available via the 
spectrum and the Fourier transform is much greater than with the correlation function 
approach. There are two types of spectra that are of interest, namely the frequency 
spectra and the wave-number spectra. We shall introduce only the frequency spectra 
and only for the x-component of velocity. This spectral analysis allows us to describe 
the distribution of TKEx, i.e., the TKE associated with only the x component of the 
turbulent velocity, with frequency (f) in the turbulence.  

The essence of the turbulence spectrum is to consider the continuous, irregular 
turbulent fluctuations of velocity to be the superposition of many different frequency 
components. For example, the time series of u values is considered to be the superpo-
sition of many frequency components. Then the amount of energy in each of the com-
ponents is determined. For example, let  
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1 2 3 4f f f fu(t) u (t) u (t) u (t) u (t)  . . .= + + + +  (21) 

where each fk is a different frequency and each frequency component has a sinusoidal 
temporal variation with an amplitude that changes with time. To get the total TKEx 
associated with u, Eq. (15) shows that the mean squared value of Eq. (21) is needed. 
Squaring Eq. (21), taking the time average, and using the orthogonality of the sine 
functions gives  

 
1 2 3

2 2 2 2
f f fu u u u  . . .= + + +  (22) 

The spectral density function (Gx(f)) for a continuous variation of f is defined so that 

 2
x0

G (f )df u
∞

=∫  (23) 

where 

 2
x fG (f )df u=  (24) 

and Gx(f)df is proportional to the TKEx in the bandwidth f to f + df. The normalized 
spectral density function (Fx(f)) is 

 x
x 2

G (f )F (f )
u  

=  (25) 

so that  

 x0
F (f )df 1.

∞
=∫  (26) 

Calculations 
Spectral density function has been explained in the practical context of filtering, 
squaring, and averaging sample records. One method for calculating spectral density 
functions is from the Fourier transform of the correlation function (Bendat and Piersol 
1971). In this paper, the fast Fourier transform (FFT) procedures are used to compute 
estimates of power spectral density function directly from the original data values.  

It has already been assumed that the turbulence velocity u(t) is a stationary random 
variable that is sampled over a finite time period T. A finite-range Fourier transform 
of the velocity sample as defined by Bendat and Piersol (1971) is  

 
T

0
U(f ,T) u(t)exp( j2 ft)dt ,= − π∫  (27) 

where j = 1− . The quantity U(f,T) represents finite Fourier transform of u(t). That 
finite-range Fourier transform exists for general stationary records. The one-sided 
power spectral density function Gx(f), where f varies only over (0, ∞), is defined by  

 2
x T

1G (f ) 2 lim E U(f ,T) for f 0.
T→∞

⎡ ⎤= ≥
⎣ ⎦

 (28) 
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An estimate of Gx(f) can be obtained by simply omitting the limiting and expectation 
operations in the above equation (Bendat and Piersol 1971) to obtain  

 2
x

2Ĝ (f ) U(f ,T) for f 0.
T

= ≥  (29) 

Since the sample of u(t) is taken over a finite time interval, xĜ (f)  is called the sample 

spectrum, and it is only an estimator of the actual Gx, which is defined for an infinite 
length of record (Eqs. (23) and (24)).  

Equation (29) must be used with care because it is a statistically inconsistent esti-
mator of the power spectral density function. Furthermore, the random error of the 
estimate is substantial. The standard deviation of the estimate is as great as the quan-
tity being estimated when no frequency smoothing is performed (Bendat and Piersol 
1971). Therefore, if a power spectrum is estimated by direct Fourier transform opera-
tions, a smoothing operation is required to obtain a consistent estimate. The normal-
ized standard error of the estimate will be on the order of (Te/T)0.5, where Te is the 
width of a smoothing operation and T is the record length.  

To present the method, it is convenient to let u(t) be defined over the time interval 
(−T/2, T/2) instead of (0,T). Then the finite range Fourier transform (Eq. (27)) can be 
viewed as a transformation of an infinitely long record u∞(t) defined over (−∞, +∞), 
multiplied by window function φ(t) defined over (−T/2, T/2), i.e. 

 

T / 2

T / 2
U(f ,T) u(t)exp( j2 ft)dt

u (t) (t)exp( j2 ft)dt ,

−
∞

∞−∞

= − π

= φ − π

∫

∫
 (30) 

where φ(t) is a function or window that is nonzero in the measurement interval, 
0 ≤ t ≤ T, and zero otherwise.  

A very simple window is a rectangular window defined by  

 
1 T / 2 t T / 2

(t)
0 otherwise 

− ≤ ≤⎧
φ = ⎨

⎩
 (31) 

This rectangular window, especially for small T, may give a very distorted picture of 
the spectrum. This effect is caused by large negative side lobe leakage associated with 
the discontinuity of the function at the edges of the window. A smooth filter or win-
dow shape to reduce leakage can be obtained by tapering the window at each end. In 
place of the rectangular window, it is suggested by (Bendat and Piersol 1971) that a 
cosine taper be used over 0.1 T at each end of the window. An effect of this tapering is 
to reduce the variance (error of the estimate) compared to using a rectangular window. 
The cosine tapering procedure used in this paper is defined by  
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 (32) 

which is taken from Otnes and Enochson (1972). The calculated values of the power 
spectral density function ( xĜ ) using a window must be corrected by dividing them by 
ratio of the area under the tapered window to that under the rectangular window. The 
area under the window in Eq. (32) is 0.875T. 

There are other windows with similar properties. All of them introduce tapering at 
the ends of the window. The purpose of tapering when viewed from its effect in the 
frequency domain is to suppress large side lobes in the effective filter obtained with 
the rectangular window transform. When viewed from the time domain, the object of 
tapering is to “round off” potential discontinuities at each end of the finite segment of 
the time history being analyzed.  

Assume now that the turbulent velocity is sampled at N equally spaced time points 
with the time interval between samples being Δt. Then, for an arbitrary f, a discrete 
version of the Fourier transform of the velocity sample is (Bendat and Piersol 1971) 

 [ ]
N 1

i 0
Û(f ,T) t u(i t) (i t)exp( j2 fi t) ,

−

=

= Δ Δ φ Δ − π Δ∑  (33) 

where )T,f(Û  is an estimator of U(f,T) in Eq. (27).  

The Fourier transform is calculated at discrete frequencies fk, where  

 k
k Nf for k 0,1,2,..., .

N t 2
= =

Δ
 (34) 

The practical upper limit of the frequencies is the Nyquist cutoff frequency at 
f = 1/(2Δt). However, for turbulence, there is no energy at zero frequency since only 
variations from the mean velocity are included in u. 

Equations (29) and (33) give the power spectrum estimator as  

 
2 2

x k k k
2 2 tˆ ˆ ˆG (f ) U(f ,T) U ,

N t N
Δ

= =
Δ

 (35) 

where 

 k
k

Û(f ,T)Û .
t

=
Δ

 (36) 



 62

To show the distribution of TKE with frequency, usually a graph of x kĜ (f )  vs. fk or 

x kĜ (f ) /Δt vs. k/N is plotted. 

Each individual value of x kĜ (f )  may have a very large variance so that the spec-
trum has very large oscillations from point to point. To decrease the variance, fre-
quency smoothing is applied using spectral windows. There are many spectral win-
dows in the literature (e.g., Otnes and Enochson 1972, and Jenkins and Watts 1969). 
In this paper, the Tukey spectral window is used. This window has a weighting func-
tion for the averaging that is a cosine function with a half wavelength equal to the 
width (B) of the window and with the maximum weighting being at the center of the 
window. B was chosen by trial and error to be 25/T in order to minimize the fluctua-
tions in the spectra without losing the essential aspects of the shape of the spectral 
distributions. In fluid mechanics, the relative shape of the spectrum is often more im-
portant than the actual values since only the shape is needed to identify the frequencies 
for things like the Kolmogorov inertial subrange and the Heisenberg viscous dissipa-
tion range.  

4. Experimental results 

4.1 Mean velocity distributions 
Typical time series of the instantaneous velocities are shown in Fig. 4. These meas-
ured velocities were time averaged (Eq. (2) with n = 1); the average velocities are 
indicated by the dashed lines in Fig. 4. The vertical distributions of the time-averaged 
velocities are shown in Fig. 5, where z is the distance from the bed and h is the flow 
depth. In spite of a long approach section, the velocity distributions were not symmet-
rical about the vertical centerline of the channel. Measurements were not made close 
to the bottom, side boundaries, or water surface. Thus, the velocity distributions in 
Fig. 5 do not explicitly show the ‘velocity-dip’, which is the name applied to the im-
portant feature for narrow open channel flows (B/h < 5) where the maximum velocity 
occurs just below the free surface rather than at the free surface. This characteristic is 
peculiar to open channel flows.  

The hypothesis of the vertical distribution of mean velocity indicates that the log-
law is applicable only in the wall region (z/h < 0.2) and that the deviation from this 
law should be represented by adding a wake function (Nezu and Rodi 1986). How-
ever, one can assume that the wake function is practically equal to zero if the flow is 
close to uniform in a very wide rectangular channel (which this channel was not) and 
has no suspended sediment. The log-law for turbulent flow is  

 *

*

zuU 1 ln A,
u

= +
κ ν

 (37) 

where u* is the friction velocity, κ is the von Karman constant, ν is the kinematic vis-
cosity, and A is a constant. The value of A depends on the type and geometry of the 
flow system and on the boundary roughness. For boundaries in the hydraulically rough 
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regime or in the transition regime between smooth and rough, A depends on u*. By 
differentiating Eq. (37),  

 *
dUu .

ln(10) d(log  z)
κ

=  (38) 

 

 
Fig. 4. Typical instantaneous velocities. 

 
Fig. 5. Vertical distributions of longitudinal velocity. 
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Using Eq. (38) and assuming κ = 0.4, u* can be found from the slope of a semi-

logarithmic graph of U  vs. z.  
Equation (37) approximates the three measured mean velocities for z/h from 0.1 to 

0.5 (Fig. 6). Using the straight lines in Fig. 6 and Eq. (38), the values of u* in Table 1 
were obtained. 

Table 1 

Friction velocities from Fig. 6 and Eq. (38) 

Vertical u* (m/s) 

I 0.035 
II 0.031 
III 0.031 
IV 0.031 
V 0.038 

 

 

 

Fig. 6. Vertical distributions of longitudinal velocity (semi-logarithmic scale). 
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4.2 Turbulent velocities 
The turbulent velocity fluctuations come from the difference between the instantane-
ous velocity and the time average (Eq. (3) and Fig. 4). The subsequent sections ad-
dress various quantitative statistical aspects of the turbulence. However, some impor-
tant aspects can be detected just by visual inspection of graphs like those in Fig. 4. For 
example,  

• The magnitude of the fluctuations relative to the time-averaged velocity is larger 
near the boundary (Point 21) than near the surface (Point 9).  

• The velocity fluctuations consist of both low frequencies that can be identified 
visually and higher frequencies that appear to be more irregular (at least for the 
scale of the graphs in Fig. 4).  

• Frequencies at least as low as 0.1 Hz are present, as indicated by the variations 
with a period on the order of 10 sec. The reason for these velocity variations is 
unknown.  

• The magnitude of the low frequency velocity variations is generally larger than for 
the higher frequencies. 

• The magnitude of the velocity variations associated with the low frequencies is 
larger near the bed than near the surface.  

Using the frozen turbulence assumption with a mean velocity of approximately 0.8 
m/s, a 10-sec period corresponds to an eddy size of 8 m. It is difficult to conceive of 
this variation being turbulence because the flow was only about 0.5 m deep and 1.5 m 
wide. An eddy with a size 16 times larger than the flow depth should become unstable 
and break up into smaller eddies. On the other hand, if the low frequency variation is 
due to an unsteadiness in the flow, the magnitude of the variation near the bed and 
near the surface should be generally the same. Although the two velocity records in 
Fig. 4 were not obtained simultaneously, they were obtained on the same day with the 
same flow conditions. Without further investigation, a definitive explanation of the 
lowest frequencies cannot be given. Nevertheless, one possible cause is wave action in 
the channel. The celerity (c) of a long, gravity wave in this channel is 2.2 m/s. The 
channel length (L) of 35 m gives a 4L/c period of 64 sec. Higher harmonics would 
have smaller periods. Possible wave action could be identified by simultaneous veloc-
ity measurements at two points which are separated by a distance that is large relative 
to the expected actual large eddy size, i.e., relative to the flow depth.  

The probability density function for Point 13, which is near mid-depth on the 
channel centerline, is shown in Fig. 7. For this measurement point, the total number of 
velocities in the time series was 4182. Each point on the pdf was calculated as the 
average slope of the cumulative probability distribution over 49 velocity measure-
ments. There is a large amount of scatter in Fig. 7. Nevertheless, it is still evident that 
the probability of –1 < u/σ < 0 is less than for a Gaussian distribution while the prob-
ability of 0 < u/σ < 1.3 is greater than for a Gaussian distribution, i.e., the distribution 
has a negative skewness. Also see Section 4.4. 
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Fig. 7. Probability density function. 

4.3 Turbulence intensities  
The universal functions for the relative turbulent intensity in 2D shear layers, as in 
channel flows, are given by Nezu and Nakagawa (1993). The functions were obtained 
by adopting the k-e turbulence model, neglecting the viscous diffusion, and assuming 
that the turbulent energy is in local equilibrium. The function has the form  

 i
i i

*

zD exp C for i u,v,w ,
u h
σ ⎛ ⎞= − =⎜ ⎟

⎝ ⎠
 (39) 

where C and D are constants and σ is defined in Eq. (4). For the intermediate region, 
i.e., 0.1< z/h < 0.6 in very wide channels, Nezu and Nakagawa (1993) suggest using 
the values of Table 2. The authors’ measurements gave the values in Table 3. Gener-
ally, the coefficients for these measurements are smaller than those given by Nezu and 
Nakagawa (1993) and the coefficient C is not constant. The coefficient D is the largest 
for the longitudinal component of velocity and the smallest for the vertical velocity. 
Figure 8 shows the vertical distributions of turbulence intensities for Vertical III and 
the best fit straight lines that were used for determining C and D. These data generally 
follow the exponential relationship in Eq. (39), although σw is very nearly constant for 
the three points in the lower half of the flow depth. The situation is significantly dif-
ferent for Vertical I (Fig. 9). The vertical variations of σu and σv are not even ap-
proximately exponential. Rather the intensities decrease much more rapidly in the 
lower half of the flow than in the top half. In the top half, the σu and σv  values in-
crease with increasing z or are approximately constant. The same trends are present in 
the data for Vertical V. All of the values of σw increase with increasing z for Vertical 
I, as indicated in Fig. 9 and by the negative value of Cw in Table 3, and are approxi-
mately constant for Vertical V. All of these differences from Eq. (39) are presumably 
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due to the fact that the present measurements were made for a flow with a width-to-
depth ratio of only 3.1. For this type of flow, the secondary flow is upward near the 
sides of the channel (Schlichting 1968). The redistribution of the turbulence due to this 
secondary flow and the lateral shearing in addition to the vertical shearing can cause 
significant differences from two-dimensional flows in very wide rectangular channels. 
The values in Table 3 were obtained for 0.1 ≤ z/h ≤ 0.83 rather than just in the range 
of 0.1 to 0.6 as given by Nezu and Nakagawa (1993). This difference may have had 
some effect on the values of C and D, but it is not believed to be the major reason for 
the differences in Table 2 and Table 3.  

Table 2 

Values of C and D for Eq. (39) from Nezu and Nakagawa (1993) 

Component C D 
u 1.0 2.30 
v 1.0 1.63 
w 1.0 1.27 

Table 3 

Values of C and D from measurements  

Vertical I II III IV V 
 C D C D C D C D C D 

u 0.26 2.08 0.79 1.75 0.79 2.24 0.61 1.98 0.46 1.92 
v 0.37 1.32 0.81 1.15 0.50 1.34 0.40 1.20 0.41 1.18 
w -0.20 0.89 0.33 0.74 0.36 0.93 0.17 0.90 0.02 0.79 

 

 
Fig. 8. Turbulence intensities for Vertical III. 
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Fig. 9. Turbulence intensities for Vertical I. 

4.4 Skewness and kurtosis  
The vertical distributions of skewness (Eq. (6)) and kurtosis (Eq. (7)) for Vertical III 
are shown in Fig. 10. The distribution of skewness is rather typical in that Sx has nega-
tive values in the middle part of the depth, i.e., (0.2h − 0.7h) and it increases towards 
the bed and the water surface. The skewness in this part of depth should be negative, 
because its negative values characterize the kinetic energy diffusion from the wall 
region upward. Values of kurtosis are close to zero, with the absolute values being less 
than 0.2 for all of the measurement points in all of the verticals. Skewness and kurtosis 
have very simple geometrical interpretations. The skewness describes the uneven dis-
tribution of instantaneous velocity. For a symmetrical distribution, Sx = 0. The kurto-
sis describes the flatness of distribution.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Skewness and kurtosis for longitudinal turbulent velocity. 
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4.5 Autocorrelation function and macroscale 
The autocorrelation function (rE, Eq. (10)) for three of the points in Vertical III is 
shown with linear scales in Fig. 11. The integral time scale (TE) for these points was 
calculated from Eq. (12) by setting the upper limit for the integration at the value of Δt 
for which rE first goes to zero. The values of TE (Table 4) increase with increasing 
distance from the channel bed, i.e., TE ranges from 0.18 s at 4.9 cm to 0.95 s at 
40.4 cm. The same is true of the length macroscale Λu calculated from Eq. (13) and 
given in Table 4. The last column in Table 4 gives values of  

 L

2
uuRe ,Λ

=
ν

 (40) 

where ReL is called the turbulence Reynolds number. 

Table 4 

Integral scales and related parameters on Vertical III 

Point Height  TE U  Λu 2u  ReL 

 cm s m/s m m/s  
15 40.43 0.95 0.916 0.87 0.0466 40,500 
14 34.13 0.71 0.910 0.64 0.0416 26,600 
13 24.38 0.43 0.890 0.38 0.0524 19,800 
12 14.63 0.30 0.845 0.25 0.0635 15,900 
11 4.88 0.18 0.750 0.135 0.0768 10,100 

 
 

 
Fig. 11. Autocorrelation coefficients for Points 11, 13, and 15 in Vertical III. 
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Figure 12 is a semi-logarithmic plot of the positive values of the same data for rE. 
If the data follow the classic behavior given by  

 E
E

tr ( t) exp
T

⎛ ⎞Δ
Δ = −⎜ ⎟

⎝ ⎠
 (41) 

the values of rE would plot as a straight line in Fig. 12. The heavy lines show the best 
fit of an exponential variation for Points 11 and 13. For rE greater than about 0.2, the 
data for Point 11 have very good agreement with the exponential variation in Eq. (41). 
For Point 13, the agreement with the exponential variation is not as good. The expo-
nential curve is not drawn for Point 15, but the agreement here is even worse than for 
Point 13. Interestingly, the values of TE obtained from fitting Eq. (41) to the data in 
Fig. 12 give relatively good agreement with the values in Table 4, namely TE = 0.20 s 
for Point 11 and 0.50 s for Point 13.  

 

 
Fig. 12. Semi-logarithmic plot of rE for Points 11, 13, and 15 in Vertical III. 

Because of the Fourier transform relationships between the autocorrelation func-
tion and the energy spectrum, it is also possible to calculate the macroscale from the 
spectrum (Nezu and Nakagawa 1993). 

4.6 Turbulent energy 
The vertical distributions of 2u , which is proportional to the turbulent kinetic energy 
or TKE associated with longitudinal velocity, are presented in Fig. 6. Verticals I and V 
are not included in the figure because they are close to the wall and the data are not 
well behaved. The distributions in Fig. 13 are typical in that the turbulent intensity is 
larger near the bed and lower near the water surface.  

The turbulent energy generation exceeds the dissipation rate close to channel bot-
tom, while the opposite is true near the water surface with the turbulent dissipation 
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rate being larger than the generation rate. Consequently, an intermediate region should 
exist where there is a near-equilibrium turbulent energy budget, i.e., a region where 
the local rates of energy production and dissipation are approximately in local equilib-
rium (Hinze 1975). In the intermediate region, the vertical flux of turbulent kinetic 
energy is expected to be almost constant.  
 

 
Fig. 13. Vertical distributions of mean squared turbulent longitudinal velocity. 

Lopez and Garcia (1999) performed experiments in a tilting open-channel flume 
(14 m long, 0.90 m wide at the ratio of channel width to water depth of 4.5 and larger) 
over a smooth bed with uniform flow conditions. They concluded that the vertical flux 
of TKE, 2 3

*q w/u , was almost constant and equal to 0.33 for z/h ∈ (0.1, 0.6). Our 
measurements were performed in a rather narrow channel (width/depth ≈ 3) and do not 
confirm this result (see Fig. 14). Only, for Vertical III on the channel centerline, may 
one conclude that the flux is approximately constant in the region of z/h ∈ (0.1, 0.6). 
Here it ranges from 0.33 to 0.39 with an average of 0.37. The fluxes calculated for 
Verticals II and IV, especially at points close to the bed (z/h = 0.1), have a lot of scat-
ter. This scatter can be caused by the secondary currents and flow instability near the 
bed.  

4.7 Reynolds stress distributions 
The idealized vertical distributions of Reynolds stresses can be obtained from the ba-
sic momentum equations. For steady, uniform, fully developed turbulent flow in 
straight open channels, the time-averaged momentum equation for the primary flow 
direction (x) is (Nezu and Nakagawa 1993) 

 2U U ( uv) ( uw)V W gsin U,
y z y z

∂ ∂ ∂ − ∂ −
+ = θ + + + ν∇

∂ ∂ ∂ ∂
 (42) 
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Fig. 14. Vertical turbulent flux of turbulent kinetic energy. 

where U,  V,  W,  and P  are the time averaged values and θ = angle of inclination of 
the channel bottom. Integrating Eq. (42) in the vertical direction downward from the 
water surface (we assume that this is the direction of integration since h is the lower 
limit). For channels with small slopes, the equation for the xz-component of Reynolds 
stress when the viscous stresses are negligible is  

 

xz

z z z
xy

e
h h h

Uuw
z

U U      gI (h z) V dz W dz dz,
y z y

τ ∂
≡ − + ν

ρ ∂

τ⎛ ⎞∂ ∂ ∂
= − + + + −⎜ ⎟∂ ∂ ∂ ρ⎝ ⎠

∫ ∫ ∫
 (43) 

where the energy gradient is 2
e *I sin u gR ,≡ θ =  h = flow depth, and R = hydraulic 

radius. In the central zone of wide open channels, the transverse gradients disappear, 
W = 0, and R = h so that Eq. (43) reduces to  

 2xz
e *

zgI (h z) u 1 .
h

τ ⎛ ⎞= − = −⎜ ⎟ρ ⎝ ⎠
 (44) 

Equation 44) shows that for wide channels (aspect ratio B/h > 5), the vertical distribu-
tion of the Reynolds shear stress τxz can have a linear vertical distribution from zero at 
the water surface to τo = ρ 2

*u  at the channel bottom.  

The vertical distributions of the three components of the Reynolds stresses deter-
mined from the velocity measurements are shown in Fig. 15. For each vertical, the 
measured τ values were divided by the boundary shear stress for that vertical (τoi) 
from the u* values in Table 1.  
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The measurements show deviations of τxz from the linear relationship in Eq. (44) 
for all verticals. Several factors contribute to these deviations:  

1. Variable τxy. To obtain Eq. (44), it was necessary to assume that the transverse 
gradient in the last term in Eq. (43) is zero. However, the data show that this 
condition is not met. Equation (43) shows that τxz has a conjugative relation 
with the transverse variations of the transverse Reynolds stress (τxy).  

2. Secondary currents. In deriving Eq. (44) it was also assumed that the other two 
integral terms in Eq. (43) disappear, i.e., the second and third terms from the 
right-hand side. In fact, none of the integrand terms is zero due to the secon-
dary currents generated by the transverse gradients of Reynolds stresses for the 
small width-to-depth ratio of approximately 3.  

Even for a narrow channel, both the lateral velocity (V)  and the xy-stresses would be 
zero at the channel centerline (Vertical III) if the flow were symmetrical about the 
centerline. However, neither of these terms is zero in this channel so both factors dis-
turb the vertical distribution of xz-Reynolds stresses even in Vertical III. The Rey-
nolds stresses in the remaining verticals are disturbed more severely (Fig. 15).  

The equation for the τxy Reynolds stresses can be obtained by analogy to Eqs. (43) 
and (44). The equation would show that the τxy stresses are zero in wide channels 
without secondary currents. These measurements for a narrow channel show that τxy is 
not zero (Fig. 15). 

Figure 15 shows that the τyz Reynolds stress, i.e., the vertical transport of trans-
verse momentum, is close to zero compared to the other Reynolds stresses in all verti-
cals. This condition exists if the gradient of normal stresses in the y direction (τyy) is 
negligibly small. For details, see Nezu and Nakagawa (1993).  

4.8 Spectral density function 
The energy spectral density functions for Vertical III on the channel centerline were 
calculated according to the procedure described in conjunction with Eqs. (31) − (36), 
using a Tukey window width T = 1 s (Eq. (31)). The results are shown in Fig. 16. 

Kolmogoroff’s similarity theory postulates that in a turbulent motion, at suffi-
ciently high Reynolds number, there is a range of high wave numbers (equivalently, 
small wave lengths or high frequencies) where the characteristics of the turbulence are 
determined by the mean rate of energy dissipation per unit mass, ε, and the kinetic 
viscosity of the fluid, ν. This range of frequencies is called the universal equilibrium 
range. It is located far away from the range of the large energy-containing eddies and 
it extends till the dissipation range.  

If the equilibrium range is sufficiently large, it includes an inertial subrange where 
the dissipation will be negligibly small compared with the flux of energy transferred 
by inertial effects. In this inertial subrange, the turbulence is determined by ε alone. 
The inertial subrange is located far away from the range of the energy-containing ed-
dies and far away from the dissipation range. The average size of the energy-
containing eddies is order of the integral length scale Lu (Table 4) and the average size 
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of eddies that are mainly responsible for dissipation can be estimated as the dissipation 
or Kolmogoroff length scale, η. See Eqs. (46) – (48) and the associated discussion. 

 

 
Fig. 15. Empirical Reynolds stresses. 

The condition for the existence of the inertial subrange is expressed in terms of the 
Reynolds number ReL. If the turbulence Reynolds number ReL is not sufficiently large, 
the inertial subrange, i.e., Lu

-1 < k < η-1, is too narrow to be detected. Frost and Bitte 
(1977) state that for an inertial subrange to exist, the turbulence Reynolds number 
should be of the order of 105. This is the reason that the inertial subrange is not often 
observed for laboratory conditions. However, Table 4 shows that this condition was 
satisfied for these measurements. In the inertial subrange the energy spectrum of tur-
bulence can be expressed by the Kolmogoroff spectrum law, which is given by 
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Fig. 16. Energy spectra for Vertical III. 

With the large amount of oscillation in the spectra (Fig. 16), it is difficult to clearly 
identify the slope. Nevertheless, there appears to be a small range in which the slope is 
approximately −5/3. The spectra in the most right-hand part of the figure (perhaps 
above about 3 or 4 Hz) are dominated by noise. This behavior can be identified be-
cause the spectra should be concave downward until reaching the dissipation range 
where the slope would be −1/7 at frequencies on the order of 50 Hz for this flow. See 
the discussion following Eq. (48). 

Nikora (1999) writes about another subrange of frequencies where the spectrum 
decays as G(f) ∼ f −1. He suggests that this subrange is situated in the equilibrium range 
of frequencies, close to the energy-containing eddies. He assumed that in this subrange 
the energy dissipation is expressed as ε(k) ∼ u*

3k, where k is the wave number. In 
terms of frequency, the equivalent behavior is ε(f ) ~ u*

3f/U and G(f) ~ f−1.  

The spectra in Fig. 16 were calculated by using a one-second smoothing time win-
dow and show the existence of the −5/3 range of frequencies, i.e., the Kolmogoroff’s 
inertial subrange. However, there is also a large amount of noise in the spectra. The 
width of the window can be chosen by trial depending on the objective of the calcula-
tion. To minimize the fluctuations in the spectra without losing the essential aspects of 
the shape of the spectral distributions, one should choose a rather wide window. In our 
analysis, the relative shape of the spectrum was more important than the actual values 
since only the shape was needed to identify the Kolmogoroff inertial subrange (−5/3 
slope) and −1 frequency subrange.  

Applying a five-second window for calculation of the spectral density function, it 
is possible to detect the locations of both the inertial subrange and the −1 subrange 
more precisely (Fig. 17 – Fig. 19). The frequency ranges in which the −1 and −5/3 
power laws were obtained from these figures for the channel centerline are shown in 
Table 5. 
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Table 5 

Frequencies for the −1 and −5/3 subranges 

Slope of frequency subrange 
Point Distance from bed 

−1 −5/3 
 cm Hz Hz 

11 4.9 − 1.05 − 4.0 
13 24.4 0.4 − 0.7 0.9 − 4.0 
15 40.45 0.5 − 0.9 1.0 − 4.0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17. Energy spectra for Point 11, located at z = 4.9 cm. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 18. Energy spectra for Point 13, located at z = 24.4 cm. 
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For the spectrum in Fig. 19, it is possible to identify a characteristic frequency of 2 
Hz, at which the slope −5/3 slope is disturbed. One can relate this disturbance to the 
secondary motion with a characteristic size of motion of 0.47 m for a time-averaged 
velocity 0.94 m/s. It is easy to notice that this kind of disturbance does not appear at 
the other two distances from the bed, i.e., 4.9 cm and 24.4 cm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 19. Energy spectra for Point 15, located at z = 40.45 cm. 

Kolmogoroff’s dissipation length scale is given by Hinze (1975) as 

 
1/ 43

.
⎛ ⎞ν

η = ⎜ ⎟⎜ ⎟ε⎝ ⎠
 (46) 

The corresponding velocity scale is 

 ( )1/ 4u .η = νε  (47) 

These two scales can be combined to give a dissipation frequency scale of 

 
1/ 2u

f .η
η

ε⎛ ⎞= = ⎜ ⎟η ν⎝ ⎠
 (48) 

The order of magnitude of these scales can be estimated by using dissipation rate εA 
for the entire flow area, where εA = gUAIe, g = acceleration of gravity, UA = cross sec-
tional average velocity, and Ie = slope of the energy grade line. Using flow rate = 
0.558 m3/s, channel width = 1.52 m, flow depth = 0.488 m, Manning’s n = 0.011, and 
kinematic viscosity = 10-6 m2/s, then εA = 0.00255 m2/s3, η ≈ 0.14 mm, uη ≈ 7 mm/s, 
and fη ≈ 50 Hz. Since the Nyquist frequency for the ADV used for these measure-
ments is 12.5 Hz and fη is on the order of 50 Hz, it is not possible to see the dissipation 
range from these measurements. 
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5. Conclusions 

Measurements show that the vertical distribution of longitudinal velocity follows the 
log-law for smooth wall with Karman constant 0.4 only for z/h < 0.5 and for the chan-
nel centerline (Vertical III). 

The probability density function (pdf) for longitudinal turbulent velocity is not 
Gaussian even for the central part of the channel cross section. The pdf has a negative 
skewness for all z/h > 0.2 with the largest negative value being at mid-depth. The kur-
tosis is negative for z/h < 0.7.  

The universal relationship for two-dimensional flows suggested by Nezu and Na-
kagawa applies only for Vertical III but with different coefficients. The influence of 
the side walls on the turbulence on the remaining verticals keeps the turbulence there 
from following this universal relationship.  

The integral time scale and the length macroscale for Vertical III increase with in-
creasing distance from the bed as well as with increasing turbulence Reynolds num-
ber. This is consistent with today’s knowledge about turbulent flows in open channel 
flows. 

The vertical distributions of the turbulent kinetic energy (TKE) in Vertical III are 
typical, i.e., the TKE is larger near the bed and lower near the water surface. The ver-
tical flux of TKE in Vertical III is almost constant and approximately equal to 0.37 in 
the region of z/h ∈ (0.1, 0.6), which is typical for the intermediate region.  

The Reynolds stress (τxz) associated with the vertical transport of longitudinal 
momentum is approximately linear only in Vertical III where the transverse compo-
nents of the mean velocity as well as the lateral changes of τxy (i.e., the transverse 
transport of longitudinal momentum) are close to zero. For the other verticals the 
stresses deviate from the linear relationship. The Reynolds stress (τxy) is different from 
zero for all verticals and the τyz Reynolds stress (i.e., the vertical transport of trans-
verse momentum) is closest to zero compared to the other Reynolds stresses in all 
verticals.  

The existence of the Kolmogoroff inertial subrange in Vertical III is confirmed by 
the measurements. It ranges approximately from 1Hz to 4Hz. It is not possible to con-
firm the existence of the ‘−1’ frequency subrange.  
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Abstract  

We report the results of laboratory experiments on the thermal bar propaga-
tion due to heating from the surface, performed in 2-m long water channel with 
bottom slope. Velocity and temperature fields in the presence of the 3.98oC are 
analyzed, demonstrating that (i) the dynamical front of the thermal bar is associ-
ated with the «nose» of subsurface jet, (ii) the subsurface jet accelerates with 
time, passing two phases in its development, (iii) speed of propagation of the 
thermal bar front in “fast” stage is close to that of a convective jet. 

1. Introduction 

In spring period, shallow waters heat faster due to solar radiation than deeper ones 
(Kreiman 1989, Farrow 1995a, b). If water in a basin is still below the temperature of 
maximum density (exactly −3.98oC for fresh water), it leads to vertical convective 
mixing and formation of denser water cascade down-slope. When water temperature 
in the shallow-most part of the slope reaches the temperature of maximum density, a 
cell with stable vertical density stratification arises there. This cell enlarges with time 
of heating, being bordered from offshore side by the isotherm of 4oC. With an increase 
of a horizontal density gradient, a warm surface jet is generated from shallow to 
deeper part of the basin. This jet propagates towards the part where the vertical density 
stratification is still unstable, and slow, denser water cascades still exist further down-
slope. Some water volume in-between, associated with the 4oC-isotherm, is rather 
inertial: near the density maximum, temperature differences do not lead to a consider-
able density gradients, and water motions are very weak. This very area is in fact what 
one calls “the thermal bar”, meaning a barrier for water mixing. In field, a dynamical 
front (line of convergence, with bands of foam, floating algae etc.) is associated with 
this area, often called “the thermal bar” as well. This double meaning is a bit confus-
ing, and we will use another terminology in this paper: we describe, separately, the 
propagation of the 4oC-isotherm (disregarding how does water move in this region) 
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and the propagation of the nose of the surface jet. It is clear that both of them are “as-
sociated” with the thermal bar, have exact physical meaning, and do not coincide. 

Laboratory modeling of Kreiman (1989) showed for the first time that the thermal 
bar has two phases in its propagation: initial «slow» phase and latter «fast» stage. 
Numerical modeling has demonstrated (Farrow 1995a, b) that the thermal bar is a 
complicated phenomenon. It was pointed out that it consists of (i) a surface jet, (ii) 
gravity current and (iii) down-welling zone. Field data (Riangin 2002) demonstrated 
that the thermal bar front is a 3-dimensional surface with very small angle of inclina-
tion of the frontal division (about 0.001), i.e. warm stratified waters are overlying 
colder quasi-isothermal waters. Thus, it is already proved by field data (Riangin 2002) 
that the thermal bar is not a sort of vertical «wall». 

 

 
Fig. 1. Sketch of water circulation in a fresh-water basin in presence of 4oC-isotherm. Solid 
lines mark isotherms, dashed line the 4oC-isotherm. Grey arrows indicate vertical mixing in 
deep open-lake waters, black arrows in the upper layer indicate subsurface jet, in the middle 
layer – compensating flow, in the bottom layer – gravity current. 

The main goal of the presented experiments is (i) to prove that the front (zone of 
water convergence) of the thermal bar is associated with the «nose» of subsurface jet, 
(ii) to monitor vertical and horizontal variation of temperature field over the entire 
tank in order to obtain the time-dependent position of the 4oC-isotherm, and (iii) to 
demonstrate that the speed of the subsurface jet can be predicted using lows of hori-
zontal convection. 

2. Approach and methods 

Experiments were performed in 2-m long water channel with slope at the Fluid Dy-
namics Laboratory of Technical University of Eindhoven. The slope had a length of 
2 m (aspect ratio ~ 0.1). The initially warm water from water supply was cooled down 
to 1oC using a cooling machine (ULTRA KRYOMAT TK-30D) and artificial ice, and 
then got warmed naturally (via heat-exchange through the surface with warmer air). 
Sidewalls and bottom were protected by insulator. Structure of temperature field was 
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monitored by array of verified thermistors LeCroy 8013A (5 thermistors, at fixed posi-
tions), and 1 moveable thermistor was used for vertical profiling. Accuracy of the 
thermistors is 0.001oC. Flow structure was investigated by photographing the subse-
quent tracks of potassium permanganate crystals, which were dropped into the tank to 
produce vertical dyelines. The propagation of the under-surface jet was monitored by 
digital camera. Data processing was performed using CorelDraw, Excel and Surfer.  

3. Results and discussion 

3.1 Structure of temperature and velocity field in «slow» and «fast» stage  
A typical structure of temperature and velocity fields is shown on Fig. 1. In the deeper 
part of the basin, there is a well-mixed core and 2 warm surface and bottom boundary 
layers. Their thickness is about 0.3D/0.4D (D = 18.5 cm – maximum depth of the ba-
sin), and vertical temperature difference of 0.8oC/0.3oC, correspondingly. With the 
development of the process, vertical temperature difference increases up to 1.5-2oC, 
thickness of surface layer increases up to 0.5D, whilst the thickness of the bottom 
layer slightly decreases to the 0.15-0.2D.  

Figures 2 (a, b) demonstrate that shallow waters heat faster than deeper ones; the 
isotherms have a tilt towards to the deep part. The 4oC-isotherm and warm surface jet 
propagate with time towards the deeper part of the tank.  

Water particles in the upper-most layer move with almost the same speed as the 
subsurface jet does, thus, the subsurface jet carries warm water masses from shallow 
to deep part of the basin, i.e., warm stratified waters are carried into colder open area. 

From analysis of Fig. 2, one can conclude that in the beginning of the experiment, 
the entire subsurface jet is located within the warm part of the tank and moved slower, 
whilst to the end, the very nose of the jet is associated with the 4oC-isotherm at the 
water surface, but it propagates faster and over cold waters (below 4oC). To the end of 
the experiment, when the entire water surface is well above the 4oC, horizontal tem-
perature gradients between shallow and deep part still exist, the most dense water 
(4oC) is at the bottom.  

3.2 Increase of the surface temperature while passing  the temperature of  
       maximum density  
In one of the experiments, surface temperature was monitored using the array of the 
thermistors in surface layer (1.5 cm) over the different depths (0.02, 0.04, 0.06, 0.1, 
0.12, 0.145, 0.16 m). The data is presented in Table 1.  

During the experiment, maximum horizontal temperature gradients − up to 
2.5oC m−1 − were observed in the shallow part between the 2nd and 3rd thermistors; in 
deeper part of the basin, horizontal gradients decrease down to 1oC m−1. At the begin-
ning of the process, horizontal temperature difference between 2nd and 3rd thermis-
tors increases (first slowly, then faster), peaks at its maximum of about ~12oC m−1, and 
drops down to 3oC m−1 (see Fig. 3). After that, the same process is repeated with the 
thermistors 3 and 4. 
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Fig. 2. Structure of temperature and current fields in 8 min and 47 min after the beginning of 
the experiment. Temperature fields were obtained from the vertical profilings, performed in the 
vicinity of the head of the subsurface jet using movable thermistor, namely, at the locations: (a) 
4, 7, 12 cm and (b) 12, 13 cm depths. Values on the pictures are water temperatures. Current 
fields were visualized by potassium permanganate crystals. Dotted and dashed lines mark 
approximate location of the 4oC-isotherm and subsurface jet. 

Table 1 

Time rate of the surface temperature rise for every thermistor during 
the experiment. Thermistor number 2 is located in the shallow-most part 

Number of 
the thermistor 

dt/dt 
before 4oC,

oC/min 

dt/dt 
while passing 4oC,

oC/min 

dt/dt 
after 4oC, 

oC/min 
2 0.6 1.8 0.02 
3   0.03 1.8 0.03 
4   0.02 0.6 0.05 
5   0.02 0.3 0.06 
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Fig. 3. Increase of surface temperature for 5 locations along the laboratory tank (distances from 
the “shore line” are 26, 55, 80, 138, 168 cm). Horizontal line – temperature of maximum density.  

We conclude that the described temperature jump occurs when the subsurface jet 
reaches the location of the given thermistor. Before the arrival, horizontal motions are 
rather weak, large horizontal gradients in shallow part are due to the intense heating. 
Upon the subsurface jet arrival, the horizontal gradients decrease rather quickly, but 
do not vanish at all due to of persistent differential heating over sloping bottom.  

3.3 Frontal zone and 4oC-isotherm speeds 
In one of the experiments, at the beginning of the process, in shallow part of the tank, 
the speed of propagation of 4oC-isotherm was 0.21 mm s−1 (depth of 0.055 m). At the 
midst of experiment, the 4oC-isotherm speed increases up to 0.31 mm s−1, and at the 
end of domain to 0.43 mm s−1. At the midst of the process, the speed of the subsurface 
jet was 0.26 mm s−1, and then increased up to 0.41 mm s−1.  

So, we may assume that (i) the 4oC-isotherm speed is higher than the speed of sub-
surface jet; (ii) the 4oC-isotherm is associated with the jet «nose» and accelerates with 
it, but still does not coincide. 

3.4 Conclusions 
The experiments have demonstrated that the front of the “thermal bar” in the “fast” 
stage is associated with the nose of the subsurface jet. The thermal bar is not a sort of 
the vertical «wall» as it was considered previously (Kreiman 1989). At the initial 
“slow” stage of the thermal bar propagation, both the warm surface jet and the 4oC-
isotherm are located near the surface and propagate towards to the deeper part. Forma-
tion and deepening of the «nose» of the subsurface jet in the latter “fast” stage is its 
specific feature, which was not described in previous laboratory experiments (Elliot 
and Elliot 1970, Kreiman 1989). We suggest that the increase of the thickness and 
speed of the subsurface jet is caused by the development of the process of horizontal 
convective water exchange between shallow and deep parts of the basin: its magnitude   
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Fig. 4. Coordinate variations with time of subsurface jet (empty triangle) and 4oC-isotherm 
(black diamond). 

and intensity are governed by the full depth of differentially heated/cooled layer 
(growing with time in our case), horizontal density gradient (which depends mainly on 
the steepness of the bottom slope) and by imposed buoyancy flux through the surface. 
Propagation of the 4oC-isotherm (which is associated, but does not coincide with the 
nose of subsurface jet) in the beginning of the experiments is slower than that in the 
latter “fast” stage; with the formation of active warm jet, it is transported offshore by 
its nose much faster. Thus, mixing between the shallow and deep water masses is in-
tensified rather than restricted by the presence of the maximum density line (how it 
was suggested before by Kreiman 1989). 
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Abstract  

This article describes an attempt to model the water flow velocity field for 
the Dobczyce retention water body. To solve the case, a finite element approach 
is used. Mathematical model and observational base are described, as well as 
their application to the problem. Potential difficulties are outlined. First results 
are shown along with the plans for further research and possibilities of practical 
applications of the generated data. 

1. Introduction 

Rapid development of computational techniques and fast increase of computing power 
available to engineers which happened during the recent couple of years allow us to 
apply mathematical models to more and more complex objects. We are able not only 
to simulate the behavior of abstract simplified systems, but nowadays we are capable 
to compute – with reasonable accuracy – how much more compound “real life” sys-
tems behave.  

The aim of this article is to show an approach to simulate the water flow velocity 
field for the whole Dobczyce lake; an attempt is based on actual data gathered during 
a series of topographic and bathymetric measurements. The results to be obtained are 
intended to constitute the fundamentals for practical environmental engineering appli-
cations including pollution spreading prognoses, sediment and rubble transport predic-
tions, banks erosion warning systems and so on. This paper shows the theoretical and 
observational basis of the model under development along with some recently ob-
tained first results. 

2. The lake of Dobczyce  

The Dobczyce lake is a retention reservoir placed at 60th kilometer of the Raba river. 
Table 1 sums up some basic data about that lake (Nachlik et al. 2006), (ODGW, un-
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dated) and Fig. 1 shows the shape of the lake for minimal, nominal and maximal water 
levels. 

Table 1 

Dobczyce Lake – basic data 

Parameter Value 

Total capacity 14.5 ÷ 125 *106 m3

Flooded area 3.35 ÷ 10.65 km2

Total flow (possible range) 1.8 ÷ 2717 m3/s 
Yearly average flow 10.6 m3/s 
Design (0.3%) flow 1560 m3/s 
Range of surface level changes 15.9 m 
Average depth (at average water level) 10.2 m 
Covered watershed area 768 km2

 

 
Fig. 1. The shape of the Dobczyce lake at different water levels: minimal (light grey), average 
(grey), and maximal (dark grey). The symbol  shows the position of dam inlets while  
denotes the location of the water supply inlet. 

The main inflow into the lake is the Raba river. There are several streams that also 
flow into this lake (out of which Wolnica is the most important one), but their contri-
bution to the total flow is less than 5% and most of them can be neglected during the 
preliminary analysis. There is a number of outflows from the lake: 
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· Four bottom sluices at the base of the dam; 
· A three-section open spillway in the dam; 
· One power plant sluice close to the dam; 
· One water supply sluice placed about 0.5 km from the dam. 
As the considered water body occupies a flooded mountain valley, its banks are 

well developed: their slope varies greatly and their shape is complex (as shown on Fig. 
1); the total length of the banks (for average water level) is about 40 km. The bed 
bathymetry is also multifaceted. For all the calculations described in this article a digi-
tal GPS-based bathymetric map of the area (Mazoń et al. 1998) has been used. 

3. Governing equations and the solving method  

The equations used to model the flow of water in the considered lake are based on 
mass and momentum conservation concepts. They are reduced to two-dimensional 
ones as the vertical movement can be neglected (Froehlich 2003). Thus, the vertical z 
dimension is treated as a parameter the x, y-plane velocity is dependent on. The veloc-
ity components for both horizontal coordinates are then: 

 
0 0
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z z
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H H

= =
1
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where: Vx, Vy = averaged (2D) velocity components in appropriate directions, H = wa-
ter depth, z0 = bed elevation, zs = surface elevation, vx, vy = real (3D) horizontal veloc-
ity components in appropriate directions.  

After the integration, the continuity (mass conservation) equation takes the follow-
ing form: 
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where:  = unit flow rate in the x direction, x xq V H= y yq V H=  = unit flow rate in the y 
direction, qm = mass flow rate per unit area (positive for inflow, negative for outflow).  

Momentum transport equations for both horizontal directions are symmetrical to 
each other. That in the x-direction is as follows: 
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where: g = Earth gravity, ρ = water density (considered constant), pa = atmospheric 
pressure at the surface level, β = momentum correction coefficient, τbx = bed shear 
stress (x component), τsx = surface shear stress (x component), τxx, τxy = turbulence 
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shear stresses acting in the x direction on planes perpendicular to the x and y directions 
respectively, Ω = Coriolis parameter responsible for Earth rotation effects.  

In order to simplify the model, the Coriolis effect, the atmospheric pressure vari-
ability, and the surface stress (usually caused by wind) are considered very small and 
their appropriate formulas are taken out of the equations to solve. Moreover, the mo-
mentum flux is taken without any corrections (β = 1). The simplified equation is then: 
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The bed stress is calculated as follows: 
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where n = Manning roughness coefficient. 
For turbulent stresses, the following general formula is used: 
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where φ and ψ represent any coordinate symbol, and: 
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The whole method is called “two-dimensional depth-averaged flow analysis” or 
sometimes “two-and-a-half-dimensional flow analysis”; see e.g. (Zienkiewicz and 
Taylor 2002, A, p. 219-223, 237-239). In order to solve its equations the finite element 
method is used. The calculation performed on a discrete mesh consisted of  quadrilat-
erals (wherever possible) and triangles. The procedure is supplemented by the method 
of weighted residuals – see e.g. (Zienkiewicz and Taylor 2002, B, p. 42-60) in order to 
provide better convergence.  

To execute the calculations the “Depth-averaged Flow and Sediment Transport 
Model – FESWMS” program (Froehlich 2003) has been chosen due to its high versa-
tility and stability. This tool is also capable of calculating sediment transport and pol-
lution spreading which may be crucial in further applications of the results. (It is a part 
of the Surface Water Modeling System “SMS” by the EMS-i company, obtainable at 
www.ems-i.com). 

 

http://www.ems-i.com/
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4. Finite element mesh construction  

Due to the parameters of considered water body (its complex bathymetry, wide range 
of water level and flow rate values) it is virtually impossible to construct one finite 
element mesh that covers all the possible states of the lake. Even using the “element 
drying/wetting” option embedded in the program does not solve the case for high flow 
and bed slope values. The aim is then to construct a set of meshes: each of them work-
ing properly for the whole flow range in a small bracket (one meter or so) of water 
level value.  

There are still several difficulties one must face when constructing such a mesh for 
the Dobczyce lake. First of all the water body could not be considered uniform; it con-
sists of several zones that should be treated differently. These parts are: Raba inflow 
zone, dam zone, long northern valley, shallow southeastern basin, bank zones, and 
finally the main deep body of the lake. While the last of the listed zones is relatively 
easy to cover with a mesh of fairly big elements (as too many small elements there 
make the calculations much longer and tend to cause the solutions to diverge for cer-
tain flow values), the first six zones require careful creation of meshes having smaller 
elements fitting crucial bathymetric features of the given region (like sluices positions 
or areas of rapid depth changes).  

This leads to another construction problem: in the non-central regions the intelli-
gent mesh generation and optimization tools usually fail – leading to unstable or even 
diverging models. Significant fraction of elements has to be manually designed and 
semi-automatically created. All these partial meshes have then to fit each other not to 
cause computational troubles at the junction nodes.  

Finally the mesh needs to be checked whether it provides stable and consistent 
(changing continuously) results in the whole range of boundary condition values 
(mostly inflow/outflow rates). The obtained results also should not change rapidly for 
small changes of the model parameters (like eddy viscosity or Manning roughness 
coefficients). Moreover, it should be checked if two meshes created for neighboring 
water level values (e.g. 1m difference) give similar flow maps as their output for simi-
lar boundary conditions imposed.  

5. First results 
Applying the described methodology to the Dobczyce lake case has brought us prom-
ising outcome so far. This chapter presents some of the early obtained results. The 
mesh has been made to work for high water levels (about 272 meters above sea level), 
and the velocity field simulation boundary conditions have been set to a 0.3% flood 
(reliable flow, 1560 m3/s total). All the outflows are considered working (with their 
appropriate effectiveness) and 8 streams (besides the Raba river) are considered as 
contributing to the total inflow. The mesh used is shown in Fig. 2. 

Figure 3 shows a map of the resulting velocity field. Shading of any given area is 
proportional to the logarithm of the water velocity there. Obtained picture passes a 
common sense test as well as a comparison to the results of simple qualitative kinema-
tical analysis. A series of observational comparisons is planned when velocity maps 
for various flow values and for several water levels are ready. 
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Fig. 2. The mesh used for calculating flows for the water level of about 272 meters above the 
sea limit. It consists of 2187 quadrilateral elements and 2274 triangular ones. The number of 
nodes is 14389. 

 

Fig. 3. Velocity map for 1560 m3/s flow at maximal water level. Arbitrary units, logarithmic 
scale on the z axis. 

A more detailed view of the lower part of the lake is presented on Fig. 4. Along 
with the shading (still proportional to the velocity logarithm) a grid of arrows is intro-
duced showing the flow direction in the points where the arrows are placed. It can be 
easily seen that whirls appear alongside the areas where the main current turns side-
ways. Such behavior is – again – intuitively expected. It should not be also difficult to 
check whether such phenomena occur in the actual lake.  
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Fig. 4. Close-up of the dam region of the map shown on Fig.2. Arrows show the flow direction. 
A few whirl areas are visible. 

6. Conclusions and perspectives 

The finite element method described in Chapter 3 and embedded in the FESWMS 
program proved to be useful in calculating water flow in the lake of Dobczyce at least 
as long as computational meshes are constructed with care. One such mesh can be 
used to perform calculations for the whole possible range of flow values but only in 
very limited bracket of water level. First obtained results are reasonable and consis-
tent; they well qualify for further analysis and calibration. They show characteristic 
features of the velocity field that should subject to observational verification leading to 
consecutive tuning of the model. 

Among various possible uses of generated velocity maps two should be outlined 
now: First – prognoses obtained for high flow values could give us a clue about such 
phenomena as rubble transport and banks/bed erosion during floods. Second – results 
computed for average flows could lead us to better understanding of sediment and 
pollution transport in the considered retention water body working under normal, av-
erage circumstances. This is very important because of the presence of water supply 
system inlet and several recreation zones in this area, that have to be appropriately 
protected against any contamination. Water flow maps may help in determining loca-
tions and sizes of necessary protective zones.  
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Abstract  

This paper presents an approach for the quantification of navigable water-
depths by applying a 2D-numerical model originally developed for automated 
waterways route planning to results of a physical bedload-model. Topography 
and water level data of the physical model of the River Odra with movable bed 
material are used as input for the model in order to determine navigable water 
depths as a function of river bed geometry. The methodology is proved success-
fully by comparing the influence of different maintenance strategies on shipping 
conditions. The results indicate also that the methodology may be used for the 
assessment of river bed stability. 

1. Introduction 

An important aspect in applied river engineering is the improvement of shipping con-
ditions and in particular the provision of navigable water depths. This task is compli-
cated in rivers which are characterized by a highly dynamical bed, since water depth 
cannot be classified unambiguously due to bed form migration and the appearance of 
transient dunes. Hence, the average water depth does not represent the available navi-
gable water depth and the location of maximum water depths, defined as the distance 
from the water surface to the bed level along the thalweg may meander heavily, mak-
ing navigation along its course impossible. 

One task of the Federal Waterways Engineering and Research Institute (BAW) is 
the investigation of shipping conditions in the River Odra. For this purpose, a bed load 
transport model of an 8 km long section of the River Odra (km 654.7–662.5) is oper-
ated by BAW (Hentschel 2006) on contract of the Federal Waterways and Shipping 
Administration (WSV). This particular reach of the River Odra is characterized by a 
highly dynamical morphological behavior due to its fine-gravel/coarse-sand bed mate-
rial and associated bed forms.  
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The model contains a 5 km long straight section which causes meandering banks 
moving several meters per day. Furthermore, some groynes in this reach are heavily 
damaged and scours of considerable sizes can be observed at the groyne heads. Thus, 
navigation is complicated at low water levels because the position of the banks is dif-
ficult to determine and the scours cause an expansion of the cross-sectional profile 
leading to biasing navigable water depths. The intention of the BAW investigations is 
the development of maintenance strategies for this reach in order to improve shipping 
conditions. Several strategies are investigated, e.g., (i) maintaining the existent groy-
nes; (ii) narrowing the flow profile by flattening the groyne heads; and (iii) rerouting 
the riverbed completely. 

In this paper, we develop a methodology to judge the influence of these strategies 
on shipping conditions by analyzing data from the physical model with a 2D-model 
which was originally developed for automated waterways route planning. 

2. Data and methods 

In total, six different maintenance strategies were investigated in the bed-load-
transport-model (height scale Hr = 40, length scale Lr = 100) to improve the present 
situation. In the investigations, the natural bed-load material was substituted by syn-
thetic granules (polystyrene) with lesser density and coarser diameter but comparable 
inhomogeneity, to achieve naturelike transport conditions. Table 1 summarizes the 
natural and artificial bed material properties and Fig. 1 presents an overview of the 
physical model. The description of the basic model laws is beyond the scope of this 
paper and can be found in standard text books such as Zanke (1982) and Kobus 
(1984). 

Table 1 

Properties of nature and model bed-load material 

Parameter Nature Model Hr = 40 
Material Coarse sand/ fine gravel Polystyrene 

Mean grain diameter dm 0.92 mm 
(0.5 to 1.4 mm) 

2.1 mm 
(1 to 4 mm) 

Density 2.65 g/cm³ 1.055 g/cm³ 
Inhomogeneity 
d60/d10 

2.3 
(1.9 to 3.1) 2.0 

Specific density Δ 1.65 0.055 

Dimensionless grain diameter D* 21.2 
(12 to 34) 14.8 

 
Experiments were carried out for each investigated maintenance strategy by apply-

ing three steady discharges resulting in low, mean and high water depths. Each dis-
charge was run for several hours during which water level data were collected at 19 
different places at 15-second intervals. At the end of each experiment, the model was 
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drained and the topography of the model river-bed was determined using a three-
dimensional photogrammetric measuring system (Godding et al. 2003) with a sam-
pling interval in the horizontal plane of approx. 2.5×2.5 cm2. Thus, the interpolated 
water levels and the bed topography data provide a unique data set with high resolu-
tion to investigate the distribution of the water-depth within the model (Fig. 2). Fur-
thermore, each applied discharge was run five times for each maintenance strategy to 
take the variability of the river bed (due to the movable bed material) into account. 
 

 
Fig. 1. Areal view of the bed-load-transport-model; detail of the river bed (inset). The arrows 
indicate flow direction. 

 
Fig. 2. Plot of an exemplary model river-bed with 50 m cross-sections, shipping route and arial 
view (excerpt from a GIS). 

direction of flow 
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A systematic analysis of the water-depth information to judge the different main-
tenance strategies for the benefit of shipping is difficult. On the one hand, areas of 
optimum water-depths vary from experiment to experiment and, on the other hand, the 
permanent observation of defined river bed sections (e.g. applying areal filters) is im-
possible since the river-navigation route differs substantially within the investigated 
alternatives. Furthermore, although average depth can be determined easily, it pro-
vides little information for navigational purposes due to the appearance of banks and 
scours. The easiest way to detect largest water depths along the flow path of the river 
would be the determination of the thalweg by connecting deepest points of subsequent 
cross-sections (with minimum distance) to a longitudinal stretch. However, this proce-
dure cannot be applied here since the thalweg meanders heavily due to the influence of 
banks and scours (see Fig. 1). Hence, a chaotic course of the thalweg would be ob-
tained along which navigation is impossible. Additionally, the needed width for ship-
ping is not necessarily available along the thalweg.  

In fact, the evaluation of navigational requirements is difficult and therefore the 
navigational software PeTra (Pegelabhängige Trassierung) has been applied in this 
study. This software package was originally developed for automated waterways route 
planning and considers ship movement within radii from the size of a ship-length to 
straight motion. It computes the optimum shipping way under mathematicaly identical 
conditions considering the impact of flow velocity as well as vessel velocity and direc-
tion, and navigational traffic (Dettmann and Zentgraf 2002). The generated shipping 
route also comprises typical reactions of the skipper. Results of the computations are 
displayed using the CAD-system MicroStation. The program requires waterway 
boundaries and widths, turning radii, traffic rules, waterway disposition and particu-
larities like brigde passages etc. as input data for the generation of the shipping route. 
Additionally, information on vessel characteristics such as length, width, and naviga-
tional dynamics is required. The governing factors for the shipping route resulting 
from the river morphology are the distribution of water-depths and flow-velocities 
along the river cross-section. 

The consistent evaluation of the above parameters requires the introduction of a 
navigability potential. Therefore, all parameters are transferred into a potential and are 
standardized on a scale from 0 to 100 (0 = not navigable; 100 = optimum). This pro-
cedure allows the assessment of navigability of each point within the considered sec-
tion dependent on the chosen parameter. At the same time, it is possible to consider 
the combined influence of various parameters by superposing the potential courses. 
The result of such a multi-parameter analysis is the overall quantification of navigabil-
ity. Additionally, threshold values may be assigned to the parameters water-depth, 
waterway boundaries and right-hand-traffic. If the computed value is larger than the 
threshold, the corresponding area of the cross-section is marked as impassable. It is 
worth mentioning that the program offers also the opportunity to weigh each parame-
ter in order to control its impact on the calculated result.  

The area of the cross-section with the highest potential is considered as a gate, i.e., 
it provides best navigational conditions and is considered as a potential part of the 
shipping route. If areas with comparable potentials in one or more cross-sections are 
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determined, multiple gates are marked, resulting in different possibilities for naviga-
tion. In this case, the shortest way will be determined, if not defined otherwise by the 
operator of the program. Note that, in the present study, we focused on the analysis of 
largest water depths only, i.e., we did not consider traffic situations (e.g., overtaking 
and encountering ships). 

For the present study, cross-sectional profiles were cut out of the model topogra-
phy at a (scaled) distance of 50 m (Fig. 2). A typical vessel for the River Odra has 
been used for calculation (82×11.4 m2 at 1.6 m draft). Calculations using PeTra were 
carried out only for low discharges (i.e., low water depths), which represent the worst 
case scenario with regard to water depth. After all passable gates were detected, the 
navigation route with the largest water depth was determined. The minimum water 
depth along this route was identified and labeled as transit-depth. The average transit-
depth for all five experimental runs at the same discharge for each investigated alter-
native was calculated. The mean values were used to compare the results of the differ-
ent measures, since they enable the identification of problematic areas in terms of 
lowest available water-depths. 

Another approach included the detection of the easiest navigable way. That way, 
not the optimum water-depths were relevant, but the effort for the virtual skipper. If 
banks prevent straight forward motion, the vessel evades shoals by maneuvering 
around them. If necessary water-depths are throughout available, the calculated route 
will be straight forward. The analysis of navigational effort (e.g. by determining the 
angle of the vessel compared to its previous position) indicates the quality of the 
maintanance strategy. 

3. Results and analysis 

Figure 3 presents calculated routing courses within an exemplarily chosen cross-
section for the five experimental runs of experiment V0 and V2a, respectively. The 
solid lines represent observed bed-levels and the bars indicate the position of the gates 
within this particular cross-section. The river-bed within the experimental series of V0  

 
Fig. 3. Cross-sections of the same profile with “gates” and river-bed-profiles in each case of 
the five experiments of two alternatives V0 (actual-state), showing high, and V2a, showing low 
river bed diversity. 
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varies significantly and, therefore, the gates are located at different positions. As a 
consequence, the potential navigation course diverges for identical boundary condi-
tions due to the influence of bed-dynamics. In contrast, almost identical positions of 
the gates are observed within the experimental series of V2a and the distribution of 
bed elevation within the cross-sections is similar.  

Hence, it becomes possible to use computed vessel positions to assess river bed 
stability. If navigation courses for all five experimental runs with the same discharge 
are similar, it can be concluded that the bed geometry must also be similar within 
these runs, i.e., the alternating dunes are stable. If the navigation courses differ sub-
stantially, the dunes are instable and the bed is characterized by a dynamic behavior. 
This is visualized in Fig. 4, where the calculated navigation courses are shown for V0 
and V2a along a part of the investigated river section. For V0, different navigation 
paths are observed and, as indicated by Fig. 3, the bed is instable. In contrast, for V2a, 
where stable bed levels were observed (Fig. 3), almost identical navigation paths were 
determined. The variability of the vessel positions can be assessed from Fig. 4 by cal-
culating the average distance among the vessels within the five runs with the same 
discharge. For this purpose, the ship position was estimated for each cross section as 
distance to the datum of the cross section, enabling a reliable estimate of the distances 
of vessels during the experimental runs.  
 

 
Fig. 4. Estimation of river-bed stability by means of reproducibility of calculated shipping 
routes. 

The results of this analysis show that the best maintenance strategy (V2a) en-
hances navigable water depths by more than 0.5 m compared to the present situation 
(V0). In contrast, the analysis of mean water depths within the fairway (identical to 
area between groynes) indicated an improvement of only one fifth this value (Fig. 5). 
The other investigated maintenance strategies showed lesser differences in mean wa-
ter-depths compared to the present situation as well. However, the proposed method 
showed that navigable water depths were enhanced and detoriated, respectively, far 
more than the analysis of average depths would have revealed. Furthermore, for the 
best case scenario (V2a), maximum average distances between the vessel positions of 
only 15 m were observed while in the worst case (V3a), the average distance was as 
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large as 35 m (Fig. 6). Analysis of the navigational effort indicated the alternative V2a 
as best scenario (Fig. 6). 
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Fig. 5. Comparison of water-depths received from PeTra analysis and from calculation of 
average depths within fairway. 
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Fig. 6. Calculated average vessel distances and navigational effort (average angle in degree to 
vessel’s previous position). 

4. Summary and conclusions 

In this paper, a method for the estimation of navigable water depth along a river with a 
high morphological activity was proposed. The proposed methodology is based on 
combining requirements for navigation and bed morphology and was derived using 
results of a physical bed load model together with a 2D-numerical model originally 
developed for automated waterways route planning. The physical model and the 2D 
model were described in detail and the method was applied successfully to detect 
navigation courses based on the requirement of sufficient water depth for navigation. 
The data analysis showed that the proposed methodology may also be applied to as-
sess river bed stability by comparing computed navigation courses for experimental 
runs with identical boundary conditions. If the shipping routes can be reproduced, the 
variability of the bed surface within the different runs is small, indicating stable bed 
forms such as alternating banks and dunes. 
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The methodology was developed by investigating the discharge in the model 
which resulted in lowest water depths. To eliminate uncertainties of model laws the 
analysis concentrated on comparison of model results. To assess absolute water-depths 
in nature it is necessary to relate the results to hydrological values such as short fall 
probabilities of water levels in days per year. Nonetheless, the methodology showed 
that it is applicable to judge the success of different maintenance strategies for naviga-
ble waterways which are characterized by a high morphological potential. 
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Abstract  

The article presents the results of empirical tests of the designed sewage 
transmission system in Warsaw. At the design stage, a number of questions ap-
peared, pertaining to transportation of sewage in a siphon pipe. One of them was 
the question about the transportation capabilities of a geometrically graded sys-
tem in the context of transportation of sewage which is a random mixture of liq-
uids and solid particles of different origin. In order to analyze the phenomena, a 
laboratory model was built, whereon a number of experiments was performed. 
The purpose was to determine characteristic speeds: minimum non-silting, trans-
portation, and minimum self-purification speeds. The research was preceded 
with a discussion on adoption of a criterion of similarity. Experiments were car-
ried out on a physical model enabling visualization of the phenomenon, made of 
transparent pipes. The working liquid was a mixture of water and sand from the 
Vistula river. Verification measurements were also carried out, using sewage 
samples. Results of empirical tests confirmed the adopted assumptions and made 
it possible to make corrections in the design. 

1. Introduction 

Continuous urbanization entails the necessity to design and build infrastructure-
forming engineering facilities. Such facilities include the sewer system. 

A number of sewage systems is used in the engineering practice. The knowledge 
of construction and principles of operation of sewage pipes is based to a large extent 
on practical experience. The problem of variable physical and chemical composition 
of the transported medium is a major difficulty. This variability demonstrates some 
features of recurrence in the form of daily cycles, but not without random variations. 

One of the largest investments in the area of water management and sewage dis-
posal in recent years is the sewage pipe modernization system. The capital of Poland, 
as one of Europe’s capitals, does not have a system for comprehensive sewage treat-
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ment. The treatment plants CZAJKA and POŁUDNIE which are in operation collect 
sewage from the part of the city on the right bank and some sewage from the left bank. 
The remaining sewage from the left bank is dumped to Vistula river in the quantity 
from 2 m3/s in the event minimum hourly flows during rainless weather to 24 m3/s in 
the event of torrential rain. 

2. Project description  

Based on the analysis of multiple criteria, a concept of transferring sewage under the 
bottom of the river, from the left bank side of the Vistula river to the treatment plant 
CZAJKA has been developed. Its main assumption was to use the natural level differ-
ence (approx. 10 m) between the river banks to carry sewage without using additional 
power. Such conditions are satisfied by the siphon design. During design work, a 
number of conditions appeared, which can affect the final form of the transportation 
system. 

These are, first of all, the spatial and siting conditions resulting from the possibili-
ties of re-purchasing property and decision made by competent administrative bodies. 
Other conditions pertain to the passage through the river bed. The structure cannot 
affect the hydrodynamic conditions of the river and should be secure, i.e. the sewage 
cannot contact river water in any way. Finally, the shape of the structure was deter-
mined by the geological structure and geotechnical parameters of soil. 

In its final form, the siphon consists of two pipelines, each with a diameter of 1600 
mm and length of 1500 m, laid in a common tunnel. From the inlet header, the sewage 
is directed through high gradient pipes (2.5%) to a vertical well, with a height of 31 m. 
Then the pipes were laid with a slight counter slope (0.1%) along a section length of 
700 m which ends with a vertical bend increasing the drop to 3.5%. The siphon pipes 
end with an expansion chamber, from which the effluent runs off through a single pipe 
gravity sewer. The expansion chamber is preceded with a shut-off chamber the task of 
which is to control the operation of the system and protect against the negative results 
of sewage falling in a vertical well. 

Because of complex geometry of the structure it was decided that a bar screen 
chamber should precede entry into the siphon. The inside diameter of the screens is 
large enough (50 mm) for large particles not to enter the siphon and at the same time 
to enable transportation of the whole mixture. The purpose of the laboratory tests was 
to determine the transportation parameters of the mixture. 

3. Empirical tests − assumptions 

Transportation of solid particles in sewage is a complex process. For this purpose, a 
physical model of the facility was built from transparent material in order to visualize 
the phenomenon. Extensive photographic documentation was also prepared. 

Experiments were preceded with analysis of the phenomenon and selection of the 
similarity scale. A number of model building criteria are used in liquid mechanics. 
According to the theory of model tests, it is not possible to maintain strict similarity of 
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all phenomena at the same time. The selection of scale results from the analysis of 
naturally dominant hydrodynamic phenomena. 

Flow phenomena in pressure pipes are modeled based on the Reynolds criterion, 
which best describes the friction phenomena. This number is the measure of similarity 
of the forces of viscosity and inertia. In the investigated case, it was important not 
only to determine the resistance to motion but also the phenomena accompanying 
transportation of solid particles, which results from the effects of forces of viscosity, 
inertia and gravity.  

The adopted geometrical scale (αL = 1:21.6) resulted from the available diameter 
of plexi pipes (74 mm). It is large enough to enable assessment of the phenomenon of 
solid particle transportation. 

Keeping the Reynolds criterion resulted in a significant speed increase (speed val-
ues from 3.7 m/s to 19.5 m/s − Table 1). In this situation, the parameters of the trans-
ported particles should be increased significantly, including weight, in order to obtain 
forces of inertia corresponding with the model speed, so that transportation is similar 
to the natural environment.  

Table 1 

The values of speed in the model and in “real life” and the corresponding 
Re number for the investigated cases 

Flow in the model conditions Flow in the conditions 
of the designed siphon Reynolds criterion Automodel 

Q 
[m3/s] 

v 
[m/s] 

Re 
[103] 

v 
[m/s] 

Re 
[103] 

v 
[m/s] 

Re 
[103] 

0.342 0.170   208   3.676   208 0.170     9.63 
0.402 0.200   245   4.324   245 0.200 11.3 
0.503 0.250   306   5.405   306 0.250 14.2 
1.005 0.500   613 10.811   613 0.500 28.3 
1.206 0.600   735 12.973   735 0.600 34.0 
1.608 0.800   980 17.297   980 0.800 45.3 
1.810 0.900 1100 19.459 1100 0.900 51.0 

 
The adopted criterion of similarity affects not only the model flow values but also 

the parameters of solid particles transported in the model. It was decided that sand 
from the Vistula river should be used as the representative type of transported solid 
particles. This was another reason why an alternative criterion of similarity had to be 
used. 

Finally, it was decided that an automodel should be used, i.e. that the model 
should reproduce the same speed values as expected in natural conditions, with main-
taining the turbulent flow character. The speed scale is equal αv = 1:1 an the discharge 
scale is equal αQ = 1:467.7. 
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4. Model 

Considering the spatial conditions of the laboratory, the model (Fig. 1) reproduced the 
counter slope section (1), the shut-off chamber (2) and the expansion chamber (3), 
where the largest changes in geometry occur and are conducive to difficulties in trans-
portation of solid particles. 

 
Fig. 1. (a) Cross-section of the model. (b) Layout of the model. 

The Vistula sand was the model of solid particles (Fig. 2a). This sand is sprayed 
on roads in winter and large quantities of it return to the sewer with precipitation wa-
ter. Additionally, fine gravel was used for tests (Fig. 2b). The obtained speed values 
were verified with the prepared sewage samples. Half of the volume of each sample 
was comprised of sewage taken from the Warsaw combined sewage system, ¼ was 
the sediment taken from settling tanks in the sewage treatment plant CZAJKA, and the 
remaining part was the Vistula sand. Samples prepared this way were mixed and left 
for the physical and chemical processes to occur.  

During experiments the flow discharge was measured by using a triangular sharp-
crested weir (4). This weir was located on the end of model. 
 

(a)    (b)  
Fig. 2. (a) Vistula river sand used for tests. The sand was taken from the dredger cutter in 
Łomianki area. (b) Fine gravel used for tests. 
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5. Results of empirical tests  

Three series of empirical tests were performed. In the first and second series, transpor-
tation of a two-phase mixture of water and mineral particles was analyzed. In the third 
series, the prepared sewage samples were used, with organic and mineral particles, 
after adequate seasoning. 

In the first series, a model was created of the initial flow in the siphon pipe filled 
with a mixture of water and mineral particles. After the system was initially filled with 
water, mineral particles were added, filling a section with a ¾ of model pipe length 
with a layer of thickness of approx. ½ diameter. Then water flow was supplied, start-
ing with the lowest speeds. Observation of the phenomenon consisted in measuring 
the delivery rate for characteristic speeds, corresponding with starting transportation, 
bulk motion, and the self-purification speed. 

The purpose of the second series was to verify the obtained results by measuring 
the delivery rate for characteristic speeds in the situation of continuous supply of the 
mixture of water and mineral particles to the model. In this case, solid particles were 
added to flowing water through a charging hopper in the volumetric flow quantity (2% 
of volume discharge). Analogical values of characteristic speeds were determined. 

In the third series, a sewage sample was installed in the model and it was checked 
whether the values of characteristics speeds are different than in the case of the mix-
ture of mineral particles and water. 

In all cases, the values of characteristic speeds are similar. At the flow rate equal 
to 0.18 m/s approx. beginning of motion of solid particles was noted in the form of 
entrainment and rolling of single grains As speed increased, the intensity of the proc-
ess was also higher, and at the speed equal to 0.60 m/s approx. a major part of solid 
particles was affected by the phenomenon. Another speed increase made it possible 
not only to maintain the continuity of the process, but also to remove layers of mineral 
material. At the speed equal to 0.80 m/s approx. all solid particles were removed from 
the pipe, regardless of the grain size. 

It must be emphasized that the observed speeds applied both to the horizontal sec-
tion and the section laid with a counter slope. In the counter slope section, reduction of 
intensity of transportation was noted, the particles moved somewhat slower, creating 
characteristic layers at the point of change in slope. 

In the case of sewage samples, no changes in the transportation speed and self-
purification speed were found. No relationship was found between the time of sample 
seasoning (from 4 to 127 hours) and the speed values. However, it should be empha-
sized that the sewage samples used cannot be considered as representative of the sew-
age carried in the future by the designed system. Randomness of their composition and 
physical-chemical properties make it possible only to perform a comparative analysis. 

6. Analysis of results 

Obtained results were compared with data available in reference literature. Kar-
nowski’s research results were used (Błaszczyk et al. 1988), according to which the 
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non-silting characteristic speeds and the self-purification speeds depend both on grain 
size and on the diameter of sewer pipe. The lower the diameter, the lower the charac-
teristic speeds. 

The figures show the data taken from reference literature (Figs. 3 and 4). The re-
search results were interpolated with a polynomial function. The literature data per-
tained to pipe diameters from 150 mm to 2000 mm and particle grains: 1 mm, 3 mm 
and 5 mm. The diameter used in the model does not belong to the data range, however 
by using extrapolation of the area marked with the grey rectangle it was possible to 
determine approximate values of characteristic speeds of the model. The speeds meas-
ured in experimental conditions are contained in the ranges mentioned in reference 
literature. Using the chart, you can estimate that the characteristic speeds in the pipe 
with a diameter of 1600 mm are 1.44-times greater than the corresponding characteris-
tic speeds in a pipe with a diameter of 74 mm.  
 

 
Fig. 3. The non-silting speeds in a circular sewage pipe depending on the pipe diameter for 
selected diameters of the transported grains. (1, 3, 5 mm) (Błaszczyk et al. 1988). 

The characteristic speeds determined by empirical tests for use in actual conditions 
are: 

vmin = 0.65 m/s − minimum flow rate in the siphon, the speed ensuring transporta-
tion of most solid particles, the speed corresponds with the flow through one tube of 
the siphon Q = 1.31 m3/s. 

vt = 0.9 m/s − the transportation flow rate in the siphon, the speed is characteristic 
of minimum sedimentation, and corresponds with the flow through one tube of the 
siphon Q = 1.81 m3/s. 
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vc = 1.2 m/s − the self-purification flow rate in the siphon, cleaning the pipes, it 
corresponds with the flow through one tube of the siphon Q = 2.41 m3/s. 
 

 
Fig. 4. The self-purification speeds in a circular sewage pipe depending on the pipe diameter 
for selected diameters of the transported grains. (1, 3, 5 mm) (Błaszczyk et al.1988). 

7. Conclusions  

The laboratory tests carried out confirmed the design assumptions of the planned si-
phon arrangement. They also made it possible to make adjustments and corrections in 
the applied solutions, by redesigning parts of the expansion well. 

The most important goal of the research, i.e. determining the characteristic speeds 
for transportation of solid particles was attained. The analyzed characteristic speeds 
were comparable in the three test series, in which slightly different procedures were 
followed. Repeatability of obtained results made it possible to determine characteristic 
speeds. 

Analysis of the phenomenon preceding the empirical tests allowed us to build an 
“automodel”, in which the obtained speeds are analogical to the “real life” conditions. 
Use of the classical Reynolds’ criteria of similarity was, to a large extent, difficult, 
considering model speed values. They should be 21-times greater than the correspond-
ing characteristic speeds in a pipe with a diameter of 1600 mm. In this case, weight of 
the transported particles should be increased significantly, and just then the particles 
size should keep geometrical scale (αL = 1:21.6). In this instance the comparative ex-
periments using sewage samples would be impossible. 

When using an “automodel”, much attention must be paid to analysis of results 
and the process of conversion of experimental results to their corresponding “real life” 
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quantities. In the discussed project, the conversion used was based on extrapolation of 
literature data and the actual active cross-section area was taken into consideration. It 
must be emphasized that for the set grain size the values of transportation speed and 
self-purification speed are higher for the higher pipe diameters. With small diameters 
additional factors appear, such as the effect of the pipe wall, changing the character of 
particle transportation. In designing models of sewer pipe flows, much attention must 
be paid to the issues pertaining to selection of the pipe diameter, and at the same time 
the choice of geometrical scale.  
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Abstract  

This paper presents results from a preliminary investigation of the applica-
bility of the random field approach to describe bed geometry in sand bed rivers. 
The investigations are based on high-resolution bed surface data of a physical 
bed load model of a longitudinal section of the river Odra. The first four statisti-
cal moments are used to describe differences in bed geometry which arise due to 
different river maintenance strategies and discharges. The results show the po-
tential of the standard elevation of bed elevations as an indicator for vertical bed 
form dimension. It is shown that σz is correlated to discharge and may be used to 
describe bed form dynamical behavior during a flood wave. The average migra-
tion velocity of bed forms is estimated using cross correlation function.  

1. Introduction 

Sand waves play an important role for sediment transport, forming hydraulic resis-
tance, and for navigability of waterways. Until today, an abundance of studies have 
focused on two-dimensional (2-D) bed forms with constant heights and straight crest 
lines transverse to the flow. However, as natural bed forms are invariably three-
dimensional (3-D) in alluvial rivers, this morphological simplification has imposed 
limitations on the interpretation and understanding of dune form and flow dynamics 
(Parsons et al. 2005). Furthermore, so far most studies focused on the investigation of 
dune development and bed form geometry in laboratory studies (e.g., Friedrich et al. 
2006) and data from natural rivers on bed form geometry and dynamics are rare (e.g., 
Nikora et al. 1997, Parsons et al. 2005). On the other hand, practical applications re-
quire detailed information on bed geometry and dynamics in order to asses the influ-
ence of different maintenance strategies on, e.g., morphological development and 
navigability (e.g., Henning et al. 2007, this issue).  
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The objective of this paper is the development of appropriate methods for the de-
scription of the bed geometry and bed dynamics of natural river beds which are char-
acterized by 3-D sand waves using the random field approach. Relevant parameters 
are linked to hydraulic parameters and bed dynamics are investigated by analyzing 
time series of digital elevation models (DEM).  

2. Data  

The sand bed topography data analyzed in this paper were obtained from laboratory 
experiments in a physical bed-load model of the River Odra in the laboratory of the 
Federal Waterways Engineering and Research Institute, Karlsruhe, Germany. The 
model was originally built to improve shipping conditions in the River Odra by focus-
sing exemplarily on an 8 km long river section (km 654.7 to km 662.5; Fig. 1) which 
is characterized by a highly dynamical morphological behavior due to its fine-
gravel/coarse-sand bed material and associated bed forms. The model contains a 5 km 
long straight section which causes meandering banks moving several meters per day. 
Additionally, some groynes in this reach are heavily damaged and scours of consider-
able sizes can be observed at the groyne heads. 

 
Fig. 1. Plane view of the model section and detailed bed topography between km 654.7 and 
662.5 showing the groynes and bed topography. 

The model is scaled geometrically in the x-y plane with LR = 1:100 and in vertical 
direction with HR = 1:40. The dynamical behaviour of the river bed was simulated by 
replacing the natural bed-load material with synthetic granules (polystyrene) with 
lesser density and coarser diameter but comparable inhomogeneity (ρp = 1055 kg/m³; 
d50 = 2.1 mm, d60/d10 = 2.0), to achieve similar transport conditions as in the nature. 
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The bed-material was selected following extensive preliminary experiments. Further 
information on the model can be found in Hentschel (2006). 

In this paper we focus on bed geometry following three different maintenance 
strategies for the River Odra. Strategy V0 describes the present situation with strongly 
damaged groynes. Strategies V2a and V3a were developed in order to restore shipping 
conditions by re-establishing groynes in different ways (see also Henning et al. 2007). 
Experiments were carried out for each maintenance strategy by successively applying 
three steady discharges based on hydrological values of the River Odra (Q = 269, 447, 
and 1000 m³/s in nature scale, respectively), resulting in low, mean and high water 
depths. Each discharge was applied five times for each maintenance strategy to take 
into account the variability of the river bed (due to the movable bed material). A fur-
ther experiment was carried out by simulating a typical hydrograph with a maximum 
discharge of Qmax = 1150 m³/s.  

Each experiment started from plane bed conditions. For the steady discharge ex-
periments, each discharge was run for several hours. After each discharge, the model 
was drained and the bed topography was measured along the total length of the model 
using a novel movable 3D-camera system with high resolution (see Godding et al. 
2003 for details) with a grid size of 2 cm and a vertical precision of ±0.1 mm. Addi-
tional topography measurements have been carried out for maintenance strategy V0 
during model operation within a small section of the model (km 658.6 to 658.85). For 
these measurements, the 3D-camera system was in a fixed position and modified so 
that bed topography could be recorded through the water surface in time intervals of 
Δt = 14 seconds. A similar strategy was followed in a hydrograph experiment for V0, 
where the bed was scanned during model operation along km 659.15 to 659.93. How-
ever, the longer section required movement of the 3D-camera system, and therefore, 
the time interval between two subsequent surface scans of this section was 3 minutes. 
Note that, in the following, all elevation data is presented in natural dimensions.  

For the analysis of the bed topography, the 3D-beds were considered as a random 
field of surface elevations Z(x, y, t), where x and y are longitudinal (main flow direc-
tion) and transverse coordinates, and t is time. In the following we focus on the analy-
sis of the first four statistical moments and their potential to describe bed morphology. 
Note that a complete description of a random field of bed elevations also requires the 
consideration of moment functions such as structure functions or power spectral den-
sity. The results of this investigation will be reported in a follow-up study. 

3. Results and analysis 

Table 1 presents the statistical moments mean value above sea level (ASL) z , stan-
dard deviation of bed elevations σz, skewness Sk, and kurtosis Ku for the bed scans of 
the steady experiment series. The values in Table 1 represent mean values for the five 
experiments carried out for each discharge and were computed for a representative 
section in the straight reach of the model between km 658.10 and 659.25 to exclude 
the influence of the curvature on bed geometry. Furthermore, the analysis is limited to 
the middle section of the river reach to minimize the influence of deep scours at the 
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groyne heads (see Fig. 1). Note that the data was not de-trended due to a small longi-
tudinal slope of the bed of 0.0002.  

Table 1 

Statistical parameters of surfaces from steady discharge model tests  

Q z  σz Sk Ku Variant 
[m³/s] [m ASL] [m] [-] [-] 
269 1.45 0.46 -0.54 3.26 
447 1.43 0.50 -0.62 3.50 V0 

1000 1.44 0.70 -0.20 3.03 
269 1.32 0.41 -0.92 6.58 
447 1.22 0.62 -1.15 6.11 V2a 

1000 1.26 0.81 -0.33 2.83 
269 1.53 0.44 -0.62 3.55 
447 1.37 0.53 -0.46 3.69 V3a 

1000 1.28 0.75 -0.38 3.06 
 

The mean value above sea level of the bed elevations is of interest for navigational 
purposes and can also be considered as an indicator for the influence of maintenance 
strategies on bed evolution. Table 1 shows that the mean bed level is almost constant 
for V0. In contrast, the mean bed level decreases with increasing discharge for strategy 
V3a and lowest mean bed elevations can be observed for strategy V2A. However, the 
mean bed level provides no information on bed geometry and such information can be 
obtained from σz, which is a measure for the fluctuation of bed elevations around the 
mean value. In fact, the influence of discharge on bed geometry can be inferred from 
the values from Table 1 as σz increases with increasing discharge for all three mainte-
nance strategies, indicating bed form growth with increasing discharge. In general, 
similar values of σz are obtained for the lowest discharge for the maintenance strate-
gies. The sharpest increase of σz with discharge can be observed for V2a which is also 
characterized by the lowest mean values. For V0 and V3A, σz is similar for all dis-
charges, although larger values are observed for V2A for the medium and highest dis-
charge. 

Skewness coeffcients Sk are negative throughout, indicating a certain similarity of 
the observed 3D-bed geometry with typical 2D-dune shapes (long deep valleys and 
relatively short crests). Note that for armored gravel beds positive skewness coeffi-
cients are observed (Aberle and Nikora 2006). Hence Sk may be used to distinguish 
between gravel beds and sand beds. Kurtosis coefficients Ku are similar to the value 
expected for a Gaussian distribution (Ku = 3) for V0 and V3A. In contrast, for V2A 
Ku > 3 for the low and medium discharge, only for the largest discharge the kurtosis is 
Ku ≈ 3. The differences in the statistical moments for V2A compared to V0 and V3A 
indicate at significant differences in the bed geometry due to this particular mainte-
nance strategy. This is visualized in Fig. 2 where normalized bed elevation distribu-
tions are presented which were obtained after the experimental series with 
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Q = 447 m³/s. As shown by Fig. 2, all distributions are characterized by a bell shape 
and the spread of the data to the left is reflected by the negative Sk-values. Figure 2 
further shows that the distributions of V0 and V3A are similar, as expected from the 
comparison of the statistical moments. The larger values of Ku for V2A become appar-
ent from the corresponding distribution shape which is steeper than the distributions 
for V0 and V3A. Hence, this analysis shows that the statistical moments may be used 
to compare the influence of the different maintenance strategies on bed geometry. 

0
1
2
3
4
5
6
7
8
9

10

-8 -6 -4 -2 0 2 4

[%
]

V0
V2a
V3a

 
Fig. 2. Probability distribution functions after an applied discharge of Q = 447 m³/s (natural 
scale) for bed surface elevations according to maintenance strategies V0, V2A, and V3A. 

In the next step we focus on σz for the analysis of the hydrograph experiments to 
investigate bed form development as a function of discharge. Figure 3 presents ob-
served σz-values during the experiment together with the applied hydrograph. Figure 3 
shows that σz correlates with Q. With increasing discharge, σz increases and when the 
discharge is reduced after the flood peak, σz decreases again. This shows that bed 
forms grow with increased hydrodynamical forcing and that, on the falling limb of the 
hydrograph, the magnitude of the bed forms is reduced. The range of observed σz-
values varies between 0.30 m and 1.05 m (in natural scale). Compared to the results of 
the steady state experiments, slight differences in σz-values are observed. We attribute 
these differences to the influence of the hydrograph and to the fact that the analyzed 
surface data were recorded close to the river bend which may influence bed form 
movement (compared to the analyzed straight section for the steady discharge experi-
ments).  
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Fig. 3. Standard deviation σz and discharge as a function of time for a selected hydrograph of 
the River Odra. 

The time series data for the steady state discharge series may be used to estimate 
average migration velocity of the sand waves. For this purpose, successive bed scans 
were analyzed using the cross correlation function. The spatial lag in the x-y plane 
which provided the largest correlation coefficient was identified and assumed to pro-
vide information on the average distance which the bed moved between two succes-
sive bed scans (Δt = 14 sec). The results of this analysis show that the sand waves 
move unidirectional in the straight section, as transverse lags were almost always 
identical to Δy = 0. Dividing the identified spatial lag by Δt provides information on 
average migration velocity of the bed forms. As expected, the migration velocity is 
approximately constant for each applied steady discharge. Furthermore, the results of 
the cross correlation analysis show that the sand waves migrate fastest for the lowest 
discharge. With increasing discharge, bed form migration slows down. Thus, we con-
clude that small bed forms move faster than large bed forms, as the bed form height 
correlates to σz, which is smallest for lowest discharge. However, it is worth mention-
ing that the investigated part of the Odra is characterized by backwater effects for 
large discharges which may also contribute to reduced sand wave migration velocity. 

4. Summary and conclusions 

In this paper we investigated the applicability of the random field approach for the 
investigation of 3-D sand bed geometry in a natural river. The analyzed sand bed to-
pography data were obtained from laboratory experiments in a physical bed-load 
model of the River Odra. In the analysis, we focused on the first four statistical mo-
ments. The results showed that the mean bed elevation above sea level, standard de-
viation σz, skewness Sk, and Ku provide valuable information on bed geometry and 
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may be used to assess the influence of different river maintenance strategies on bed 
morphology. The standard deviation σz was found to increase with increasing dis-
charge indicating that the 3-D sand waves grow with increasing discharge. Similarly, 
in an experiment where a hydrograph was applied it was found that σz is correlated to 
discharge showing the potential of this parameter to describe bed form dynamics. Fur-
thermore, all bed elevation distributions were characterized by negative skewness 
coefficients which were related to sand wave geometry. The average migration veloc-
ity of the sand beds was estimated from cross-correlation analysis of time series data 
of bed elevations. This analysis revealed a relationship between sand wave geometry 
and migration velocity as smaller dunes were migrating faster than larger dunes.  

In this paper we focused solely on the first four statistical moments. However, a 
complete description of bed geometry according to the random field approach requires 
also the consideration of moment functions such as structure functions or power spec-
tral density (e.g., Hino 1968, Nikora and Hicks 1997, Nikora et al. 1997). This analy-
sis will be reported in a follow-up study where these moment functions will be used to 
investigate both, spatial and temporal characteristics of 3D-sand beds. Furthermore, 
the statistical moments and the moment functions will be used to investigate and to 
develop model laws with respect to similarity of bed geometry and bed dynamics in 
model and nature-scale. So far, similarity in model and nature is subjectively judged 
and the random field approach provides a unique opportunity to improve these model 
laws. In a further step it is also planned to investigate if σz and the average bed migra-
tion velocity may be related to sediment transport rates. If such a relationship can be 
established, it is possible to develop novel measuring techniques in sand-bed rivers for 
the determination of sediment transport rates.  
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Abstract  

This paper presents the discrete vortex method as applied to the two-
dimensional flow problem. The method’s mathematical foundations are briefly 
summarized and its deterministic and stochastic formulations are given. The 
problem of boundary conditions for the simulation of flows in bounded areas is 
described. A way of satisfying the conditions through the potential flow solution 
and a procedure of generating vorticity on boundaries is provided. The efficiency 
of the deterministic and the stochastic method is demonstrated using as an exam-
ple the two-dimensional unsteady flow around an obstacle in the shape of a 
square.  

1. Introduction 

The vortex method is used for the simulation of flows in which vortex dynamics plays 
a dominant role but mostly for the approximation of the Navier-Stokes problem with a 
high Reynolds number, in which diffusion (besides vorticity advection) plays a major 
role. The method’s advantage is its high accuracy in modelling the above flows, at-
tained through vorticity field discretization by means of a finite number of vortex par-
ticles and the direct simulation of the particles’ motion trajectory which determines 
vorticity and velocity field evolution. 

The vorticity method was used for the first time by Rosenhad in the 1930s to cal-
culate the evolution of a two-dimensional vortex sheet, corresponding to the Kelvin-
Helmholtz instability problem, giving rise to the point vortex method. The solution 
obtained by this method is, however, singular. 

Chorin (1973) developed a method of calculating viscous flows, in which to avoid 
point vortex singularity he replaced vortex points with vortex particles (blobs) with a 
compact carrier. His approximate method of solving the flow problem consists in de-
composing the vorticity transport equation in such a way that in the first step the vor-
ticity advection is approximated by the vortex blob method and in the second step the 
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vorticity diffusion is simulated by the random walk (Monte Carlo) method. Chorin’s 
method is often called the stochastic vortex method and his research work spurred the 
intensive development of vortex methods. 

In the following years new solutions emerged; among others, it became possible to 
directly solve the vorticity transport equation (with liquid viscosity taken into account) 
without decomposing it. This method was first proposed by Fishelov (1990). Subse-
quently, it was used and modified by other authors (Cortez 1999, Ploumhans and 
Winckelmans 2000). Since the deterministic formulation is more general the determi-
nistic vortex method will be presented first here. 

2. Discrete vortex method – deterministic formulation 

The deterministic approach consists in simultaneously solving two systems of differ-
ential equations corresponding, respectively, to the vorticity advection problem and 
the vorticity diffusion problem. The evolution of vorticity through the motion of vor-
texes along trajectories is determined from the former system while changes in their 
circulation are determined from the latter system. 

Let us consider the two-dimensional flow of an incompressible liquid. The vortic-
ity transport problem described by the Helmholtz equation is expressed by the follow-
ing relations: 

 2
1 2, ( , ), 0,∂ ∂ + ⋅∇ = ∇ = >t x x tω ω ν ωu x  (1) 

 20, , 0,∇⋅ = ∈ >R tu x  (2) 

 2
00
, ,

=
= ∈

t
Rω ω x  (3) 

 2 1 1 2 ,= ∂ ∂ −∂ ∂u x u xω  (4) 

1 2( , ) [ , ]= =t u uu u x  being a two-dimensional velocity field and ω the vorticity. Let us 
introduce a stream function: 

 2 ,∇ = −ψ ω  (5) 

by means of which one can express velocity as: 

 ( )2 1, .= ∂ ∂ −∂ ∂x xψ ψu  (6) 

Solution (5) can be obtained in this convolution form 

 1, ( ) (2 ) ln ,−= ∗ = −G Gψ ω πx x  (7) 

where 2 2
1 2= +x xx  and symbol ( )∗  denotes a convolution operation. Then the liq-

uid velocity can be calculated using relation (6): 

 
2

( , ) ( ) ( , ) ( ) ( , ) ,′ ′ ′= ∗ = −∫
R

t t t dω ωu x K x K x x x x  (8) 
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and the kernel has the form 

 ( )2 1 2 1( ) , ( , ) (2 ) .= ∂ ∂ −∂ ∂ = −G x G x x x πK x x  (9) 

Because of the singularity of kernel K, it is replaced with a new smooth kernel 
= ∗fε εK K  formed in the process of standard regularization. Here convolution factor 

fε  has the form 2 1( ) ( )− −= ⋅f fε ε εx x , where function f is a proper smooth function 
called a cut-off function, ε > 0 is a parameter called cut-off radius. The approximating 
properties of ( )xεK  stem from the fact that fε  approximates the δ-Dirac distribution 
when ε → 0. For computational reasons, the cut-off function is usually axially sym-
metric and satisfies specific conditions (Hald 1987, Majda and Bertozzi 2002) ensur-
ing that the method is convergent and stable. In this paper, Cauchy function 
f(x) = (1+|x|2)−2/π is adoped, which can be directly integrated without using numerical 
quadrature,. 

For trajectory ( , )tαX  of a liquid particle located at the initial instant in point 

1 2( , )=α α α  one gets the relation: 

 2
1 2( , ) , ( ,0) , ( , ) .= = = ∈

d t R
dt

α α α α αX u X X  (10) 

Hence, from formula (8) one gets ( )
2

( , ) ( , ) ' ( ', ) '.≈ −∫
R

d t t t d
dt εα α ωX K X x x x  By sub-

stituting ' ( ', ),= tαx X  2' ,∈Rα  into the integral one gets 

 ( ) ( ) ( )
2

( , ) ( , ) ( ', ) ( ', ) , det ( ', ) '.≈ − ∇∫
R

d t t t t t X t d
dt ε αα α α ω α α αX K X X X  (11) 

Since for an incompressible liquid | det ( , ) | 1,∇ =X tα α  one can equivalently formulate 
problem (1)-(4) in the form of the integral-differential equation (Hald 1987) 

 ( ) ( )
2

( , ) ( , ) ( ', ) ( ', ), '.≈ −∫
R

d t t t X t t d
dt εα α α ω α αX K X X  (12) 

Considering the evolution of vorticity along an arbitrary trajectory one gets the 
following relation from Eq. (1) 

 ( ) 2( , ), .∂
= + ⋅∇ = ∇
∂

d t t
dt t
ω ωα ω ν ωX u  (13) 

Similarly in the case of Eq. (5), let us replace 2ω∇  with its convolution approxi-
mation 2 2( ) ( )f fδ δω ω∇ ∗ = ∇ ∗  

 ( ) ( )2( , ), ( ) ( , ), .≈ ∇ ∗
d t t f t t
dt δ
ω α ν ω αX X  (14) 
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On the basis of the definition of convolution it is concluded that: 

 ( ) ( ) ( )
2

2( , ), ( , ) ( ', ) ( ', ), '.≈ ∇ −∫
R

d t t f t t t t d
dt δ
ω α ν α α ω α αX X X X  (15) 

The essence of the vortex method is the approximation of the continuous vorticity 
field with a set of vorticity particles – the so-called vortex blobs. For this purpose, the 
problem is discretized through initial division of the area by means of a grid of squares 

( , ).Λh
i hα  In each mesh with side h, a vortex blob with circulation corresponding to 

the field value in this point, which is also the initial point of trajectory iα , is placed. 
Approximate trajectories ( )i tX  and vorticities ( )i tω  follow now from Eqs. (12) and 
(15) as solutions of the system of the ordinary differential equations 

 ( ) 2( ) ( ) ( ) ( ) ,= −∑i
i j j

j

d t t t t h
dt ε ω

X K X X  (16) 

 ( )2 2( ) ( ) ( ) ( ) , , .= ∇ − ∈Λ∑ hi
i j j

j

d t f t t t h i j
dt ε
ω

ν ωX X  (17) 

In numerical calculations the system is solved approximately, e.g. by the Runge-
Kutta method. From formulas (7) and (8) one calculates an approximate stream func-
tion and an approximate velocity field for all x ∈ R2 and t > 0: 

 ( ) 2( , ) ( ) ( ) , ,= − = ∗∑ j j
j

t G t t h G G fε ε ε εψ ωx x X  (18) 

 ( ) 2( , ) ( ) ( ) .= −∑ j j
j

t t t hε ε ωu x K x X  (19) 

Since 2 *G f fε ε εδ∇ = − = −  the proper approximate vorticity field determined from 
formulas (7) and (15) assumes the form 

 ( ) 2( , ) ( ) ( ) .
∈Λ

= − −∑
h

j j
j

t f t t hε εω ωx x X  (20) 

Vorticity ( , )tεω x  approaches ( , ),tω x  and similarly ( , )tεψ x  and ( , ),tεu x  when 
both, ε and h, simultaneously approach zero. This happens when one assumes an addi-
tional relation between the above parameters, e.g. in the form of ε = Chp, where 
1 > p > 0.5. 

3. Vortex method – stochastic formulation 

3.1 Solution of the vorticity advection problem 
The vorticity transport equation can be solved by the splitting method, which consists 
in decomposing Eq. (1) into vorticity advection and diffusion: 
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 0,= ∂ ∂ + ⋅∇ =d dt tω ω ωu  (21) 

 2 .∂ ∂ = ∇tω ν ω  (22) 

The solution procedure is such that in time step Δt the vorticity field evolution is 
subject to advection and then in the same time step the vorticity is modified in the 
process of diffusion. This approach has significant consequences for the physical in-
terpretation of the system of equations and affects the vortex method calculation algo-
rithm. If follows from the advection equation that vorticity is invariable over time, i.e. 
ω (X(α, t), t) = ω0(α), where ω0(α), α ∈ R2 is the vorticity distribution at the initial 
instant. Then expression (17) disappears and only one system of ordinary differential 
equations remains to be solved: 

 ( ) 2
0

( ) ( ) ( ) ( ) , , .= − ∈Λ∑ hi
i j j

j

d t t t h i j
dt ε ω α

X K X X  (23) 

Expression (23) will be used to determine approximate advective trajectories 
( ).i tX  The system can be approximately solved by any method, e.g. the explicit Euler 

method. Then the vorticity field evolution, expressed by the displacement of vortex 
blobs, will be calculated according to the step scheme: 

 ( ) 2
0( ) ( ) , ( ) ( ) ( ) ( ) .+ Δ = +Δ = −∑i i i i i j j

j
t t t t t t t hε ω αX X u u K X X  (24) 

3.2 Solution of the vorticity diffusion problem 
In the deterministic method the diffusion process would cause a change in the vorticity 
of liquid particles. In the stochastic Chorin method (1973) the vorticity of liquid parti-
cles remains unchanged but the particles during diffusion are subject to Brownian 
movement, similarly as in gases. 

The fundamental solution of Eq. (22) in an unbounded area is the Green function 
(Batchelor 1967): 

( )2 2
1 2 1 2

2 2
1 2 1 1 1 2

( , , ) exp 4 4

exp 4 4 exp 4 4 ( , ) ( , ).

x x t x x t t

x t t x t t G x t G x t

⎡ ⎤= − +⎣ ⎦

⎡ ⎤ ⎡ ⎤= − ⋅ − =⎣ ⎦ ⎣ ⎦

ω ν πν

ν π ν ν π ν
 (25) 

Equation (25) is at the same time the probability density of the random variables 
of the Gaussian distribution G1 with the expected value equal to zero and variance 

2tν . Hence the solution of Eq. (22) can be expressed in the form of random dis-
placement of vortex particles η = (η1, η2) which now depends on the viscosity coeffi-
cient and time step Δt. 

Thus, in the stochastic method the advection-diffusion problem is solved in two 
stages. In the first stage the displacement of vortex particles is determined according 
to the advection process (24). In the second stage a random component is added in 
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order to determine the evolution of the vorticity field taking into account the diffusion 
displacement of the vortex particles η = (η1, η2 ): 

 *( ) ( ) .i it t t t+ Δ = +Δ +X X η  (26) 

Knowing approximate trajectories ( )i tX  one assigns the other quantities: the vorticity 
field, the stream function and the velocity field as follows 

 ( ) 2
0( , ) ( ) ( ) ,= −∑i j j

j
t t hε ω αu x K x X  (27) 

 ( ) 2
0( , ) ( ) ( ) ,= − −∑ j j

j
t f t hεω ω αx x X  (28) 

 ( ) 2
0( , ) ( ) ( ) .= −∑ j j

j
t G t hεψ ω αx x X  (29) 

4. Vorticity transport in bounded areas 

In the two presented methods the problem of vorticity transport was considered as-
suming that vorticity advection and diffusion take place in the whole plane (two-
dimensional space) where liquid particles being vorticity carriers (vortex blobs) can 
freely displace. In order to determine the flow in bounded areas one must modify the 
solution method. Let us analyze this for the flow in area D partially bounded by 
boundary ∂D on which u = Ub. For this purpose we shall use Helmholtz’s idea consist-
ing in decomposing velocity field u into two components 

 ,= +u w v  (30) 

where component w has zero divergence and is smooth and defined in the whole space 
while v is a gradient component: v = ∇ϕ and ∇ × v = 0. Since u and w are non-
divergence fields, also v is a non-divergence field. Applying the divergence operator 
to Eq. (30) one gets: 

 2 0.∇ =ϕ  (31) 

Applying the formula to velocity field evolution in interval (t, t + Δt) one proceeds 
as follows: 

1. Using the vortex method, from the initial data at flow area instant t one gener-
ates auxiliary smooth velocity field w ∈ R2 which actually constitutes the first 
component resulting from the Helmholtz decomposition of field u. 

2. At instant t + Δt the smooth field is modified by adding gradient field v = ∇ϕ  so 
that the resultant flow velocity field satisfies the boundary condition: 

 ( )+∇ ⋅ = ⋅bϕw n U n  (32) 

on the boundary ∂D, where n is a vector normal to the boundary. 
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In order to solve the vorticity transport problem one must now calculate potential 
ϕ satisfying (31) and boundary condition (32): 

 ( ) .∂
= − ⋅

∂ b
ϕ U w n
n

 (33) 

Instead of the velocity potential one can calculate the potential stream function.  
As a result, one will get the trajectories of the evolving vortexes in the form 

 *( ) ( ) ( ),i i i it t t t+Δ = + Δ +X X w v  (34) 

 *( ) ( ) ,i it t t t+Δ = + Δ +X X η  (35) 

where wi and vi are respectively the potential and vortex velocity component, and η is 
the diffusion displacement of the particles. 

The additional velocity field allows one to zero the velocity component normal to 
the impermeable boundary. The vorticity transport problem in a bounded area (1)-(4) 
should be supplemented with an additional boundary condition which physically stems 
from the fact that a vortex sheet forms along the boundary. The vortex sheet is a line 
along which the velocity field is discontinuous and velocity jump [u] = u+ − u− (where 
u+ and u− are velocities tangent to the vortex sheet on its both sides) occurs (Majda 
2002). This leads to the concentration of vorticity on this layer. Vortex sheet intensity 
γ is expressed in terms of circulation Γ of the velocity field and satisfies relation 
dΓ = γ ⋅ ds, where ds is an infinitesimal length of the curve segment. When applying 
this definition to the velocity zeroing boundary condition one should note that on the 
side of the boundary the velocity tangent to the vortex sheet will be equal to zero and 
on the side of domain it will follow from the general equations which describe the 
flow and it will be calculated by the vortex method. 

The model of generating vorticity along the boundary (Chorin 1973) consists in 
discretizing the vortex sheet by segments of specific length. It is assumed that in the 
middle of each segment there are vortex particles whose circulation corresponds to 
one layer segment: 

 [ ] ,Γ = − ⋅i si idsu  (36) 

where Γi is a circulation of a vortex blob formed from the vortex sheet of boundary 
segment dsi and the average tangent component of velocity jump [usi] on the segment. 
The particles generated in this way are subject to the advection and diffusion de-
scribed above. 

In practical calculations, the flow area has boundaries which can be made up of the 
boundaries of liquids, e.g., the inlet and the outlet and impermeable walls. If a vortex 
crosses the outlet boundary, it is usually eliminated from calculations. Vortexes which 
go beyond impermeable walls can be eliminated or reflected from the area’s interior, 
but the latter approach may lead to excessive vorticity concentration. A boundary in 
the form of a free surface of water has the properties of a slippery boundary, i.e., no 
velocity jump and so no vortex sheet occurs on it. 
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5. Exemplary calculations of flow around square obstacle 

Simulations carried out by the two methods for a square obstacle with a side length of 
1.0 (in the nondimensional system) were compared. The computations were performed 
for the Reynolds number of 104 and a zero initial area vorticity. The flow around the 
body for selected time steps is visualized in Fig. 1. The comparison shows that only 
the stochastic method reproduces flow-around instability (in the form of a vortex path 
with a vortex structure typical for Kárman vortexes) along the whole length of the 
calculation area. When the flow around the body was calculated using the determinis-
tic method, a similar vortex path shape was obtained but only in the proximity of the 
obstacle – further away the path undergoes deformation. In both cases the frequency 
of vortex separation from the obstacle is similar, amounting to about 10 s of dimen-
sionless time. Figure 2 shows the velocity profile along the obstacle’s axis in the flow 
direction. In the case of simulation by the stochastic method the recirculation zone 
length (the distance from the obstacle, where velocity changes its sign to positive) 
initially increases and then oscillates within 2. The lowest velocity was obtained at a 
distance of 1 from the obstacle. The results are close to the ones reported in a paper by 
Otsuka et al. (1999). For the calculations by the deterministic method the two quanti-
ties are much lower, but the lowest velocity is the same, amounting to −0.8. 

 
Fig. 1. Vortex path downstream of square obstacle for time t = 5, 20, 35.  

 

  
Fig. 2. Profile of longitudinal velocity downstream of square obstacle for time t = 1, 2, 4, 8, 16. 
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6. Conclusion 

The two-dimensional unsteady flow around an obstacle in the shape of a square was 
investigated using the deterministic vortex method and the stochastic vortex method. 
The deterministic method forms more concentrated vortex paths and is less stable, 
which is due to the approximation of vortex blobs by a convolution expression with a 
cut-off function. Because of this function’s general form given by the formula 
fε (x) = ε −2 ⋅ f(ε −1x) and small cut-off radius ε, its double differentiation causes the ε−4 
factor to appear in Eq. (17). If ε and h are not properly correlated then the ε factor has 
a significant impact on the approximation range. Thus, in our numerical experiments, 
better results were obtained when the relation ε = h0.95 was used for trajectories ap-
proximation and ε = h0.5 for vorticity approximation. The stability problem of determi-
nistic vortex method can also be solved by adopting a different way of approximating 
vorticity (Ploumhans and Winckelmans 2000). No such problems exist in the case of 
the stochastic solution. The flow around the body is very well reproduced and if the 
constraints imposed on the cut-off function are maintained, the method is stable. 

The presented stochastic vortex method can be applied to solve practical high Rey-
nolds number flow problems. The calculation results can be used as input data for 
determining the pressure field and the uplift and resistance forces resulting from the 
flow (Kostecki 2006). 

Acknowledgments :  This research has been carried out as part of research pro-
ject MNiI no.4T07E 071 29. 

References 
Batchelor, G.K., 1967, An Introduction to Fluid Dynamics, Cambridge Univ. Press. 
Chorin, A.J., 1973,  Numerical  study  of  slightly  Viscous  flow, J. Fluid Mech. 57, 

785-796.  
Fishelov, D., 1990,  A new vortex scheme for viscous flows,  J. Comput. Phys. 86, 

211-234. 
Cortez, R., 2000, A Vortex/Impulse Method for Immersed Boundary Motion in High 

Reynolds Number Flows, J. of Computational Physics 160, 385-400. 
Hald, O.H., 1979,  Convergence  of  vortex  methods  for  Euler’s  equations II,  SIAM 

J. Numer. Anal. 16, 726-755. 
Majda, A.J., and A.L. Bertozzi, 2002, Vorticity and Incompressible Flow. Cambridge 

Univ. Press, Cambridge. 
Kostecki, S., 2006, 2-D vortex method for pressure evaluation on protruding wall for 

high Reynolds flow. Flow Simulation in Hydraulic Engineering. Ann. Int. Conf. on 
Hydraulic Engineering. Dresden. 

Ploumhans, P., and G.S. Winckelmans, 2000, Vortex methods for high-resolution 
simulation of viscous flow past bluff bodies of general geometry, J. Comp. Physics 
167, 354-406. 

Otsuka, M., T. Kida and M. Kurata, 1999, Two-dimensional transient flows around a 
rectangular cylinder by a vortex method. In: Kamemoto and Tsutahara (eds.) Vor-
tex Methods, World Scientific, Singapore, 50-56. 



PUBLS. INST. GEOPHYS. POL. ACAD. SC., E-7 (401), 2007 

Some Practical Aspects of Flood Inundation Modelling 

Martin KRUPKA, Steve WALLIS, Gareth PENDER and Sylvain NÉELZ 
Heriot-Watt University 

Riccarton, Edinburgh, EH14 4AS, UK 
e-mail: mk48@hw.ac.uk 

Abstract  

In recent years, the response to the threat of flooding has changed from a de-
fence based approach to one of risk management. This has generated the need for 
very rapid simulations of potential flood event scenarios. The paper describes 
volume-based rapid computational method, and considers its application to an 
embayment of the River Thames in England. Comparison of results with those 
obtained using TUFLOW indicated that the rapid method could be improved by 
simulating friction effects by inhibiting the transfer of water between flood cells. 
Further results showed that under certain conditions the results of the enhanced 
rapid method were sensitive to the spatial representation of topography. 

1. Introduction 

Parts of the UK, in common with many areas of Europe, are prone to flooding either 
from rivers bursting their banks, from overloaded urban drainage systems or from 
extreme tide levels. Predictions of climate change suggest that the frequency and scale 
of flooding incidents are likely to increase in the future; hence, these issues are high 
on the political and economic agendas of most governments. In the UK the water in-
dustry now recognizes that the risk of flooding cannot be completely eliminated. As a 
result, a philosophy of flood risk management has been introduced in which the prob-
ability of occurrence, and the consequences of, a range of flood event scenarios are 
estimated for each location (HR Wallingford 2002, Sayers 2002). For example, loca-
tions that are prone to being flooded from the failure of several flood defence struc-
tures will experience a degree of flooding that will vary according to which defence 
fails (HR Wallingford 2004). In order to estimate the consequences of such events, 
mathematical models are required to simulate the most important hydraulic compo-
nents of catchment response, such as, for example, the propagation of flood waves 
along river systems and the inundation of rural and urban floodplains. Since many 
scenarios need to be considered, it is very desirable that such models run quickly. 
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This paper concerns the development and application of one type of flood model 
that simulates the spreading of water over a floodplain in order, primarily, to estimate 
the final extent of the inundation resulting from the breach or overtopping of a flood 
defence structure. The following sections of the paper give background information on 
flood inundation modelling, describe the main features of the new model and discuss 
its application to an embayment on the River Thames with particular focus on some 
practical issues. 

2. Flood inundation modelling 

2.1 Background 

The prediction of flooding in rural and/or urban floodplain areas has been the subject 
of much research over the last few decades. Ever since one-dimensional computational 
modeling of unsteady flow in channels became an almost routine task by the 1970s 
and 1980s, there have been several attempts to develop models that would also cater 
for floodplain hydraulics and for main channel-floodplain interaction. Until about 
2000, many of these models belonged in one of two categories: quasi-two-dimensional 
models; and fully two-dimensional models. In the former, the floodplain was repre-
sented by a series of inter-connected cells which may simply act to store water or 
which may also allow water to spread across the floodplain by connecting the cells to 
each other and to the river by conveyance links represented by weir equations. In the 
latter, the full two-dimensional shallow water equations were solved. Although in 
principle this gives a better description of the hydraulic processes, since it caters for 
both mass and momentum conservation, neither approach has been particularly suc-
cessful. There are several reasons for this, including a lack of knowledge of main 
channel-floodplain hydraulic interaction, difficulties in the parameterisation of head 
losses for floodplain flows and, until recently, the lack of detailed topographic data for 
floodplain areas. 

With the increasing availability of remotely sensed digital elevation data, however, 
full two-dimensional modelling is becoming popular again, particularly since models 
run faster on present day computers. At the same time, there has been the emergence 
of the so-called raster routing models (Bates and De Roo 2000) that thrive on high 
resolution digital maps of catchment topography. However, the needs of modellers has 
continued to evolve, driven in Europe and the UK by the recent change in emphasis 
from flood defence to flood risk management. As a result, possibly the most important 
characteristic of any model of floodplain inundation is computational speed. Fast 
models allow flood risk to be enumerated in a probabilistic sense by simulating the 
consequences of hundreds, possibly thousands, of different flood event scenarios. 

In the quest for speed, the authors have developed a rapid flood inundation model 
that is based on spreading a volume of floodwater over a floodplain. The primary out-
put of the model is the final degree of inundation, characterized by the spatial extent of 
the flooded area and the depth of water within the inundated area. 
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2.2 Development of the rapid flood inundation model 
The rapid flood inundation model consists of two parts: a pre-calculation routine, in 
which an array of flood storage cells is constructed from a digital elevation map 
(DEM) of the flood risk area; and an inundation routine, in which a specified volume 
of flood water is distributed across the storage cells (Krupka et al. 2007). 

In the pre-calculation routine, an imaginary horizontal water surface is laid across 
the DEM. Starting at the lowest point of the DEM, the imaginary surface is raised in 
increments, and its intersections with the terrain surface create a number of flood stor-
age cells that grow in size as the imaginary surface rises. The modeler determines the 
order of magnitude of the flood storage cells by specifying limits on the water depth 
and surface area for a cell to be viable. Thus by varying these limits the terrain can be 
represented at several different spatial resolutions ranging from very many small pools 
to very few large pools. Once the flood risk area is covered with viable cells, links 
(potential flow paths) between neighbouring cells are identified by searching for the 
lowest elevations on the inter-cell boundaries. Finally, volume-elevation curves are 
constructed for each cell from its topography, for use in the inundation routine. 

 
Fig. 1. Progress of flood spreading in the inundation routine. 

In the inundation routine, water is transferred between the cells in a way that mim-
ics the spreading of a flood from a breach in, or overtopping of, a flood defence struc-
ture. The entry point of the water to the flood risk area and the total volume of flood-
water to be spread are determined by the modeller. The inundation calculation begins 
by filling the cell containing the entry point. When the lowest link to a neighbouring 
cell is reached, the entry cell stops filling (becomes inactive) and the neighbouring cell 
fills (becomes active) until its water level reaches its lowest link, at which point the 
next cell begins to fill (see Fig. 1). This process continues until all the floodwater has 
been transferred to cells. Cases where links between cells are at relatively high eleva-
tions may require that several cells fill simultaneously (see Fig. 1). 

Although the pre-calculation routine is rather slow, it only needs to be run once for 
each spatial resolution required. On the other hand, the inundation routine is very fast 
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so that it is feasible to study the flood extent arising from hundreds of combinations of 
entry points and floodwater volumes. 

3. Application to the River Thames 

The rapid flood inundation model was used to investigate flooding of the Thamesmead 
embayment on the south bank of the River Thames. A series of simulations was un-
dertaken in order to compare the spatial extent of flooding predicted by the rapid flood 
inundation model against those obtained using a full two-dimensional model, namely 
TUFLOW (Néelz and Pender 2007). Attention was focused on the merits of incorpo-
rating a simple representation of flow resistance in the rapid flood inundation model 
and on the sensitivity of the rapid flood inundation model results to the resolution at 
which the floodplain (available as a 1m grid size DEM) was represented. 

4. Results and discussion 

Initial results show that the rapid flood inundation model allowed more spreading than 
TUFLOW, which is logical because no head is needed to drive flow between cells, 
thus overcoming resistance to flow. Hence, the model was modified to include such 
effects by requiring the water level to rise above the elevation of a flow link before 
transfer begins. This has the effect of storing more water in the cells, thus the area 
inundated is reduced. Figure 2 shows the effect of different values of extra driving 
head on the final flood extent. The small value of head (20 cm) permits the water to 
spread further from the breach, whereas when a large head (80 cm) is used the flood 
extent is remarkably smaller, but all the flooded cells contain a greater depth of water. 
The sensitivity of the quality of inundation prediction to the additional head is ex-
plored below. 

The effect of the resolution at which the floodplain is delineated was also studied. 
The rapid flood inundation model was tested on resolutions ranging from 12 to 82 
flood cells. Figure 3 shows the number of cells as a function of two main precalcula-
tion parameters – the minimum plan area of the flood cell and the minimum flood cell 
depth. The deeper and larger the flood cells are, the smaller is their number. 

The agreement between the rapid flood inundation model results and those ob-
tained with TUFLOW is shown in Fig. 4, using the following measure of fit, F: 

 
)(
)(

TUFLOWRFIM

TUFLOWRFIM

SSNum
SSNum

F
∪
∩

=  (1) 

where SRFIM and STUFLOW represent the sets of pixels classified as wet by rapid flood 
inundation model and by TUFLOW, respectively, and the Num function gives the 
number of members of the set.  

The measure of fit does not say much about the quality of the water depth predic-
tion and therefore the following root mean squared error (RMSE) criterion was chosen 
as a second descriptor of prediction quality: 
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Fig. 2. Inundation extents predicted by rapid inundation model (a) 20 cm of additional water 
head introduced to all links, (b) 80 cm of additional water head introduced to all links. 

 
Fig. 3. Number of flood cells (contours) as a function of the two main flood cell distribution 
parameters – minimum depth and minimum plan area of flood cell. 
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where i is the i-th pixel of the domain consisting of n pixels; hRFIMi and hTUFLOWi are 
predicted water depths in the i-th pixel in rapid flood inundation model and TUFLOW, 
respectively. The RMSE was calculated from the set of pixels, in which at least one 
model predicted flooding. This was done in order to remove the effect of large areas 
that were predicted to be dry by both models. The effect of the size of the domain is 
also minimized. To ensure a realistic comparison between the models, the same vol-
ume of floodwater entering the floodplain was used in all simulations.  

 

 
Fig. 4. Measure of fit, F, of flood extent and root mean square error of water depth between 
rapid inundation flood model and TUFLOW. 

As can be seen in both graphs (Fig. 4), 20 cm or 40 cm of additional head resulted 
in relatively poor predictions, and RMSE is almost independent of the number of flood 
cells. In these cases water spread to all the flood cells, regardless of their number and 
distribution because there was insufficient flow resistance. It can be expected that 
there would be no prediction improvement if the values of additional water head were 
lower than 20 cm. This over-prediction of flood extent can be avoided by using a 
higher additional head. For example, 60 cm and 80 cm of extra head caused 
Thamesmead to be only partially flooded. In this case, the quality of prediction can be 
further improved by varying the number of flood cells. Both F and RMSE show that 
as long as a reasonable estimate of extra head is used, the higher number of flood cells 
gives better agreement with TUFLOW, but at the cost of longer run time. However, 
the run time of the rapid flood inundation model was shorter than one second for all of 
the simulations. 

5. Conclusions 

The paper has described the introduction of a simple representation of flow resistance 
to a water volume conservation based rapid flood inundation model. This was 
achieved by applying an additional driving head to flow links between flood cells. The 
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sensitivity of this parameter on the final flood extent predictions was tested on the 
Thamesmead site by comparing results with those from TUFLOW. It was found that a 
range of extra heads existed in which similar flood extent predictions to those obtained 
by TUFLOW could be obtained while maintaining the run time of the simulation 
lower than one second. The sensitivity of the model to the topography delineation was 
also tested, showing that when using a realistic extra head the quality of the flood ex-
tent calculation increased by increasing the number of flood cells. Future work will 
focus on exploring the estimation of the extra head parameter. 
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Abstract  

The method for predicting the velocity and discharge in straight channels 
with smooth and rough banks using the eddy viscosity concept is applied to dif-
ferent sets of experimental results. The one-dimensional flow equation was 
solved using finite differences. Experimental confirmation of these theoretical 
results is presented for data from laboratory trapezoidal channels with smooth 
and rough banks as well as from selected actual river reach. 

1. Introduction 

Various approaches have been proposed to calculate flow of water in channels with 
roughness varying along the wetted perimeter which is in fact a feature of most natural 
streams. The computations of bulk velocities and the flow are usually based upon the 
uniform flow formulae such as the ones named after Chezy, Manning or Darcy and 
Weisbach.  

Various estimates of equivalent or composite roughness may be used in computa-
tions (e.g., Chow 1959, French 1996, US Army Corps of Enginners 1994). The other 
extreme is the use of complex 3D turbulence models. Some kind of a compromise 
between the simplest and those complex approaches may be the model derived by 
Shiono and Knight (1991) describing the depth-averaged velocity across a section of a 
channel. That very important work demonstrated that the eddy viscosity concept could 
be used effectively in compound channels.  In the present paper, the original equation 
derived by Shiono and Knight (1991) has been solved numerically and applied to both 
laboratory data from a straight trapezoidal channel and a selected cross-section of a 
river.  
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2. Applied mathematical model 

The basis for further analyses is the model derived by Shiono and Knight (1991). They 
combined the depth-averaged longitudinal momentum equation together with the con-
tinuity equation to predict the lateral variation of depth-mean velocity and boundary 
shear stress in open channels: 

 0 ( ) ( ),U V U W gS uv uw
y z y z

⎡ ⎤
+ = + − + −⎢ ⎥

⎣ ⎦

∂ρ ∂ρ ∂ ∂ρ ρ ρ
∂ ∂ ∂ ∂

 (1) 

where x, y, z are streamwise, lateral and normal directions, respectively, ,U  ,V  W  
are temporal mean velocity components corresponding to x, y, z; u, v, w are turbulent 
fluctuations of velocity of water with respect to the mean, ρ is the density of water, g 
is the gravitational acceleration, S0 is the bed slope gradient (S0 = sin Θ where Θ = 
angle of the channel bed relative to the horizontal direction), uvρ  and uwρ  are rele-
vant shear stresses (overbar denotes time averaging). It has been assumed, that viscous 
shear is negligible. 
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b
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η
z x
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Fig. 1. Cross-section of trapezoidal channel. 

After integrating (1) over the water depth η (Fig. 1) and provided that ( )W η =  
(0) 0W =  on the bed and at the water surface and that there is no wind shear on the 

water surface, Shiono and Knight (1991) show that (1) becomes:  

 
1/ 2

0 2

( )[ ( ) ] 11 ,dyxd
b

U V g S
y y s

∂ ητ∂ η ρ ⎛ ⎞= ρ η + − τ +⎜ ⎟∂ ∂ ⎝ ⎠
 (2) 

where τb is the bed shear stress as a function of y, s is the side slope (l:s, vertical : 
horizontal), subscript d denotes depth-averaging,  

 
0

1( )dU V U Vdz
η

ρ = ρ
η ∫  (3) 

and 

 
0

1 ( ) .
dyx uv dz

η

τ = −ρ
η ∫  (4) 

Based on the eddy viscosity approach and neglecting the secondary flow contribu-
tion, i.e., ( ( ) / 0)dU V y∂ ηρ ∂ = , Knight and Shiono (1991) gave the analytical solutions 
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to Eq. (2). Further, to make the notation simpler, the overbars in mean velocities will 
be omitted. The depth-averaged transverse shear stress 

dyxτ  is expressed in terms of 

the lateral gradient of the depth-averaged velocity: 

 .
d

d
yxyx

U
y

∂
τ = ρε

∂
 (5) 

The eddy viscosity is related to the local shear velocity, U*(y), and local depth, η, 
by the dimensionless eddy viscosity coefficient, λ, defined by: 

 yx * .ε = λ ηU  (6) 

It is important to remember that the local shear velocities may differ from the bulk 
values significantly (Rowiński et al. 2005). The local shear velocity ( ) 2/1

* /ρτ= bU  is 
affected by the free shear layer turbulence and the secondary flows. In regions of high 
lateral shear Shiono and Knight argued that *U  in (6) should be replaced by the pri-
mary or shear velocity difference between the two regions. 

In order to express (2) in terms of one variable (only Ud or τb), the Darcy-
Weisbach friction factor, f, is used to link U* and Ud giving 

 dUfU
2/1

* 8
⎟
⎠
⎞

⎜
⎝
⎛=  (7) 

and 

 2
*Ub ρ=τ . (8) 

The depth-averaged eddy viscosity in (6) may be then expressed in the form: 

 
1/ 21

8
xy df U⎛ ⎞= ⎜ ⎟

⎝ ⎠
ε λη . (9) 

Substituting (5) and (9) into (2), neglecting the secondary flow contribution, gives: 
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In (10), the downstream component of weight of a unit volume of water (term 1) is 
assumed to be balanced by frictional bed shear (term 2) and lateral shear (term 3). 
Secondary flow term and terms with derivatives in the longitudinal direction are, how-
ever, neglected from this analysis which does not have to be justified in every situa-
tion. 

The derivatives in Eq. (10) are approximated by the corresponding finite differ-
ences between the computational grid points, so that the differential equations are 
approximated by algebraic equations and then solved numerically. To solve Eq. (10), 
the following simple finite difference operators for terms of Eq. (10) have been used: 
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and yΔ  is the distance between calculation points.  

The non-slip boundary conditions (Ud = 0) at the outer boundaries of the channel 
banks have been assumed. The solution of the resulting system of non-linear algebraic 
equations is performed using the Newton-Raphson method.  

In (12) all the terms except for the Darcy-Weisbach friction factor (f) and dimen-
sionless eddy viscosity coefficient (λ) can be evaluated. Shiono and Knight (1990) 
determined for the case of differentially roughened trapezoidal channels with rough-
ened side walls and a smooth bed that λ values generally are between 0.1 and 1.0. For 
the case of ( ( ) / 0dU V y∂ ηρ ∂ = ) (i.e. negligible momentum transfer in the secondary 
circulation), the values of λ, based on turbulence stresses alone are much lower and 
they are closer to the value of 0.067 from a logarithmic velocity distribution for wide 
channels (Knight et al. 1994). The dimensionless eddy viscosity coefficient λ is usu-
ally taken as approximately 0.07 for the floodplains and 0.15 for the main channel 
(Darby and Thorne 1996). 

3. Flume experiments 

The investigations were performed in the Hydraulic Laboratory of the Department of 
Hydraulic Structures, Faculty of Land Reclamation and Environmental Engineering at 
the Warsaw Agricultural University in a straight channel L = 16 m long and 2.10 m in 
width (Kubrak and Żbikowski 1995). Within experimental accuracy, the water surface 
was parallel to the bed of the flume, which has a 0.0005 slope. Two series of experi-
ments were performed. The first one was made in a concrete channel in which both 
banks and the bottom were smooth. In the second one the bottom was smooth and the 
banks rough, covered by cement mortar containing gravel. The cross-sections of the 
channel in both situations are shown in Fig. 2. The water level in the channel was 
measured manually with the use of point gauges. The depth of water was controlled by  
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a)

b)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Cross-sections of trapezoidal channel for various tests. Test 1: smooth channel; test 2: 
smooth bottom with rough banks. 

a line of adjustable wicker-type gates at the end of the flume. The velocity compo-
nents were measured at 584 points in 76 verticals with a programmable electromag-
netic liquid velocity meter. The distance between the verticals where the velocities 
were measured was 0.05 m above the bottom and 0.025 m above the sloping banks. 
The equivalent sand roughness of the bank and bottom as well as the measured water 
depth and discharges are given in Table 1.  

Table 1 

Main characteristics of the flow in both variants of the experiment 

Case 
Depth /stage in 
main channel 

H [m] 

Mesaured dis-
charge Q [m3/s]

Equivalent sand 
roughness of the bot-

tom ks [m] 

Equivalent sand 
roughness of the 

banks ks [m] 
0.0691 0.0081 0.0004 0.0004 
0.0845 0.0113 0.0004 0.0004 
0.0963 0.0143 0.0004 0.0004 
0.1011 0.0152 0.0004 0.0004 
0.1172 0.0199 0.0004 0.0004 

Smooth 
banks and 
bottom of 
the channel 

0.1375 0.0269 0.0004 0.0004 
0.0562 0.0038 0.0004 0.01 
0.0812 0.0071 0.0004 0.01 
0.1155 0.0125 0.0004 0.01 
0.1286 0.0153 0.0004 0.01 

Rough 
banks and 
smooth 
bottom of 
the channel 0.1440 0.0185 0.0004 0.01 
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4. Comparison of calculations with the flume experimental results 

To illustrate the applied numerical approach for the determination of the velocity and 
discharge in trapezoidal channels with smooth and rough banks, the results have been 
compared with two different sets of experimental results. In the first experimental 
variant the water depth H varied between 0.0691 m and 0.1375 m, and in the second 
one it varied from 0.0562 m to 0.1440 m. Let us consider the smooth channel first. In 
order to apply Eq. (12) effectively, the distribution of local friction factor f across the 
section needs to be known. Theoretically calculated values of the Darcy-Weisbach 
friction factor based on the absolute roughness given in Table 1 was assumed in the 
calculations. Using the depth-averaged velocity values at the verticals, the values of f 
were evaluated based on the relation: 

 /1 2.512log
3.71Re

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠

sk d
f f

 (15) 

where Re is the Reynolds number defined as Re 4 /dU h= ν , ν  is the kinematic vis-
cosity coefficient, and h is the mean water depth at the cross-section. 

Garbrecht and Brown (1991) analysed the problem of over-estimation of discharge 
in a channel when a depth-averaged velocity approach is used. They found that the 
subdivision of a cross-section that is concave upward into many vertical elements 
introduced an unrealistic lateral velocity profile, when the lateral shear stresses on the 
sides of neighbouring elements are neglected. This procedure results in over-
prediction of the discharge capacity of the channel.  
 

H=0.0845 m, R=0.688, MRE=0.133
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Fig. 3. Example of the calculated and measured velocity distributions in the trapezoidal chan-
nel with the smooth bottom and banks (R – correlation coefficient; MRE – Mean Relative Er-
ror). 

The main drawback of the used experimental data was that the boundary shear 
stress τ b was not directly measured. Therefore a constant dimensionless eddy viscosity 
coefficient value of 0.067 was assumed in computations. Sensitivity tests indicate that 
the stage-discharge-rating curve and velocity are not particularly sensitive to varia-



 

 

143

tions in the dimensionless eddy viscosity coefficient taken from the 0.01-0.64 (Darby 
and Torne 1996). Comparisons of the calculated velocity distributions from Eq. (10) 
for a smooth channel and the experimental results are shown in Fig. 3 and the obtained 
agreement was reasonably good. Correlation coefficients R and Mean Relative Error 
MRE were respectively equal 0.688 and 0.133 for the case with H = 0.0845 m; 0.983 
and 0.114 for H = 0.1172 m and 0.847, 0.062 for H = 0.1375 m. 
 

H=0.1155 m, R=0.748, MRE=0.121
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Fig. 4. Example of the calculated and measured velocity distributions in trapezoidal cross-
section channel with the smooth bottom and the rough banks. 
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Fig. 5. Calculated and measured discharges in the trapezoidal channel with the smooth bottom 
and the rough banks. 
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In case of the smooth channel with rough banks a similar procedure was applied. 
The obtained results (Fig. 4) are also acceptable although the Mean Relative Error 
increased and the obtained correlation coefficient was in general larger (R = 0.748 and 
MRE = 0.121 for H = 0.1155 m; R = 0.800 and MRE = 0.106 for H = 0.1286 m; 
R = 0.898 and MRE = 0.135 for H = 0.1440 m). 

Figure 5 shows the resulting stage discharge relationship calculated from Eq. (10) 
and obtained from the experiments and the agreement was extremely good. Interesting 
information is provided by the variation of local values of the Darcy-Weisbach friction 
factor, calculated using depth-averaged velocity data and it reveals substantial differ-
ences above the sloping banks (Figs. 6 and 7). 
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Fig. 6. Calculated the Darcy-Weisbach friction factor in the trapezoidal channel with smooth 
bottom banks. 
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Fig. 7. Calculated the Darcy-Weisbach friction factor in trapezoidal channel with the smooth 
bottom and rough banks. 

The calculated bed shear stress distributions are shown in Figs. 8 and 9. The model 
reveals the increase of the bed shear stress above the edge between the bottom and the 
banks. The presented model provides yet another method of the evaluation of the bed 
shear stresses and the comparison with other computations (as reviewed by Rowiński 
et al. 2005) will be given elsewhere. 
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Fig. 8. Calculated boundary shear stress τb in the trapezoidal channel with smooth bottom and 
banks. 
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Fig. 9. Calculated boundary shear stress τb in trapezoidal channel with smooth bottom and 
rough banks. 

5. Model application for an actual river reach 

The verification of the model performance should be completed for a natural channel 
data for which in fact it has been constructed. An example of the comparison with the 
measurements performed in a selected cross-section of the Ihme River at Hannover, 
Germany (Rickert 1986), will be given herein and more examples covering a variety 
of roughness and hydraulic conditions will be provided in a separate publication.  

The mean flow depths in the river main channel and the absolute roughness of 
d90 = 0.6 mm (90th percentile diameter of bed material) for sand sediment were used 
for the estimates of the Darcy-Weisbach friction factor. Figure 11 presents the com-
parison between the calculated and measured velocity distributions in the given cross-
section taking into account a variety of the assumed equivalent sand roughness or ab-
solute roughness height (which may be for example evaluated as the difference be-
tween elevation of roughness crest and trough). The relationship between roughness 
height and sediment size and distribution of sediment has been studied and the rela-
tions with different sediment sizes, particularly with d50, d65, d84, d90 (defined as the 
sediment size equal to or exceeding that of 50, 65, 84 or 90% of the stream bed parti-
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cles by weight) were given by various authors (see for example the review of Ritter-
bach, 1991). The following propositions were considered in this study: 

 
Taylor and Brooks   – ks = d50 
Einstein    – ks = d65 
Engelund i Hansen   – ks = 2 d65 
Hey     – ks = 3,5 d84 
Garbrecht    – ks = d90 
Kamphuis    – ks = 2 d90 
Van Rijn    – ks = 3 d90 

Those concepts led to the following values of the roughness height in the considered 
Ihme river reach (see Fig. 10): 
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Fig. 10. Roughness height computed for the river Ihme based on various concepts. 
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Fig. 11. Computed velocity distributions in the Ihme River based on the various values of 
roughness height. 
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Note that the largest difference between the calculated and measured velocities is 
when ks = 1.2 mm is assumed. The best concept turned out to be the one proposed by 
Van Rijn which is also reflected in Fig. 12 showing the Mean Relative Error and Cor-
relation Coefficient for the comparison of the computed and measured velocity distri-
butions. 
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Fig. 12. Mean Relative Error and correlation coefficient of the computed and measured 
velocity distributions for the selected cross-section of the River Ihme assuming various values 
of roughness height. 

6. Concluding remarks 

The purpose of this work has been to confirm a useful method by Knight and Shiono 
(1991) for predicting the discharge given for homogeneously smooth and non-
homogeneously roughened trapezoidal channels by neglecting the secondary flow 
contribution, i.e. ( d( U V) / y 0∂ ηρ ∂ = ). The local friction factor f values vary along the 
wetted perimeter; they are different in the main channel and above the channel banks. 
However, given that f values were taken as constant over the main channel and flood-
plains, the numerical predictions of Ud and Q in channels are shown to be in close 
agreement with the experimental data. The applicability of the method is restricted by 
the range of data that were used to develop the friction factor. The Darcy-Weisbach 
equation predicts the values of friction factor for sandy bed channels. Computations 
proved to provide reasonable results also for an actual river but the results turned out 
to be very sensitive to the assumed method of the evaluation of the roughness height. 
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Abstrakt  

Floods are one of the most important natural hazards for people, economy 
and ecology. Can disastrous floods be avoided ? No, and we are even unable to 
fully protect against these natural phenomena. However, research on the course 
and consequences of floods is helping us to mitigate their impact, and above all 
to avoid human fatalities. In recent years the number and frequency of floods 
considerably increased in Poland, Europe and over the whole world. An essential 
feature is the fact that floods appear in the most densely inhabited areas includ-
ing river valleys. The paper presents changes in the approach to flood protection. 
Poland is the country where floods are very frequent and their origin and run are 
very differentiated. The approach to flood protection based on new Flood Direc-
tive of EU is presented. The paper concerns mainly floods in river valleys and 
urban areas. 

Key words: floods, natural hazards, flood protection, flood mitigation, EU 
Flood Directive. 

1. Introduction 

What is flood? A flood is an excess level or flow of water that spills out of the river 
channel resulting in economic, social and ecological damages and sometimes even 
taking a toll of human life. This definition is used in Poland (Polish Water Act 2001). 
The current degree of flood danger is estimated in Poland in terms of two specific 
water levels: a warning level, after which a state of flood preparation is announced, 
and an alarm level entailing a real flood threat, after which a state of flood alarm is 
announced. 

Recently issued EU Flood Directive (2007) on the Assessment and Management 
of Floods gives the following two definitions. 

1. Flood means the temporary covering by water of land not normally covered by 
water, as a result of heavy rainfall leading to the inundation of inhabited and/or 
industrial areas. 
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2. Flood risk means the likelihood of a flood event together with the potential 
damage to human health and life and the economic activity associated with that 
flood event. 

Floods as natural element of the hydrological cycle have always been with us and 
will surely continue to be part of our lives. Still, recent years have witnessed an in-
creased frequency of extreme hydrological and meteorological phenomena, such as 
hurricanes, high/low temperatures, storm surges, tsunamis, severe rains or droughts, 
and above all floods. 

The final decade of the last century and the beginning of the new millennium 
brought many flood cataclysms. Here we can mention the flood on the Rhine River in 
1993, on the Rhine and Moselle in 1995, on the Oder and upper Vistula in 1997, on 
the Yangtze in 1998, on the upper Vistula and in the city of Gdańsk in 2001, on Elbe 
in 2003, the extraordinary flooding of New Orleans in 2005, and the flood along the 
Danube in the spring of 2006. 

As an excellent indication of the importance of this problem, is the fact that 2004 
World Water Day – a yearly event designated by the UN in 1992 to water problems – 
took the theme “water and disasters”. Ninety percent of the natural cataclysms occur-
ring in 1992–2001 resulted from hydrological and meteorological phenomena. More 
than a billion and a half individuals worldwide have been affected by floods. Yet as 
the number of floods and the scope of the economic damage increased, the number of 
fatalities has simultaneously decreased (World Water Day 2004). That success can be 
put down to more accurate flood forecasts and better flood control measures. 

Floods usually result from extreme hydro-meteorological phenomena, such as se-
vere rainfalls over small areas, or long-lasting rains over large areas, the melting of 
snow and ice, storm surges, and ice jams on rivers. However, floods sometimes are 
caused by design mistakes or human error in the operation of hydraulic facilities. 

The greatest devastation is caused by floods occurring in densely populated river 
valleys. Note that many of our cities are situated on rivers, thus gaining the advantage 
of easy water access, navigation and fishing potential, and even such factors as sport 
and recreation. Since such regions generate the highest economic income, the disad-
vantage is that they are most under threat, yet most favourable in economic terms. The 
people inhabiting such areas have to be aware of this trade-off. Property and accident 
insurance, with rates depending on the degree of the threat, are increasingly used to 
offset the threat. 

2. Floods in Poland 

Poland is a country that has to face a very high and at the same time very diverse flood 
hazard. Floods are most commonly caused by concentrated rains – the 2001 flood in 
Gdańsk being the result of such rainfall or long-lasting rains over large areas (flood 
1997 on the Odra River). Floods may also be caused by ice related phenomena, such 
as frazil-ice jams, which occur in the autumn-winter period, and ice jams, which occur 
in the springtime when the ice cover on rivers breaks up and flows downstream. An 
ice jam at the mouth of Vistula River in 1829 resulted in flooding of the city of 
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Gdańsk up to the first-story level. In 1844, another ice jam on the Gdańska Vistula led 
to the creation of a new mouth to the sea − the Śmiała Vistula (Bold Vistula). To re-
duce the threat of flooding in the Gdańsk region and the Vistula Delta, an artificial 
channel of the Vistula called the Przekop was constructed in 1895, a solution that 
proved very effective (Fig. 1). The arrows in Fig. 1 indicate three main directions of 
flood hazard to the surrounding area called Żuławy: from the Bay of Gdańsk (storm 
surges), from the main channel of Vistula (high discharge or ice jams) and from the 
moraine hills (e.g. flash flood 2001 in Gdańsk). Previous main channel of Vistula 
River was closed by navigation lock in Przegalina and at present there is no river flow. 
Therefore this river section is now called Martwa Vistula, which means Dead Vistula. 
 

 
Fig. 1. Present layout of the Vistula delta. 

Numerous small rivers and channels, which discharge to Martwa Vistula have 
storm gates. These gates close automatically in case of storm surge to prevent saline 
waters from the Gulf of Gdańsk to enter inland streams.  

In 1934 a catastrophic flood in the Dunajec River catchment caused vast material 
losses and took a toll of many lives. To alleviate similar floods in the future, the 
Rożnów and Czorsztyn dams and reservoirs were designed and built. The Rożnów 
dam was finished in 1942, while the Czorsztyn dam, after being under construction for 
more than 20 years, was completed and commissioned in 1997, just before another 
high flood wave. Czorsztyn-Niedzica reservoir significantly reduced the flood wave 
arriving from the mountain part of Dunajec River. 

In 1982 a severe flood caused by ice jam on the Lower Vistula in the region of 
Płock resulted in flooding of large agricultural area and part of the city. This flood 
resulted from very unfortunate coincidence of hydro-meteorological phenomena, 
which appeared simultaneously. The main problem was to find out why during rela-
tively low discharge water levels were so high and breached flood dykes (Fig. 3) in-
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undating large areas. This study required intensive and complicated field measure-
ments as well as theoretical analysis and numerous calculations (Majewski 1987). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Rożnów dam on Dunajec River. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Ice-jam flood on Vistula River near Płock. 

On the upper and middle Odra and lower Vistula, the 1997 flood caused damages 
of 14 billion PLN and the deaths of 54 individuals. Indirect losses came to nearly 3 
billion PLN.  

In 2001, a sudden flash flood caused by severe rainfall in Gdańsk within the 
course of 4 hours caused 50 million USD of damage to city infrastructure alone. Three 
hundred families lost their homes and property, although fortunately no lives were lost 
(Majewski 2003, Majewski 2006). 
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The expansion of the city of Gdańsk in recent years has stretched towards the mo-
raine hills to the southwest of the city, whose slope is directed towards the city. This 
area was used for new housing developments with new streets and parking lots, caus-
ing a decrease in the natural water retention capacity. At the foot of the moraine hills, 
there is a 13.5 km long artificial channel called Radunia Channel built in the XIV cen-
tury to supply the city of Gdańsk with water. The catchment of the channel lying on its 
left-hand side on the moraine hills amounts to 42 km2 (Fig. 5). The channel has an 
embankment on the right-hand side and runs parallel to the main road leading to 
Gdańsk from the south. The area on the right bank of the channel is occupied by the 
old urban part of Gdańsk, lying in a depression. During 4 hours practically the entire 
catchment of the channel received 80 mm of precipitation. The daily precipitation on 
that day was 120 mm. Monthly average precipitation for July in Gdańsk is 68 mm. 
The side inflow to the channel from the catchment was estimated at  about 100 m3/s, 
while the conveyance of the channel is 20 m3/s only. The embankment of the channel 
was breached in 5 places, which resulted in the flooding of the city situated in the de-
pression alongside the channel and the main road (Fig. 5). Effect of breached em-
bankment is shown in Fig. 4. 
 

 
 

Fig. 4. The main road approaching Gdańsk from the south after the flood 

The arrows in Fig. 5 indicate places where the right hand embankment of the 
channel was breached and specially marked places, which were flooded, are indicated. 

After this flood special study was undertaken to find solution to protect Gdańsk 
against similar precipitation and flood in the future. Exact field measurements of all 
rivers, streams and channels forming Gdańsk Water Node (GWN) were carried out. 
Detailed hydrological analysis was prepared and 1D unsteady flow model including 
(GWN) was developed based on MIKE 11 HD. Verification of the model was based 
on hydraulic data. Several calculations were carried out including various possible 
scenarios. Results of calculations allowed to formulate technical solutions, which were 
very difficult because of restricted area within the city. One of the difficult problems 
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was the situation when simultaneous flood comes from moraine hills and storm surge 
in the Gulf of Gdańsk. This concerned the operation of storm gates.  
 

 
Fig. 5. The catchment of Radunia Channel, Radunia Channel, breached embankment and 
flooded areas in 2001. 

Finally it was decided to construct 18 small impounding reservoirs in the catch-
ment of the channel, 3 by-passes from the channel and 2 additional flood polders. A 
special system of precipitation and water level measurements was proposed. These 
solutions are shown in Fig. 6. 
 

 
Fig. 6. Technical solutions proposed after the flood 2001. 
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3. Evolution of flood protection 

Flood control has always been an important field of hydraulic engineering and water 
resources management. One of the earliest approaches involved the notion of keeping 
water away from people, i.e. constructing of flood dykes, retention reservoirs, relief 
channels, dry reservoirs, and flood polders (Majewski 2006a). 

Flood dykes are earthen constructions running alongside rivers, meant to protect 
against any excessive high stages of flood waters. Retention reservoirs, in turn, are 
meant to catch part or all of a flood wave, thus limiting the degree of flooding down-
stream from the reservoir. Relief channels are constructed to protect urban areas or 
other places of specific economic or cultural value, and come into operation whenever 
a flood wave approaches.  

Dry reservoirs are designed in the upper sections of rivers, which are automatically 
filled whenever high discharge approaches, at other times being utilized as meadows 
or grazing land. Flood polders are artificial basins situated alongside riverbanks which 
become filled automatically by side spillways upon the arrival of a flood wave, 
thereby reducing its height, and are then drained after the water level recedes. At other 
times polders often serve as recreational areas. 

All of these hydraulic structures are expensive to construct hydraulic structures 
and to keep them in good conditions – maintaining many kilometres of flood dykes 
being a very costly endeavour. In the past it was often thought, albeit mistakenly, that 
such constructions provide complete flood protection. Very often hydraulic analysis 
indicated that the height of flood dykes should be increased, as well as capacity of 
impounding reservoirs. Yet, once economic analyses began to be performed about the 
feasibility and efficiency of raising the level of existing flood dykes or increasing the 
capacity of retention reservoirs, the conclusion often reached was that doing so simply 
did not pay. It had also been frequently neglected that increasing flood control in one 
place might worsen it in others. Constructing flood dykes along an upper river section 
often simply turned out to accelerate the flow and cause higher water levels down-
stream.  

Later on another solution was proposed i.e. make more room for the rivers. This 
means to displace existing flood dykes further from the river bank. It is a very good 
solution, however very costly and not always possible, because of existing infrastruc-
ture just behind flood dyke. 

Once these shortcomings were realized, other solutions began to be developed, fol-
lowing the notion of keeping people away from water, i.e. removing human settle-
ments and industrial facilities from flood-prone areas. While often economically justi-
fied, such efforts have also been very costly. Consideration of the previous and new 
approach to flood protection was a very long trend, bringing often numerous contro-
versies, especially when ecological objectives were taken into account. 

Finally, consideration began to be given to the possibility of temporary flooding of 
defined areas, together with existing infrastructure, paying greater attention to the 
protection of buildings against flooding and damage, as well as reinforcing existing 
infrastructure against flood damage. Efforts of this sort can be described as learning to 
live with floods. A necessary condition here is that the accurate meteorological and 
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hydrological forecast is absolutely necessary, to give people time to prepare ade-
quately for flood advent. For private homes, for instance, this method involves pro-
tecting basement windows and entry doors with special closures that prevent flood-
water from penetrating inside – a solution that is widely employed in many European 
countries (e.g. Netherlands). Then, after a flood subsides, work must be efficiently 
planned to quickly eliminate the damages caused, bringing life back to normal as soon 
as possible. 

4. Integrated flood management 

The new approach to flood control is known as integrated flood management (Ma-
jewski 2006b). Previously, all flood control efforts concentrated on the river channel 
itself, or its immediate vicinity. This new approach encompasses efforts undertaken 
throughout the entire catchment. On the one hand, this means such aspects as spatial 
planning, forestation, land cultivation, and urbanization – efforts which may be de-
scribed as technical, since they deal with buildings, constructions, and land manage-
ment. Yet on the other hand, research has shown that a significant reduction in flood 
impact can be achieved through non-technical means, i.e. investing in forecasting and 
warning systems or making organizational preparations (accumulating the necessary 
equipment and drafting evacuation plans in case of flood). It is likewise very impor-
tant to educate society about what flooding can mean for them, about how floods may 
occur and proceed, and about what every citizen should know to protect themselves 
and their property. Such non-technical efforts take significantly less funding than 
technical means, but often yield more tangible results. 

After the devastating 1997 flood on the Odra and Upper Vistula, Poland began re-
inforcing its means of hydro-meteorological protection. This consists of automatic 
water level gauges and meteorological monitoring stations, plus a system of meteoro-
logical radar devices providing early warning of oncoming clouds, fronts, storms and 
precipitation. These are maintained by the State Hydrological-Meteorological Service, 
operated by the Institute of Meteorology and Water Management in Warsaw. Local 
flood warning systems and crisis reaction centres were established in numerous flood-
prone areas, with all these elements being coordinated by the National or Provincial 
Rescue and Protection Centres. 

Following a number of catastrophic floods in Europe, the European Commission 
has initiated joint action aimed at improving flood control measures Europe-wide, and 
a special EU Flood Directive was issued. The current approach envisions a system of 
safeguards, which can ensure that losses are minimized and that life can proceed rela-
tively normally, regardless of the degree of flooding intensity. That will above all re-
quire good meteorological and hydrological forecasts, as well as power and communi-
cation systems that operate reliably under flood conditions.  

5. EU Directive on the Assessment and Management of Floods 

The new EU Flood Directive (2007) was adapted after long discussions and negotia-
tions. It was stated that at present there is no legal instrument for protection against 



 157

flood risk. That risk, which will become more frequent in future as a result of climate 
change. Concerted and coordinated action at the level of Community would bring 
considerable added value and improve the overall level of flood protection. 

Most river basins in Europe are split between Member States, and effective pre-
vention against floods requires a cross-border cooperation. Moreover, throughout the 
Community different floods occur and damage caused by flood events may also vary 
across the countries and regions of the Community. Hence, objectives regarding flood 
management should be based on the local and regional circumstances. 

River basin flood management should aim to create common responsibility and 
solidarity within the Community. To that end Member States should endeavour  to 
raise awareness and encourage cooperation among all stakeholders. The following 
tasks are foreseen: 

• maps of river basin districts including borders of river basins, sub basins and 
coastal areas, 

• description of floods which occurred in the past, 
• an assessment of the likelihood of future floods based on available information 

(e.g. climate changes), 
• a forecast of the estimated consequences of future floods, 
• flood risk management measures, especially those related to the infrastructure, 
• an assessment of the effectiveness of  existing man-made flood defence infra-

structure.  

6. Conclusions 

• Floods are one of the most important natural hazards for people, economy and 
ecology.  

• The frequency and severity of floods is increasing and this trend will persist tak-
ing into account possible climate changes. 

• There is no possible flood protection by means of technical measures  only and 
non-technical measures should be also considered. 

• New approach to flood assessment, management and mitigation is proposed in 
EU Flood Directive and will be obligatory in EU countries. 

• The new approach to flood protection should take into account not only river 
channel or its valley but also the whole river catchment. 

• Preparation of flood protection plans requires work of comprehensive teams 
consisting of technical specialists (hydrology, meteorology, hydraulics, water 
resources management), specialists of spatial planning, ecologists, economists 
and sociologists. 

• Flood problems require detailed hydrological and hydraulic analysis as well as 
field measurements and hydro-meteorological observations (precipitation, water 
stages).  
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Abstract  

Landscape topography is the most important driving force for groundwater 
flow and all scales of topography contribute to groundwater movement. Here we 
present results of how different scales of topography affect the groundwater flow 
at different depths. The study is based on a spectral analysis of the topography 
and a couple of exact 3-D solutions of the groundwater flow. We are also analyz-
ing how different heterogeneities of the subsurface hydraulic conductivity impact 
the groundwater flow at different depths and alter the relative importance of dif-
ferent topographic scales on the groundwater flow. Quaternary deposits are ex-
tremely important for the infiltration at the ground surface, but the effect is pri-
marily constrained to the deposit strata. Depth dependent hydraulic conductivity 
has a major impact on the size and depth of the groundwater flow cells, but it 
also affects the infiltration at the surface. Depth dependent hydraulic conductiv-
ity tends to counteract the effect of the large-scale topography on the groundwa-
ter flow more effectively than the smaller landscape scales.  

1. Introduction 

Freshwater is the most important natural resource for human life and, even if surface 
water reservoirs are refilled much more rapidly than groundwater reservoirs, ground-
water (GW) constitutes 98% of all non-frozen freshwater (Shiklomanov 1998) and are 
therefore an important source for freshwater in many countries (i.e. Hutson et al. 
2004). Due to the increasing demand of freshwater that follows from the world’s rapid 
population growth there is an ever greater need for a better understanding of the proc-
esses controlling the groundwater recharge. Recharge of new groundwater is perhaps 
the most important factor for sustainable water resource management. 

In humid climates, where the groundwater surface tends to follow the ground sur-
face, differences in hydraulic potential created by topography are the main driving 
force for groundwater flow. The impact of different scales of topography on ground-
water flow has been investigated for different reasons (i.e. Alley et al. 2002, Zilj 
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2002). Recently we developed a method to represent the topography in three dimen-
sions by a spectrum of harmonic functions (Wörman et al. 2006). With this approach 
we can estimate the relative impact of a certain scale of topography on groundwater 
movement at a specified depth.  

In this study we have developed new three-dimensional, exact solutions to investi-
gate how the scale effect of topography changes when more realistic representations of 
the subsurface are induced, especially depth dependent hydraulic conductivity and 
quaternary deposits on top of bedrock. By doing so, our aim is to give a better under-
standing of the relationship between topography and groundwater flow. This under-
standing is important, not only for water resourse management, but also for many 
technical implementations; drainage in tunnel constructions, the performance of nu-
clear waste repositories (Marklund et al. 2007) etc.  

In this study we investigate to what degree various scales of topography are con-
trolling the recharge and, especially, how different depth-dependent conductivities as 
well as presence of Quaternary deposits control infiltration. For various representa-
tions of the subsurface, we study how different scales of topography control the 
groundwater movement at different depths.  

2. Methods 

Groundwater re- and discharges are controlled by landscape topography because the 
groundwater surface tends to follow the ground surface. We characterize the effects of 
the land surface topography on subsurface flow in terms of the vertical flux. This is 
done by performing a spectral analysis of the topography (Wörman et al. 2006) in 
three domains with different sizes and resolutions (Table 1).  

Table 1 

Sizes and resolution of the study-areas 

Name Size Resolution 
L 350×350 km 141×141 
M 100×100 km 201×201 
S 30×30 km 241×241 

All three domains are located in Sweden (Fig. 1) and the largest domain surrounds the 
middle-sized domain which is surrounding the smallest domain. 

The result of the spectral analysis is a representation of the ground surface topog-
raphy in a Fourier-series spectrum. Assuming a groundwater surface that follows the 
ground surface gives us the hydraulic potential as a boundary condition. Hence, the 
Fourier-series spectrum combined with the hydraulic conductivity provides an exact 
solution of the underlying three-dimensional groundwater flows induced by these to-
pographic features over a wide range of spatial scales. According to Wörman and col-
leagues (2006), the solution to the vertical groundwater velocity component (vertical 
flux) in a homogeneous subsurface becomes:  
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in which  hm = amplitude coefficients [m],  h = hydraulic head [m],  <…> = arithmetic 
average value,  N = number of wavelengths in the x- and y-directions,  ε [m] = the 
depth to a no-flow condition boundary,  K = hydraulic conductivity and (x, y, z) are 
Cartesian coordinates.  
 

 
Fig. 1. Map of Sweden showing the three different study-domains: L, M and S.  

2.1 Impact of depth dependent hydraulic conductivity 

To quantify the groundwater recharge we integrate the absolute value of the vertical 
velocities over the entire domain area. This was performed in all three domains and at 
three different depths; z = 0, z = −500 and z = −1000 meters. The vertical flux at the 
different depths is calculated for two different representations of the hydraulic conduc-
tivity (K). First we use a homogeneous conductivity, K = 10−6 m/s. The second repre-
sentation is a depth dependent function described by Eq. 2.  

 0
czK K e=  (2) 

where K0 is the conductivity at the surface, z is the depth and c is a positive constant. 
For such hydraulic conductivity we have derived an exact solution for the vertical 
flow velocity: 



 162

 

( )

( )

2 2 2
, ,

,
1 1

2 2 2
, ,

, ,

4
( , , ) ( )

2

4
exp sin( )cos( )

2

yx NN
x i y j

m i j
j i

x i y j

x i y j

c c k k
w x y z h K

c c k k
z k x k y

= =

+ + +
= ⋅

⎛ ⎞+ + +⎜ ⎟⋅ −⎜ ⎟⎜ ⎟
⎝ ⎠

∑∑
 (3) 

By comparing Eqs. (1) and (3), we can evaluate how the depth dependent hydraulic 
conductivity affects the groundwater movement at certain depths and for different 
scales of topography. We based the values of c and K0 on borehole data from Sweden 
ranging  down  to approximately  1600 m  depth  (Rhen et al. 2006),  c = 0.00641  and 
K0 = 1.925×10−7. 

2.2 Groundwater recharge through soil-rock interface 

To study the effect of Quaternary deposits we have derived an exact solution for the 
groundwater flow with a layered representation of the subsurface consisting of two 
layers; the Quaternary deposits and the bedrock. Here we study how different thick-
nesses and different conductivities of the Quaternary deposits affect the flux at the 
interface between soil and rock. Since the analytical method (Eq. 4) we use here can 
only cope with soil layers of constant thickness, we have chosen to study the two dif-
ferent thicknesses: 2 and 10 m. We also study two different soil types, till (K ~ 10−6) 
which is the dominating soil type in Sweden and sandy sediments (K ~ 10−5) 
(Domenico and Schwartz 1998). The vertical velocity in the Quaternary deposits (w1) 
and in the bedrock (w2), are given in the following expression:  
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where:  K1 is the hydraulic conductivity in the Quaternary deposits,  K2 = K0‗2 ecz is the 
hydraulic conductivity in the bedrock,  A1 = f(c, K1, K2, εQD, kx, ky),  A2 = f(A1, εQD, kx, 
ky),  εQD is the thickness of the Quaternary deposits. 

The constant soil depth is a shortcoming because the thickness of Quaternary de-
posits often differs widely. In areas covered by thick layers of Quaternary deposits, the 
undulation of the topography is often smaller compared to areas with more shallow 
deposits. The thickness of the deposits is often determined by the topography, where 
more material is deposed in lower areas. However, the thickness of the glacial till does 
not fluctuate much and is seldom larger than four meters. Larger deposits are concen-
trated to lakes and rivers and consist of well sorted sediments. 

3. Result 

3.1 Impact of depth dependent hydraulic conductivity 

The importance of different scales of topography on the groundwater flow is depth 
dependence (Fig. 2). The impact of the shorter wavelengths on the groundwater flow 
decreases faster with depth in relation to longer wavelengths.  
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Fig. 2. The vertical flux at different depths driven by topography of different wavelengths, 
where diamonds indicates flux at the surface, squares at 500 m depth and triangles at 1000 m 
depth.  

The relationship between topographic scale and water fluxes at various depths 
change when we account for depth dependent hydraulic conductivity (Fig. 3). Figure 3 
also shows that groundwater fluxes generated by topography of larger wavelengths are 
more affected by the decreasing conductivity than fluxes associated with shorter 
wavelengths.  
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Fig. 3. The vertical flux at different depths (0 and −1000 m) driven by topography of different 
wavelengths.  

Because larger wavelengths dominate the groundwater flow at greater depths, the 
decrease of conductivity has a relatively larger impact on the absolute flux with depth 
in bedrock (Table 2).  

Table 2 

Vertical fluxes (W-flux) at different depths and with different representation 
of the bedrock hydraulic conductivity 

Area Hydraulic 
conductivity 

W-flux 
(mm/year) at

z = 0 

W-flux 
(mm/year) at

z = −500 

W-flux 
(mm/year) at 

z = −1000 
Constant 121 90 71 

L 
Depth dependent 14 0.51 0.019 
Constant 31 13 8.6 

M 
Depth dependent 12 0.18 0.046 
Constant 92 25 14 

S 
Depth dependent 52 0.42 0.011 

 

3.2 Groundwater recharge through soil-rock interface 

The infiltration at z = 0 is found to depend both on the conductivity and the thickness 
of the Quaternary deposits. As shown in Table 3, a higher conductivity of the  QD  
only  increases  the flux  at  the ground  surface  but  at great  depths  the flux is only 
slightly affected. The same effect is created by larger thickness of the deposits (Table 
3). The impact of the QDs is independent of the topographic scales (Fig. 4). 
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Table 3 

Sizes and resolution of the study-areas 

Area 
Hydraulic 

conductivity in  
QD (m/s) 

Depth of 
QD (m) 

U-flux 
(mm/year) at

z = 0 

U-flux 
(mm/year) at

z = −50 

U-flux 
(mm/year) at 

z = −100 
2 30 7.6 4.8 

10-5 
10 104 7.7 4.9 
2 14 7.6 4.8 

L 
10-6 

10 21 7.7 4.9 
2 30 7.6 4.8 

10-5 
10 104 7.7 4.9 
2 15 10 7.2 

M 
10-6 

10 19 10 7.2 
2 250 24 13 

10-5 
10 1124 25 13 
2 72 24 13 

S 
10-6 

10 121 24 13 
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Fig. 4. The vertical flux at the groundwater surface driven by topography of different wave-
lengths, of four different representations of the Quaternary deposits: two different depths, 2 and 
10 m, combined with two different hydraulic conductivities, 10−5 and 10−6.  

4. Discussion and conclusions 

Landscape topography is the most important driving force for groundwater flow and 
all scales of topography contribute to groundwater movement. At the groundwater 
surface the contribution to the groundwater flow is rather equal for all scales (Fig. 2), 
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but the impact of shorter topographical scales decay faster with depth than longer 
scales.  

The depth dependent hydraulic conductivity is another important factor for the 
groundwater movement. By controlling how deep the groundwater flow cells become, 
it also determines the residence time for groundwater. In addition, it controls how 
different scales of topography affect the groundwater flow at different depths and even 
at the surface.  The decreasing hydraulic conductivity with depth blocks out more 
effectively the impact of the larger landscape features compared to the smaller fea-
tures. This is most obvious at flows at great depths (z = −1000 m), but the effect is 
also present at the surface.  

The recharge of groundwater is driven by topography, but the physical properties 
of Quaternary deposits are controlling the magnitude of the recharge. The higher con-
ductivity of the Quaternary deposits creates a much larger infiltration rate compared to 
a geological representation of the subsurface where the bedrock reaches up all the way 
to the ground surface. However, even if the infiltration is increased up to a hundred 
times, fluxes at 50 m depth are not significantly affected. We note here that this study 
was performed with a depth dependent hydraulic conductivity in the bedrock and most 
likely the effects of the Quaternary deposits would reach deeper with a homogeneous 
representation of the bedrock but the depth dependency of the hydraulic conductivity 
is more realistic in most areas (Ingebritsen and Manning 1999). 
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Abstract  

The results of experimental studies, aimed at the recognition of the scales of 
turbulent eddies in channels with the simulated riparian woody vegetation, are 
discussed in the paper. The analyses include temporal scales of macroeddies, 
longitudinal spatial scales of macroeddies, scales of Taylor’s microeddies as well 
as internal scale of turbulence by means of sizes of Kolmogoroff microeddies. 
To this end, flume experiments were used with model vegetation consisting of 
regular arrays of stiff vertical cylinders with variation in cylinder spacing em-
ployed. Different flow geometries were considered.  

1. Introduction 

Nowadays, occurrence of vegetation on river floodplains is advisable due to its envi-
ronmental functions, but brings additional complexity of hydraulic processes (Nepf 
1999). We are, however, still lacking a comprehensive theory allowing to describe the 
turbulence structure in vegetated channels and the experimental studies in that direc-
tion are highly demanded.  

Turbulence is a key factor determining the character and intensity of mass and 
momentum transport in rivers. A great deal of research has been recently devoted to 
the experimental studies of turbulence in vegetated channels (e.g. Baptist 2005, 
Ghisalberti and Nepf 2002, Rowiński and Mazurczyk 2006, Velasco et al. 2003). The 
scales of eddies in flows are crucial for determining sediment transport and redeposi-
tion, bed formation and other processes in rivers. Although recently quite many au-
thors have been involved in studying the turbulence structure in vegetated flows, their 
findings are diversified.  
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2. Experimental setup 

2.1 Laboratory channels’ description 
Experiments were performed in two channels of different geometries. First part of 
investigations was carried out in the Hydraulic Laboratory of the Department of Hy-
draulic Structures, Faculty of Environmental Science at the Warsaw Agriculture Uni-
versity (further named WAU channel). In a straight open channel 16 m long and 2.10 
m wide with symmetrical trapezoidal cross-section (Fig. 1.) emergent aluminum pipes 
of 0.8 cm diameter were evenly placed in an uniform pattern (m = 42 trees/m2) on two 
floodplains. The bed slope was 0.0005 and water level was constant – 28 cm in the 
main channel, 12 cm on the floodplains. One cross-section in the middle of the flume 
with 23 verticals was selected for measurements (Fig. 1.). 

Fig. 1. Cross-section of the laboratory channel in Warsaw (WAU). 

Second part of investigations was conducted in the Institute for Hydraulic Engi-
neering at Braunschweig Technical University in Germany in a compound laboratory 
channel 30 m long, 2 m wide, with 1 m wide one-side floodplain (Fig. 2.) (further 
denoted as BTU channel).  
 
 
 
 
 
 
 
 
 
 

Fig. 2. Cross-section of the laboratory channel in Braunschweig (BTU). 

A 9-m-long side-pocket (angle 45°) was constructed on the floodplain. Plastic, 
rigid sticks with diameter of 1 cm were evenly placed in a floodplain-pocket. The ex-
periment was carried out under steady-state conditions. The tests were run for the dis-
charge 100 l/s and different arrangements of simulated trees (two sticks’ densities: 95 
and 45 sticks/m2 and a case with no vegetation were considered). The slope was fixed 
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at 0.0009. More detailed descriptions of both channels were presented in previous 
publications (Mazurczyk 2005, Rowiński and Mazurczyk 2006). 

2.2 Measuring set-up 
Instantaneous velocities were measured with the use of a three-component acoustic 
Doppler velocity meter (ADV) manufactured by Sontek Inc. ADV works on pulse-to-
pulse coherent Doppler techniques in relatively high temporal resolution (Lohrmann et 
al. 1994). The measurements were conducted with maximum frequency 25 Hz. Long 
series of measurements (3000-9000 values in one point) were recorded to provide 
reliability of data and constancy of higher order velocity moments. 

3. Results and analysis 

3.1 Temporal scale of macroeddies 
The turbulence generation produces fluctuations of flow velocity associated with big 
vortices, then the turbulent energy is transferred in an energy cascade  to smaller scale 
eddies until it is dissipated into heat by the molecular viscosity (Nezu and Nakagawa 
1993). The largest eddies are impermanent and easily disintegrate into structures of 
smaller sizes, but simultaneously new, large structures are generated. As a result, the 
whole and continuous range of sizes of eddies exists in the flow. 

The external scale of turbulence is determined by the sizes of macroeddies. 
Evaluation of sizes of macroeddies must be preceded by determining of time-scales of 
macroeddies. To this end, autocorrelation functions R(t) were used for this evaluation. 
Those functions exhibit very similar forms of decaying curves with an alteration of the 
domains of the positive and negative values (Fig. 3). The values of the time scale of 
turbulence TE (the eddies’ period) were calculated in three directions as: 

 
0

( ) .ET R t dt
∞

= ∫   

This temporal macroscale is a measure of the slowest changes in the flow, caused 
by the largest eddies. In WAU channel temporal scale of macroeddies reached 0.5 s in 
the main channel and didn’t exceed 0.4 s over floodplains. The biggest values were 
observed for longitudinal direction and appeared in the upper part of the main channel 
(Fig. 4.).  
 
 
 
 
 
 
 
 
 
Fig. 3. Autocorrelation functions of three velocity components 21 cm above the bed in the 
middle-profile in the main channel (left) and 5 cm above the bed on the floodplain (right). 
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Fig. 4. Contour map of time scales of turbulence in streamwise direction [s] (WAU channel). 

3.2 Spatial scales of macroeddies 
By means of the Taylor hypothesis of “frozen turbulent structures” one can obtain 
spatial longitudinal scale of eddies. In flows of low level of turbulence (with small 
turbulence intensities) the spatial scale Lx can be evaluated as follows: 

 ,x ExL T u=  

where u  is the mean-time longitudinal velocity. 
Rods simulating trunks of trees cause creation of a wake behind them. Eddies in 

wakes are much smaller. Additionally occurrence of rods causes that sizes of eddies 
on floodplains are much uniformly distributed at verticals than those in main channels 
(Figs. 5 and 6).  

Fig. 5. Contour map of sizes of macroeddies [m] (WAU channel). 

 

 
 
 
 

 

 

Fig. 6. Vertical distribution of sizes of macroeddies in WAU channel in main channel and on 
floodplain. 

WAU - main channel

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 2 4 6 8 10 12 14
size of macroeddies [cm]

z/
H

WAU - floodplain

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 2 4 6 8 10 12

size of macroeddies [cm]

z/
H

0 20 40 60 80 100 120 140 160 180 200
0

10

20
0 0.015

0.03

0.045

0.06

0.075

0.09

0.105

0.12

0.135 [m]



 173

In the channel in Braunschweig the sizes of macroeddies differ greatly for differ-
ent density of trees (Fig. 7). In case of very dense vegetation the eddies on floodplain 
are generally smaller than 1 cm, whereas in case without trees their sizes reach 15 cm 
and are similar to those in the main channel. 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Vertical distribution of sizes of macroeddies in BTU channel in main channel and on 
floodplain with and without trees. 

Reduced sizes of macroeddies foster an increase of turbulent energy dissipation. 
Energy dissipation rate was calculated from energy spectra in Kolmogoroff inertial 
subrange by means of: 

 
2 / 3

5/ 3( ) 0.48 ,
2
uS f f −⎛ ⎞= ⎜ ⎟π⎝ ⎠
ε   

where S(f) is the energy spectra, u  the mean-time longitudinal velocity; ε the energy 
dissipation ratio, and f the frequency. 

Dissipation ratios calculated for measuring points on floodplains in WAU channel 
were several times higher than those in main channel, what confirms the argument of 
Grinvald and Nikora (1988) that vegetation influences greatly the dissipation ratio 
rather than energy production. 

Nepf (1999) proposed the following relation between macroeddies and stems’ di-
ameter: 

 1.5xL d ≈   

where d is the stem diameter. This relation is roughly fulfilled in BTU channel, where 
mean sizes of macroeddies were 1 cm for maximum trees’ density and 1.5 cm for half 
of trees with stem diameter equal 1 cm. But in WAU channel the calculated sizes of 
macroeddies exceeded stem diameter several times.  

3.3 Spatial scales of microeddies 
Taylor proposed spatial scale of microeddies λT: 

in the main channel
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T
u′

≡
νλ
ε

 

where v is the kinematic viscosity, u′ the fluctuating component of longitudinal veloc-
ity, and ε [cm2/s3] is the energy dissipation rate. Taylor’s microscale depends both on 
macroscopic motion by means of fluctuating velocity and on dissipative characteris-
tics.  

Kolmogoroff proposed a scale of microeddies η depending only on dissipative and 
viscous characteristics: 

 ( )1/ 43 .≡η ν ε  

Nezu and Nakagawa (1993) suggested that macroeddies to microeddies ratios are 
functions of Reynolds number ReL defined as: 
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x
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u LRe
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ν

 

and the relations are: 

 0.750.91 ,x
L

L Re≈
η

                0.50.21 .x
L

L Re≈
λ

 

These relations determine that inertial range, which can be indicated by „−5/3” 
Kolmogoroff’s law and in which large eddies transfer turbulent energy to small ed-
dies, widen with increasing Reynolds number ReL. Relation Lx/η from Reynolds num-
ber in WAU channel is close to those proposed by Nezu and Nakagawa (1993) for 
measuring points in the main channel, whereas over floodplains a coefficient 

0.5( )x LL a Re≈η  should be smaller (Fig. 8a).  

Relation with Taylor’s microeddies xL η  over floodplains differs strongly from 
that proposed by Nezu and Nakagawa (Fig. 8b).  
 
  (a)           (b) 
 
 
 
 
 
 
 
Fig. 8. Relation between sizes of macroeddies to (a) Kolmogoroff microeddies and (b) Taylor 
microeddies ratio from Reynolds number in WAU channel. 
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4. Conclusions  

Introducing rigid, emergent vegetation causes generation of wakes behind each stem. 
Sizes of macroeddies In wakes are strongly reduced and much more uniformly distrib-
uted at verticals than those in main channels. Smaller sizes of eddies foster an increase 
of energy dissipation.  

The connection between sizes of macroeddies on floodplains and stem’s diameter 
– proposed by Nepf (1999) – does not have a universal character. Even for similar 
stems diameter and density (the case of WAU channel and BTU channel with half of 
stems) the results were completely different. It suggests that the sizes of eddies are 
controlled not only by stem’s diameter but also by other hydraulic conditions, for ex-
ample mean velocities, which differed much in both cases. 

Both relations proposed by Nezu and Nakagawa (1993) quite well describe the 
sizes of eddies in main channel, even in the presence of trees on the floodplains. This 
suggests that introducing vegetation in some parts of flow does not influence consid-
erably the structure of eddies in the main flow free of vegetation. Whereas for flow 
through vegetation other relations are needed. Such relations should be proposed bas-
ing on great number of measuring data from channels of different geometries and dif-
ferent densities of vegetation. 
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Abstract  

The paper presents an overview of results from large-scale laboratory ex-
periments on sand transport processes under sea waves. The experiments, espe-
cially those carried out in recent years in the Aberdeen Oscillatory Flow Tunnel 
at Aberdeen University and the Large Oscillating Water Tunnel at Delft Hydrau-
lics, provide insights into the underlying processes for both the ripple and sheet 
flow regimes. Insights and data from the experiments are used to inform the de-
velopment of predictive models. The paper includes an account of recent model-
ing developments, especially of semi-unsteady models used for practical applica-
tions. 

Key words: laboratory experiments, sediment transport, waves, oscillatory 
flow, ripples, sheet flow. 

1. Introduction 

Sand transport under sea waves is determined by processes occurring close to the sea-
bed, often within the bottom few centimetres where vertical gradients of flow velocity 
and sand concentration are high. The processes are complex and for this reason the 
development of predictive models relies on laboratory experiments in which detailed 
measurements can be made under well controlled flow and sand conditions. The most 
useful laboratory results have come from large experimental facilities in which the 
flow and sand conditions are the same as full-scale, i.e. flows in the facilities have a 
typical period range of 4 to 12 s and sands used in the experiments have a typical size 
range of 0.1 to 0.5 mm. The combined experimental results cover a wide range of flow 
and sand conditions and, in addition to measurements of net sand transport rates for 
given wave and sand conditions, include measurements of detailed processes that can-



 178

not yet be measured in the field. In this paper we present an overview of important 
results from these experiments, covering the ripple and sheet flow transport regimes, 
and we describe key processes which need to be accounted for in predictive models. 
An account is given of modeling approaches, especially recent development of semi-
unsteady models used for practical applications, where the development is based on 
insights and data from the large-scale laboratory experiments.  

2. Large-scale laboratory experiments 

Full-scale laboratory studies of wave-driven sand transport are carried out in large 
wave flumes and oscillatory flow tunnels. In wave flumes, free-surface waves with 
periods in the range 4 to 15 s and heights up to 2.5 m are generated in a long flume, 
traveling over a sand bed as they propagate from the wave paddle to a dissipating 
beach at the flume end. Examples of such flumes include the 230 m long Delta Flume 
of Delft Hydraulics in The Netherlands and the 300 m long GWK of the University of 
Hannover and the Technical University of Braunschweig in Germany. In flow tunnels, 
oscillatory flow is generated over a sand bed by piston motion within an enclosed 
tunnel. For the larger tunnels, the range of flow periods is typically 3 to 15 s and the 
amplitude of water motion within the tunnel test section can reach approximately 2 m. 
Oscillatory flow in the test section corresponds therefore to near-bed flow generated 
by large, non-breaking full-scale waves in a range of shoaling water depths. Examples 
of large tunnels include the Aberdeen Oscillatory Flow Tunnel (AOFT, Fig. 1) at Ab-
erdeen University (O’Donoghue and Clubb 2001) and the Large Oscillating Water 
Tunnel (LOWT) at Delft Hydraulics in the Netherlands (Ribberink and Al-Salem 
1994).  
 

Fig. 1. The Aberdeen Oscillatory Flow Tunnel (AOFT). The tunnel is 16 m long with a glass-
sided test-section that is 10 m long, 0.3 m wide and 0.75 m high.  

Schretlen and van der Werf (2006) compiled a database of results from large-scale 
laboratory experiments on sand transport processes. The database contains results 
from approximately 750 experiments, the majority conducted in the LOWT, AOFT 
and the Tokyo University water tunnel. The most detailed experiments, involving 
measurements of fundamental processes, have been carried out in the LOWT and 
AOFT. By far the majority of these experiments involved wave-only conditions with 
sinusoidal or velocity-skewed oscillatory flows. The latter are defined by 
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 1 2( ) sin cos2u t u t u t= ω − ω  (1) 

where: 2 Tω= π , T being flow period. The degree of skewness, R, is 

 max1 2

1 max min2
uu uR

u u u
+

= =
−

 (2) 

where: umax, umin = maximum positive, negative velocity (Fig. 2).  
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Fig. 2. Velocity-skewed flow used in many oscillatory flow tunnel experiments (R = 0.63 in 
example shown). Note higher ‘onshore’, positive velocity and longer-duration ‘offshore’, 
negative velocity.  

3. Experimental results 

3.1 Sand transport regime 
For a given sand size and flow period, vortex ripples form as the amplitude of wave-
induced flow velocity increases beyond the threshold velocity for sediment motion. As 
the flow amplitude increases, ripples increase in size, reach a maximum and then de-
crease in size at higher velocities. For sufficiently high velocity, the ripples are 
washed out completely and sand transport takes place within a thin, high concentration 
layer of sand over an essentially flat bed. This is the so-called sheet flow condition. 
Because the sand transport processes are very different between the ripple and sheet 
flow regimes, it is important to be able to predict which regime will occur for given 
wave and sand conditions. 

O’Donoghue et al. (2006) looked at reported bed type from a wide range of large-
scale laboratory tunnel and wave flume experiments. Classifying the beds as 3-d rip-
pled, 2-d rippled, bimodal or flat (3D, 2D, BM or FB, Fig. 3), they found that bed type 
is reasonably well characterised by mobility number based on the high velocities in 
the flow, i.e. by  
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Fig. 3. Bed type as function of mobility number for a large number of full-scale flow tunnel 
and wave flume laboratory experiments (O’Donoghue et al. 2006). Different symbols refer to 
different types of flows. 

for irregular flows, where: 101u = mean of highest one tenth velocities in the irregular 
velocity time-series; s = sediment specific gravity (2.65 for sand); g = acceleration due 
to gravity; D50 is the sediment size for which 50% of the sediment sample is finer. 
Ripple regime occurs for 190, 10/1max ≤ψψ  and sheet-flow for 300, 10/1max ≥ψψ . In 
the transition regime, 300,190 10/1max << ψψ , it seems that the bed type is sensitive to 
the detailed experimental conditions and a  variety of bedforms have been observed to 
occur. Within the ripple regime, ripples may be 2-d or 3-d and it is clear that mobility 
number does not determine which type occurs. Sand size is the primary factor deter-
mining whether ripples will be 3-d or 2-d in full-scale oscillatory flows, with 3-d rip-
ples occurring when the sand is fine (<~0.2 mm) and 2-d ripples occurring when the 
sand is relatively coarse (>~0.3 mm). 

3.2 Ripple dimensions 
The dimensions of ripples play a crucial role in determining net sand transport in the 
ripple regime. Indeed, ripple height is often an explicit parameter in wave-driven sand 
transport models. A substantial body of field- and laboratory-based research has been 
devoted to measuring ripples and developing predictive formulae for ripple dimen-
sions. Commonly-used formulae include those of Mogridge et al. (1994), Nielsen 
(1981) and Wiberg and Harris (1994). O’Donoghue et al. (2006) tested these formulae 
against a large set of full-scale tunnel and wave flume laboratory data. By focusing on 
full-scale laboratory experiments, they avoid the scale effects associated with small-
scale experiments and the uncertainties associated with bed history effects and meas-
urement difficulties in the field. Ripple dimensions predicted using Wiberg and Harris 
(1994) were found to be in poor agreement with the data; predictions based on 
Mogridge et al. (1994) and Nielsen (1981) are in better agreement, especially for rip-
ple length, but both methods over-estimate the dimensions of 3-d ripples and Nielsen 
under-stimates ripple dimensions at high mobility and in irregular flows. 



 181

O’Donoghue et al. (2006) proposed modifications to the Nielsen equations, based 
on the extensive dataset of large-scale experimental data. For ripple height, η: 

 0.42

2 3 2

0.275 0.022 and 0.55
D D Da a a
= − =

η η ηψ  (5) 

where for regular flow: 
2
od

a = , max ;=ψ ψ  for irregular flow: 
π2
rmspuT

a = , 10/1ψψ = ; 

od = flow orbital diameter for regular flow; pT = spectral peak period; rmsu = rms ve-
locity. For ripple length, λ:  

 0.21
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1.97 0.44 and 0.73
D D Da a a
= − =

λ λ λψ  (6) 

The equations apply for 190,10 10/1max ≤≤ ψψ . Figure 4 shows the comparison be-
tween the measured ripple dimensions and calculated dimensions using Nielsen and 
using equations (5) and (6). 
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Fig. 4. Predicted versus measured ripple dimensions for a wide range of full-scale laboratory 
conditions. Top panels: predictions based on Nielsen (1983). Bottom panels: predictions based 
on modified Nielsen equations as proposed by O’Donoghue et al. (2006). Different symbols 
correspond to different flow type (regular, irregular) and ripple type (2-d, 3-d). 
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Equations 5 and 6 apply to equilibrium ripple conditions. Transient ripples, i.e. 
ripples that are evolving in response to a change in wave conditions, are also of practi-
cal interest. Few detailed studies have been carried out on transient ripple behaviour. 
Smith and Sleath (2005), Davis et al. (2004) and Testik et al. (2005) studied transient 
ripples at small scale. Doucette and O’Donoghue (2006) studied transient ripples at 
large scale in the AOFT and proposed a simple exponential model for ripple evolution, 
with initial ripple height, equilibrium ripple height and mobility number as input, but 
calibration of their model is based on experiments involving one sand size only. 

3.3 Ripple regime processes 
Consider the case of ripples in regular, velocity-skewed flow, in which the onshore 
velocity maximum is greater than the offshore velocity maximum (Fig. 2). For this 
flow the ripples are asymmetric with steeper onshore (lee) than offshore (stoss) slopes. 
During onshore flow, the high onshore velocities transport a large volume of sand up 
the stoss slope and over the ripple crest. Some of this sand is entrained in the vortex 
that develops in the lee side. The vortex also entrains sand directly from the lee slope. 
The lee vortex becomes large as the flow slows, entraining more sand as it does so and 
is ejected into the main flow above the ripple at about the time of on-offshore main 
flow reversal, making a relatively large contribution to the offshore-directed sus-
pended sediment transport. Some of the sand that was carried up the stoss slope and 
over the ripple crest during onshore flow does not get carried into suspension by the 
lee side vortex. Instead it slumps down the lee side contributing to onshore shift of the 
ripple position, i.e. it contributes to onshore ripple migration. The same processes 
occur during the offshore half cycle but, because of lower offshore velocities and a 
less steep stoss slope, (1) a weaker vortex is produced resulting in less onshore-
directed suspended sediment transport and (2) much less sediment is carried up the 
steep onshore side and over the ripple crest resulting in less offshore ripple migration 
compared to onshore migration. For velocity-skewed flow, therefore, the net sus-
pended transport is offshore-directed while net ripple migration is onshore; the total 
net transport depends on the relative magnitudes of the two contributions. Which con-
tribution dominates depends on the ripple geometry, the flow and the sediment charac-
teristics. 

Many laboratory studies have been carried out to obtain quantitative measures of 
the flow and suspended sand dynamics, but these have generally been limited either by 
the capability of the available instrumentation or by the experiment scale or setup. 
Velocity measurements over fixed rippled beds have been conducted by Sato (1987), 
Earnshaw and Greated (1998), Doering and Baryla (2002) and Marin (2004), while 
Ahmed and Sato (2001) measured velocities over mobile sand ripples but their ripples 
were small. Sand concentrations have been measured by a number of researchers for 
full-scale laboratory conditions – Clubb (2001), Villard et al. (2000), Vincent and 
Hanes (2002), Thorne et al. (2003) – but no corresponding velocity measurements 
were made. van der Werf et al. (2007a) recently conducted experiments measuring the 
detailed time-varying velocity and suspended sand concentration fields over full-scale, 
mobile ripples in the AOFT, using particle image velocimetry (PIV) for the velocities 
and an acoustic backscatter system (ABS) for the concentrations. Their measurements 
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show the detailed dynamics of the vortices, the suspended sand and the sand flux (ex-
ample measurements for the velocity field are shown in Fig. 5), all of which are domi-
nated by the generation and ejection of vortices from the ripple sides at around times 
of flow reversal.  
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Fig. 5. Velocity field over ripple at 8 phases of a velocity-skewed flow (van der Werf et al. 
2007a). Top panel shows free-stream velocity and the phases for the velocity field plots.  

The time-averaged flows measured by van der Werf et al. (2007a) show a net off-
shore-directed current (streaming) within about one ripple height above the ripple 
crests. The streaming is generated by asymmetry in vortex generation from the ripple 
sides for the velocity-skewed flows, and increases as the degree of skewness increases. 
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The magnitude of the streaming is low (less than 10% of maximum free-stream veloc-
ity for flows with high skewness) but is important because it contributes a “current-
related” flux to the net transport: for the van der Werf et al. experiment, the current-
related flux contributes ~30% to the total suspended net transport.  

Ribberink et al. (submitted) argue that the relative dominance of offshore-directed 
suspended transport and onshore-directed bedload transport (ripple migration) for 
velocity-skewed flow depends on a ripple regime “phase lag parameter”, pr, given by 

 r
s

p
w

=
ηω  (7) 

where: ws = sand fall velocity. The greater the value of pr (higher ripples/finer 
sand/shorter flow period), the stronger the phase lag effect and, for velocity-skewed 
flow, the greater the tendency towards suspension-dominated, offshore-directed net 
sand transport. Based on results from experiments conducted in the AOFT and 
LOWT, they show that net transport is bedload-dominated, onshore-directed when 
pr ≥ 0.8 and suspension-dominated, offshore-directed for pr < 0.8. 
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Fig. 6. CCM-measured time-series of sheet flow concentration at z = −4 mm to z = 2 mm for 
0.27 mm sand in velocity-skewed flow (top left) (O’Donoghue and Wright, (2004a). 

3.4 Sheet flow processes 
Sheet flow conditions prevail when the wave-generated bed shear stress is high and 
the sand transport takes place within a “sheet flow layer” consisting of a water-
sediment mix moving over a flat, ripple-free bed. Detailed measurements of velocities 
and concentrations within the sheet flow layer provide insights and data for the devel-
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opment of models. The most detailed measurements have come from experiments 
carried out in recent years in the AOFT and LOWT, involving measurements of sheet 
flow concentrations and, to a lesser degree, sheet flow velocities. Figure 6 shows ex-
ample sheet flow concentration measurements made by O’Donoghue and Wright 
(2004a) in the AOFT using concentration conductivity probes (CCMs) for a 0.27 mm 
sand in a velocity-skewed flow with T = 7 s and umax = 1.5 m/s. Time-series of concen-
tration are shown for z positions ranging 24 ≤≤− z mm, where z = 0 corresponds to 
the no-flow bed level. 

Two regions can be identified within the sheet flow layer: (1) the “inner” or “pick-
up” layer where concentration decreases at times of high velocity as sand is picked up 
and increases at times of low velocity as sand settles back to the bed; (2) the upper 
sheet flow layer where concentration increases around times of high velocity as sand 
is carried up from the pick-up layer. At some z between the pick-up layer and the up-
per sheet flow layer (between −1 and +1 mm for the O’Donoghue and Wright experi-
ments) the concentration stays reasonably constant with time.  
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Fig. 7. Example CCM-measured concentration profiles for 4 sands at time of maximum 
onshore (positive) velocity of a velocity-skewed flow (O’Donoghue & Wright, 2004a). Circles 
are data, solid line is fit of equation (8) to the data. Cb is concentration in undisturbed bed. 

Example instantaneous concentration profiles from O’Donoghue and Wright 
(2004a) are shown in Fig. 7. They found that the profile within the sheet flow layer is 
well characterised by  
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where: c = concentration normalised by the undisturbed bed concentration; 
0c = normalized concentration at z = 0; eδ = instantaneous erosion depth; 1.5.≅α  If all 

of the mobilised sand is contained in the sheet flow layer (which is close to true for 
relatively coarse sand but not so for fine sand) then 0c  in Eq. (8) is determined by the 
value of eδ  because the integrated concentration profile must then equal the eroded 
volume of sediment. eδ  itself depends on the flow and sand conditions. For relatively 
coarse sands, the erosion depth behaves in a near quasi-steady way, i.e. it is deter-
mined by the instantaneous bed shear stress: 
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where ( )tθ  is the instantaneous Shields parameter: 
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with: τ = bed shear stress; s = sand specific gravity (~2.65). However, for relatively 
fine sand with low settling velocity, sand that is entrained by high velocities is slow to 
settle back to the bed as the velocity decreases to zero and a proportion of the sand 
remains in suspension for transport in the opposite direction when the flow reverses. 
In such cases, δe depends on flow history as well as θ (t). This unsteady behaviour is 
seen in the case of fine sand in the example erosion depth and sheet flow layer thick-
ness time-series shown in Fig. 8. 

Dohmen-Janssen et al. (2001) argue that the degree of unsteadiness depends on the 
sand settling velocity, the flow period and the sheet flow layer thickness: they charac-
terise the degree of unsteadiness by (2π times) the ratio of the time taken for a sand 
grain to settle through the sheet flow layer to the flow period, i.e., 

 s
s
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where: δs is the thickness of the sheet flow layer defined as the distance from the 
(maximum) erosion depth to the elevation where the volumetric concentration is 8%. 
Unsteady effects become increasingly important for increasing ps (finer sand, shorter 
flow periods, thicker sheet flow layer). Ribberink et al. (submitted) show that for 
ps > 0.3 the degree of unsteadiness is such that for velocity-skewed flows the net sand 
transport direction is negative, i.e. opposite to the direction of the higher velocities. 

Velocity measurements within the sheet flow layer are difficult because of the 
presence of high sand concentrations. O’Donoghue and Wright (2004b) used an ultra-
sonic velocity profiler (UVP) to measure sheet flow velocities and report measure-
ments reaching quite far into the sheet flow layer (as far as the z = 0 level). Combining 
their velocity and concentration measurements, they obtained measures of the vertical 
profiles of the time-varying sand flux. For coarse sand in velocity-skewed flow (Fig. 
2), unsteady effects are negligible, the bed responds in a quasi-steady way, sand flux is 
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confined to a narrow layer close to z = 0 and the net sand transport is positive. In con-
trast, for fine sand the bed behaves in an unsteady manner, the sand flux extends rela-
tively high above the bed and net transport in the sheet flow layer is strongly negative 
in velocity-skewed flow. 

 

 
Fig. 8. Example time-series of erosion depth δe and sheet flow layer thickness δs for fine (0.13 
mm) and medium (0.27 mm) sands in two (T = 5 s and T = 7 s) velocity skewed flows 
(O’Donoghue and Wright 2004a). Broken thin line: velocity. Broken thick line: sheet flow 
layer thickness. Solid thin line: top of sheet flow layer. Thick solid line: erosion depth. Shaded 
area: the sheet flow layer. 

As for flow over ripples, the time-averaged velocity profiles for velocity-skewed 
flows show an offshore-directed near-bed streaming with magnitude of order 10% of 
maximum free-stream velocity. For this flat-bed case the streaming is caused by the 
asymmetry in the turbulent stresses between the two half-cycles of the flow. As for 
rippled beds, associated with the streaming is a current-related net sand flux, but in the 
case of sheet flow the current-related flux can be greater than the wave-related flux 
(Ribberink et al., submitted). This means that differences between near-bed streaming 
in tunnels and near-bed streaming under real waves could be very significant. Indeed, 
Dohmen-Janssen and Hanes (2002) concluded, from a set of experiments conducted in 
the full-scale GWK wave flume in Hannover, that sheet flow net sand transport rates 
under real waves may be up to 2.5 times greater than the transport rates in “equiva-
lent” tunnel oscillatory flow and they attribute the difference to differences in the 
near-bed streaming. 
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3.5 Net sand transport 
Of the approximately 750 experiments listed by Schretlen and van der Werf (2006), 
almost 500 involved measurement of net sand transport rate. A subset of the results is 
presented in Fig. 9. It shows measured net sand transport rate, qS, plotted against mo-
bility number, ψ, for AOFT and LOWT experiments with velocity-skewed regular 
oscillatory flow. The data cover a sediment size range of 0.13-0.46 mm and a flow 
period range of 3.1 to 12.5 s. Three groups of results are shown. The first group com-
prises results from the ripple regime (circles), for which, with a few exceptions, the 
net sediment transport is in the offshore (negative) direction. For these cases, the 
phase lag parameter is relatively high, the transport is suspension-dominated and the 
flow asymmetry leads to the offshore net sand transport. The second group comprises 
results for medium and coarse sands (D50 > 0.2 mm) in the sheet flow regime (trian-
gles). Net transport for this group is onshore (positive) and generally increasing as ψ 
increases. These results correspond to conditions where the sheet flow phase lag pa-
rameter ps < 0.3 and the bed response and sand flux behave in a quasi-steady manner 
with the instantaneous flux being a function of the instantaneous bed shear stress. The 
third group comprises results corresponding to fine sands (D50 ≤ 0.2 mm) in the sheet 
flow regime (squares). These results show a positive onshore net transport at first but 
then an increasing negative net transport as ψ increases. For these cases of fine sand, 
unsteady effects become increasingly dominant with increasing ψ. The greater the 
unsteady effect, the more sand remains in suspension at the end of the high velocity 
onshore half-cycle, which is then available for transport in the offshore direction dur-
ing the lower velocity offshore half-cycle. 
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Fig. 9. Measured net transport rates from LOWT and AOFT experiments with regular, 
velocity-skewed oscillatory flows. 
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4. Modelling wave-driven sand transport 

Models for wave-driven sand transport range from relatively simple “practical” mod-
els based on empirical formulae to “process” models which aim to explicitly model 
the detailed intra-wave processes.  The full-scale laboratory data previously discussed 
are used to test and develop both types of model. 

4.1 Process Models 
Process models vary widely in their degree of complexity. For sheet flow, process 
models range from 1DV advection-diffusion boundary layer models (e.g. Ribberink 
and Al-Salem 1995, Davies and Li 1997, Dohmen-Janssen et al. 2001), which solve 
the momentum equation for the flow and the diffusion equation for the suspended 
sediment concentration, to more complex two-phase models which model the full 
diffusive and collisional processes within the sheet flow layer (e.g. Dong and Zhang 
1999, Hsu et al. 2004, Liu and Sato 2006). The advection-diffusion models use an 
empirical reference concentration formula near the bed and do not model the sheet 
flow layer. A practical compromise between the advection-diffusion and the two-
phase models is to couple a simple model of the essential sheet flow processes with an 
advection-diffusion model higher up (e.g. Kaczmarek and Ostrowski 2002, Malarkey 
et al. 2003). 

For the ripple regime, a 2DV modeling approach is needed to properly capture the 
vortex shedding process. Ripple regime process models include RANS models with 
various turbulence closure schemes (e.g. Eidsvik 2006) and discrete vortex models 
(e.g. Malarkey and Davies 2002). Since 2DV models are too complex for practical 
application, Davies and Thorne (2005) proposed a simple 1DV two-layer model, in 
which vortex shedding in the lower layer is represented by a time-varying eddy vis-
cosity, and a standard turbulence-closure formulation is used for the upper layer. As 
for the sheet flow RANS models, the ripple models require an empirical reference 
concentration or sand pickup function.  

4.2 Practical Models 
Formula-based models are used for practical applications of sand transport calcula-
tions in the coastal zone. There are two main classes of model: (1) quasi-steady mod-
els in which the instantaneous transport rate is directly related to some power of the 
instantaneous bed shear stress or near bed flow velocity (e.g. Bailard 1981, van Rijn 
1993, Ribberink 1998), and (2) semi-unsteady models which account for unsteady 
(phase lag) effects of the kind described above without modeling the detailed time-
dependent horizontal velocity and concentration vertical profiles (e.g. Dibajnia and 
Watanabe 1996, Dohmen-Janssen et al. 2002, Camenen and Larson 2006, da Silva et 
al. 2006, van der Werf et al. 2007b).  

Considering the quasi-steady model of form 

 ( )( ) ( )
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where 
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net transport for a velocity-skewed oscillatory flow (equation 1) is  
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degree of skewness  R.  For  m = 11,  n = 1.65  (as per Ribberink 1998)  and skewness 
R = 0.63, 65.1

212.2 urmsN θφ = . Quasi-steady models always predict a net onshore (posi-
tive) transport for velocity-skewed flow, increasing with increasing Shields parameter. 
Predictions agree reasonably well with measured transport rates for relatively coarse 
sand in sheet flow conditions (low ps), but, because of unsteady phase lag effects, pre-
dictions are poor for ripple regime and sheet flow regime with relatively fine sand. 

A number of semi-unsteady models have been proposed in recent years in an at-
tempt to account for unsteady effects. Dohmen-Janssen et al. (2002) applied a phase 
lag correction factor (based on the lag parameter given by equation 11) to the quasi-
steady model of Ribberink (1998). A number of other models are based on the “half-
cycle approach” proposed by Dibajnia and Watanabe (1992, 1996, 1998). In this ap-
proach the quantity of sand transported in the onshore direction comprises (1) sand 
that is entrained and transported during the onshore half-cycle (Ωc, “c” for crest) and 
(2) sand that was entrained during the preceding offshore half-cycle but did not settle 
back to the bed by the end of the offshore half-cycle ( tΩ′ , “t” for trough). Similarly, 
sand transported in the offshore direction comprises Ωt and cΩ′ . The concept has been 
applied for sheet flow conditions by Dibajnia and Watanabe (1996), Camenen and 
Larson (2006) and da Silva et al. (2006), and for ripple regime by van der Werf et al. 
(2006). A unified model, i.e. covering both ripple and sheet flow regimes, waves and 
waves plus currents, has recently been proposed by van der Werf et al. (2007b), based 
on the dataset of large-scale laboratory data compiled by Schretlen and van der Werf 
(2006). 

In van der Werf et al. (2007b), the net sand transport is 

 ( ) ( )c t
N c t t c

mT mT
T T

′ ′= Ω +Ω − Ω +Ωφ  (15) 

where: T = wave period; Tc = wave crest duration (duration of onshore, positive veloc-
ity); Tt = wave trough duration (duration of offshore, negative velocity); m = calibra-
tion factor. The first term on the right hand side of Eq. (15) is the onshore transport 
with two contributions ( )c t′Ω +Ω  and the second term is the offshore transport with 
two contributions ( )t c′Ω +Ω . The magnitudes of the contributions within each half-
cycle depend on the excess shear stress ( )cr−θ θ  and the value of the phase lag pa-
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rameter p for the half-cycle, where for rippled bed r r
i s

p p
T w

= =
ηα  (Eq. 7) and for 

sheet flow 
si

s
ss wT

pp
δ

α==  (Eq. 11), where i = c or t for crest or trough respectively 

and αr, αs are calibration factors. Sub-models for bed shear stress, ripple size, sheet 
flow layer thickness are based on results from the large-scale experiments as described 
earlier in this paper. 

Figure 10 shows predicted-versus-measured net sand transport rates using the van 
der Werf et al. (2007b) model. The model does better in the sheet flow regime than in 
the ripple regime. In sheet flow, predicted transport rates are generally within a factor 
two of measured transport rates and the model captures unsteady effects quite well, as 
evidenced by the reasonable agreement between the measured and predicted negative 
net transport rates. Agreement is not as good in the ripple regime: some very high 
measured negative transport rates are underpredicted and a number of cases of meas-
ured onshore transport are predicted as being offshore, although the transport magni-
tudes in the latter cases are mostly small. Good agreement in the ripple regime is more 
difficult to achieve because of limited predictability of ripple height (the model gives 
better agreement if measured ripple heights are used rather than predicted ripple 
heights) and because sand transport rates are often very low in the ripple regime. 
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Fig. 10. Predicted-versus-measured net sand transport rates using van der Werf (2007b). Solid 
line is line of perfect agreement; dashed lines are factor two of measured. 
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5. Conclusions 

Large-scale laboratory experiments have produced valuable data and insights used to 
develop process and practical models for sand transport under waves. The majority of 
the experiments have been conducted in oscillatory flow tunnels and mostly with ve-
locity-skewed flows. For this reason knowledge of some fundamental questions is still 
somewhat lacking. Two questions in particular need further study. (1) The first con-
cerns the difference between oscillatory flow in a tunnel and near-bed flow under real 
waves. Phase differences in wave orbital motion, vertical orbital motions, wave-
induced boundary layer streaming (Longuet-Higgins 1953) and undertow at higher 
levels above the bed are not reproduced in flow tunnels. Of these, the wave-induced 
streaming is likely to be of most significance because although the magnitude of 
streaming is small compared to the orbital velocities, the streaming-related sand flux 
can be high, especially for sheet flow. (2) The second question concerns the effects of 
flow acceleration. Non-zero net transport rates have been measured in experiments 
with acceleration-skewed flow (sawtooth-type velocity time-series), with higher trans-
port in the direction of higher flow acceleration (e.g. Watanabe and Sato 2004) caused 
by enhanced bed shear stress (Nielsen 2002). Models in which the bed shear stress is a 
function of free-stream velocity cannot account for the acceleration effect. More de-
tailed large-scale experimental data are needed to improve understanding of accelera-
tion effects and to test recent suggestions (e.g. da Silva et al. 2006, Rodriguez and 
Madsen 2007) for incorporating acceleration effects in practical models. Both these 
issues − real wave and acceleration effects − are being studied as part of a current UK-
Dutch collaborative research project (SANTOSS). 
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Abstract  

A fluorescent dye-tracer study was performed under steady-state flow condi-
tions on a 16.8 km reach of an anastomosing section of the Upper Narew River 
in order to better understand the solute-transport processes in a wetland system. 
The procedure consisted of the instantaneous injection of a known quantity of 
the solution of Rhodamine WT into a stream and observation of the variation in 
concentration of the tracer as it moved downstream. The paper describes the sen-
sitivity analysis of a transient storage model applied to the experimental data. 
Special emphasis is given to ecologically related measures, such as estimates of 
the peak of tracer concentrations at cross-sections along the river and the length 
of time when the concentrations exceed specified threshold.  

1. Introduction 

The present study has been motivated by the need for estimating the risk involved with 
the spread of pollutants in a unique river system situated within the Narew National 
Park. 

The advection-dispersion model with dead zones that can adequately describe the 
process of transport of pollutants in a single-channel river with multiple storages 
(Bencala and Walters 1983, Rowiński et al. 2003a, b) was applied to the data from a 
dye-tracer experiment performed on a 16.8 km reach of an anastomosing section of the 
Upper Narew River. 

The chosen model is deterministic, i.e., it assumes that observations are without 
errors and the model structure perfectly describes the process of transport. In order to 
take into account the model and observation errors, an uncertainty analysis is required. 
Following the discussion presented by Romanowicz and Macdonald (2005), the first 
step of the uncertainty analysis consists of a sensitivity analysis of the model output 
followed by an estimation of parameter uncertainty conditioned on the available ob-
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servations. The uncertainty of model predictions is estimated on the basis of paramet-
ric conditional uncertainty. In this paper we discuss the first step of an uncertainty 
analysis which is the application of the Global Sensitivity Analysis (GSA), introduced 
by Archer et al. (1997). This concerns the relationship between the parameters and 
supports the choice of parameters which contribute the most to the model predictive 
uncertainty. The influence of different model parameters on ecologically-related 
measures such as maximum concentrations at cross-sections along the river and time 
periods with concentration exceeding the ecologically safe threshold is also investi-
gated. 

2. Distributed transient storage model 

The present paper is based on a tracer test performed on a unique multi-channel sys-
tem on the Narew River reach within the Narew National Park in northeast Poland 
(Fig. 1). A detailed description of the experiment is presented in Rowiński (2003a, b). 
The One-dimensional Transport with Inflow and Storage model (OTIS) introduced by 
Bencala and Walters (1983) was applied here. The OTIS model is formed by writing 
mass balance equations for two conceptual areas, the stream channel and the storage 
zone. The stream channel is defined as that portion of the stream in which advection 
and dispersion are the dominant transport mechanisms. The storage zone is defined as 
the portion  of the stream  that contributes  to transient storage, i.e. stagnant pockets of  
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Fig. 1. Map of the experimental reach of Upper Narew River. 
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water and porous areas of the streambed. Water in the storage zone is considered im-
mobile relative to water in the stream channel. The exchange of solute mass between 
the stream channel and the storage zone is modelled as a first-order mass transfer 
process. 

Since it is not possible to estimate solute transport parameters reliably from hy-
draulic variables and channel characteristics, application of the transient storage model 
requires the estimation of model parameters for each particular river reach (2N-3N, 
3N-5N, 5N-6N and 6N-7N; Fig. 1) based on data from tracer experiment and meas-
urements of lateral inflow and discharge. Estimation of model parameters, namely the 
coefficient of longitudinal dispersion D, the main channel cross-sectional area A, the 
storage zone cross-sectional area AS, and the exchange coefficient α was performed by 
minimizing the residuals between the simulated and observed concentrations. A gen-
eral least square objective function and Nealder-Mead minimization algorithm was 
used. 

The results of the estimation procedure are given in Table 1. They are similar to 
those obtained by Rowiński et al. (2004) for a similar model but different numerical 
scheme. 

Table 1 

Parameters of transient storage models 

Sections 
Parameters 

2N-3N 3N-5N 5N-6N 6N-7N 
D [m2/s] 10.31 1.65 6.96 1.59 
A [m2] 9.71 34.70 11.29 25.02 
AS [m2] 6.13 22.62 4.46 7.05 
α [1/s] 0.482* 10-5 1.7863* 10-5 1.2913* 10-5 6.5701* 10-5 

 

Note that values of the parameters differ from reach to reach. These big differ-
ences in parameter values result from the high variability of geometric and hydraulic 
conditions between the reaches.  

The ordinary least squares criterion is used to ensure that the model reproduces 
adequately the observed transport processes. However, from the point of view of the 
ecology of the wetlands, for each cross section i, the estimation of maximum concen-
tration of the tracer Cmax,j = max (Ci(t)) and time periods Tthr,i(Cthr), during which a safe 
threshold level of concentration Cthr is exceeded, are very important.  

3. Sensitivity analysis  

Generally, the sensitivity analysis consists of an evaluation of the relation between 
input and output variations. In this assessment we have used the variance based Global 
Sensitivity Analysis approach introduced by Archer et al. (1997). According to this 
method, the whole set of model parameters acquired from the Monte Carlo sampling is 
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analysed simultaneously and there is no restriction on the monotonicity or additivity of 
the model. Therefore this approach is suitable for over- parameterized, nonlinear, spa-
tially distributed models. 

According to this methodology, the variance of an output Y depending on the vari-
able input set Xi, is based on estimating the fractional contribution of each input factor 
to the variance of the model output. In order to calculate the sensitivity indices for 
each factor, the total variance V of the model output is decomposed as: 

 12i ij ijm k
i i j i j m

V V V V V
< < <

= + + + +∑ ∑ ∑ ……  (1) 

where 
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In above formulas, Y denotes the output variable, Xi denotes an input factor, 
)( *

ii xXYE =  denotes the expectation of Y conditional on Xi having fixed value xi 

and others are normally varying. The decomposition is unique if the Xi are independ-
ent from each other.  

The direct sensitivity of output Y to the input Xi, represents the Sobol first order 
sensitivity index Si which takes the following form: 
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where *( ( ( ))i iV E V Y X x=  is the variance of estimated Y output where Xi parameters 
are fully fixed and others are normally varying. First order sensitivity index represents 
the average output variance reduction that can be achieved when Xi becomes fully 
known and is fixed. 

The model sensitivity to the interactions among subsets of factors, the so-called 
higher order effects, are investigated with the use of the Sobol total sensitivity indices: 
STi. They represent the whole range of interactions which involve Xi and are defined 
as: 
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where *( ( ))i iE V Y X x− −=  is estimated variance in case when all parameters are fixed, 
except Xi which is varying. 

The use of total sensitivity indices is advantageous, because there is no need for 
the evaluation of a single indicator for every possible parameter combination. On the 
basis of these two indices, Si and STi, it is possible to trace the significance of each 
model parameter in an efficient way.  
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4. Discussion 

Sobol first order and Sobol total order sensitivity indices for the parameters of the 
OTIS model predictions are shown in Fig. 2. The order of parameters for any particu-
lar river reach is the same. The main channel cross-sectional area A has the largest 
influence on the output. The exchange coefficient (α) and the storage zone area (AS) 
have smaller values of indices indicating smaller influence on the model output and 
smaller identifiability of these parameters. The lowest values of Sobol first and total 
sensitivity indices are obtained for dispersion coefficient (D).  
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Fig. 2. Sobol first and total order sensitivity indices for OTIS model predictions for all cross-
sections. Circles, squares, triangles and diamonds denote dispersion coefficient D, area of stor-
age zone AS, exchange coefficient α, and area of the main channel A, respectively.  

Table 2 

Results of the GSA sensitivity analysis on maximum concentration 

Si STi River reach 
D AS α A D AS α A 

N2-N3 0.028 0.072 0.164 0.637 0.049 0.110 0.208 0.633 
N3-N5 0.028 0.068 0.143 0.640 0.040 0.108 0.206 0.645 
N5-N6 0.026 0.122 0.186 0.615 0.039 0.148 0.222 0.590 
N6-N7 0.047 0.130 0.173 0.578 0.053 0.171 0.211 0.565 

 
The sensitivity indices of the first ecologically related measure, maximum concen-

tration of the tracer, on model parameter are shown in Table 2. The values of sensitiv-
ity indices are similar for all four analyzed river reaches and they resemble the results 
obtained for model predictions. There is a relationship between the area of the main 
channel and the values of maximum concentration. In the case of the exchange coeffi-
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cient and the storage zone area this relationship is weaker and the dispersion coeffi-
cient shows the smallest influence on maximum concentrations. 

Results for the “over the threshold” periods depend on the threshold value. Figure 
3 presents the first and total order sensitivity indices of the OTIS parameter variations 
as a function of the threshold value. It is interesting to note that the sensitivity of the 
“over the threshold” period for small and large threshold values shows different be-
haviour, shown in Fig. 3 as multiple minima/maxima. This behaviour is the result of 
two different processes. One is the direct influence of parameters on different parts of 
the dynamic response of the system. The other is the dependence of the maximum 
peak concentration at each cross-section on the parameter values, i.e., for high thresh-
old values, the number of realisations with a non-zero “over the threshold” period 
decreases.  
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Fig. 3. Sensitivity indices for “over the threshold” period to OTIS parameters variations as a 
function of the threshold value. Blue and red lines denote Sobol first and total order sensitivity 
indices, respectively. 

In order to explain this behaviour, we shall analyse the projections of the response 
surface for the parameter AS for four different values of the threshold, 10, 60, 100 and 
200 ppb (Fig. 4a-d). For small threshold values (Fig. 4a) the storage zone area influ-
ences the number of time periods over the threshold due to its influence on the tails of 
the dynamic response of the system (Wagener et al. 2002). This influence decreases 
with an increase of the threshold value, resulting in the minimum index value at the 
threshold of about 60 ppb (Fig. 4b). Above this threshold, due to the dependence of 
maximum concentration on the storage zone area AS for higher values of this parame-
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ter, there is an increasing number of realizations for which the threshold concentration 
of 100 ppb is not reached (Fig. 4c).  
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Fig. 4. Sensitivity analyses for the “over the threshold” period for the 6N-7N river reach. Dot-
ted plots a, b, c and d show the projection of the response surface (number of time steps with 
concentration over the threshold) into the parameter AS dimension for four threshold values: 
10, 60, 100, and 200 ppb, respectively. 
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Fig. 5. Sensitivity analyses for the “over the threshold” period for the 6N-7N river reach. Dot-
ted plots a, b, c and d show the projection of the response surface (number of time steps with 
concentration over the threshold) into the parameter A dimension for four threshold values: 10, 
60, 100, and 200 ppb, respectively. 
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As a result, the number of realizations with decreasing or equal to zero “over the 
threshold” periods increases, giving a rise of the sensitivity index for this parameter. 
With further increase of the threshold value, the number of realizations with “over the 
threshold” period stabilizes, as there are zero-length “over the threshold” periods over 
the whole parameter range (Fig. 4d). It is interesting to note nearly opposite relation-
ship for parameter A  (main channel cross-sectional area),  shown in detail in Figs. 5 
a-d for threshold values equal to 10, 60, 100, and 200 ppb, respectively. This parame-
ter influences higher parts of the dynamic response of the system giving a rise of the 
sensitivity index with an increase of the threshold value (Fig. 5a and b). With further 
increase of the threshold values, zero periods appear that counteract the increase of the 
number of over the threshold periods, thus decreasing the sensitivity index (Fig. 5c). 
This influence is limited to the higher values of that parameter, which results in subse-
quent rise  of the sensitivity index  for values  of the threshold higher  than  100 ppb 
(Fig. 5d).  

5. Conclusions 

The results of tracer experiments can give an insight into the processes of transport of 
pollutants in the complex River Narew system. However, the uncertainty of tracer 
observations and model parameters due to the unavoidable simplifications in process 
description should be taken into account. In this paper we show that deterministic 
model predictions span the whole range of values and will differ depending on the 
model output. We applied sensitivity analysis to define the most sensitive parameters 
and their ranges. Apart from the time trajectory, maximum concentrations and the 
length of time period with concentrations exceeding the specified threshold were also 
used as ecologically related model outputs. In particular, the sensitivity analysis of the 
latter shows an interesting relationship for threshold values below 200 ppb. The results 
of this analysis can be used to specify of the best parameter ranges and their prior dis-
tributions for the evaluation of predictive model uncertainty using the Generalised 
Likelihood Uncertainty Analysis (GLUE) of Beven and Binley (1992). 
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Abstract  

This paper presents a macroscopic description of turbulent open channel 
flow above and within a rough permeable bed. The flow domain consists of two 
regions: the stream region above the bed, which contains only water, and a po-
rous medium region within the bed, which contains both water and grains. The 
two regions are separated by a macroscopic boundary. The macroscopic descrip-
tion contains the double-averaged Navier-Stokes equations valid within the 
stream and within the porous medium, as well as the conditions for macroscopic 
flow variables at the interface.  

1. Introduction 

Turbulent streams often have very permeable gravel beds with substantial pore space, 
which allows extensive mass and momentum exchange between the stream and the 
water flowing within the bed. Because of the high permeability it is possible to have 
turbulent, therefore highly time-dependent flow both above and within the bed. Fur-
thermore, at the scale of a fluid particle (microscopic scale) flow is always spatially 
heterogeneous, both within and above the wall. Within the wall the flow domain is 
also discontinuous. It is impossible, or at least impractical to use instantaneous and 
microscopic flow variables to investigate flows above and within rough permeable 
beds.  

The difficulty is overcome by averaging. Time variability is addressed by using 
classical time/ensemble averaging, while spatial heterogeneity is smoothed by spatial 
averaging, which provides a continuous flow description at the scale of averaging 
volume (macroscopic scale). The theory of spatial averaging was first developed for 
multi-phase porous media flows (Grey and Lee 1977, Whitaker 1999) with the as-
sumption of laminar flow, so that time averaging was not necessary. Later on it was 
recognised that spatial averaging can be applied to time/ensemble averaged equations 
describing turbulent flows (Wilson and Show 1977, Gimenez-Curto and Corniero Lera 
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1996, Smith and McLean 1977, Nikora et al. 2001). This formed the basis for the 
double-averaging methodology, which provides macroscopic description of the mean 
flow by averaging fundamental equations twice, once in time and once in space. Be-
cause of its ability to deal with the spatial flow heterogeneity the double-averaging 
methodology is very convenient for investing turbulent flows above and within gravel 
beds. 

Figure 1 shows the definition sketch for the flow above and within a rigid gravel 
bed. Gravel is assumed impermeable, with zero fluid velocity at the surface of the 
individual grains. A surface connecting the crests of the tallest bed roughness elements 
is called bed surface and for simplicity assumed flat. A coordinate that measures the 
level relative to the bed surface is denoted with z. The region between the bed surface 
and the free surface ( 0 z H≤ ≤ ) is called the stream. The flow region below the bed 
surface is called the porous medium and may have a finite or an infinite depth.  

 
Fig. 1. Definition sketch for flow above and within a porous bed: porosity profile; flow layers 
within the bed; averaging volumes. 

In order to provide physically meaningful averages the size of the volume used for 
spatial averaging has to satisfy the requirements for the Representative Elementary 
Volume (Bear 1979): it has to be large enough to capture statistically significant sam-
ple of the flow domain and hence produce stable results of averaging and at the same 
time small enough to avoid smoothing macroscopic flow heterogeneity. Velocity gra-
dients normal to the bed surface within the stream are high, so the appropriate height 
of the averaging volume which preserves them is very small, i.e. the averaging volume 
should be a thin disc of height Δ  and area 2∝  (Fig. 1). Deep within the porous bed 
the known flow parameter is the bulk resistance so the appropriate averaging volume 
is thicker, 3∝ . Within the porous bed, but close to the bed surface, the height of the 
averaging volume may gradually vary between Δ  and .  
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Above the bed the averaging volume contains only fluid, whereas within the bed it 
contains both fluid and the solid matrix. The ratio of the volume of fluid within an 
averaging volume and the averaging volume itself is porosity, φ. Above the bed sur-
face 0 z H< ≤  porosity is one.  It starts  to decrease  just  below  the bed  surface, at z 
= 0−, and reaches a stable value at a certain depth δ  (Fig. 1). The space between the 
bed surface and the position of stable porosity, −δ < z < 0, will be called the ‘interface 
region’. It is important to distinguish between this region and the layer influenced by 
the free-fluid flow, which is usually called the ‘transition layer’ and in some papers 
also the ‘Brinkman layer’. While the interface region refers to the space necessary for 
the solid matrix to achieve the geometrical properties of the porous medium, the tran-
sition layer is associated with the depth of penetration of turbulence from the free-
fluid region. The interface region may also be hence defined by the geometry of the 
pore space while the transition layer is related to flow conditions. 

Numerous researchers (e.g. Beavers and Joseph 1967, Shaffman 1971, Sahraoui 
and Kaviany 1992, Ochoa-Tapia and Whitaker 1995) have studied the interface be-
tween laminar flow above and inside a permeable wall. The conditions at the interface 
between a turbulent boundary layer and a porous medium have received much less 
attention. The exception is the work of de Lemos and Silva (Silva and de Lemos 2003, 
de Lemos and Silva 2006 etc.) who proposed, but without derivation, to extend the 
stress condition of Ochoa-Tapia and Whitaker 1995 by adding turbulent viscosity. 

This paper presents the macroscopic description of turbulent open channel flow 
above and within a very permeable gravel bed. The description consists of the double-
averaged Navier-Stokes equations applicable to both the stream region, 0 z H< ≤ , 
and the porous bed below the interface region, −∞ < z <−δ, combined with the condi-
tions for macroscopic flow variables across the interface region, −δ < z < 0. These 
conditions can be used directly, or assigned to a nominal interface between the stream 
and the porous bed situated somewhere within the interface region.  

2. Double-averaged equations  

Time averaging is performed over a time interval sufficiently long to produce stable 
statistics for all flow quantities. Spatial averaging is performed over representative 
volumes described above. Appendix A contains the definition of all averaging opera-
tors and the list of averaging rules and theorems.  

The double-averaged balance equations are derived by averaging the equations 
valid for the motion of a microscopic fluid particle twice, once in time and once in 
space. Spatial and temporal averages are denoted with square brackets and straight 
over-bar, respectively, while deviations from the spatial and temporal average are 
denoted with the wavy over-bar and prime, respectively.  

The double-averaged continuity equation for incompressible fluid is obtained from 
the microscopic continuity equation by applying spatial-averaging theorem (A.18) 

 0 1,2,3.i

i

u
i

x
φ∂

= =
∂

 (1) 
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The double-averaged momentum balance equation is obtained from the Reynolds-
averaged Navier-Stokes equation (B.1) with the use of the theorems (A.16), (A.18) 
and the rules (A.9) and (A.10), as shown in Appendix B. The result is 

 , , 1,2,3,j j i ij
j j

i j i

u u u p
g f i j

t x x x

∂ ∂ ∂∂
+ = − + − =

∂ ∂ ∂ ∂

φ φ φτφ
ρ ρ ρφ  (2) 

where t = time, xi = Cartesian coordinates, uj = velocity component in the j-th direc-
tion, gj = gravity acceleration in the j-th direction, p = pressure, ρ = density, and Ein-
stein summation convention applies. The fluid stress on the right hand side was ob-
tained by grouping macroscopic viscous stress and the two additional terms that arise 
from the two averaging steps:  

 ' ' , , 1, 2,3,j
ij i j i j

i

u
u u u u i j

x
∂

= − − =
∂

τ μ ρ ρ  (3) 

where μ = viscosity. The last term on the right hand side of (2) contains the total drag 
force jf  exerted by the fluid on the roughness, per unit averaging volume. It is equal: 

 1 1 , , 1,2,3,jsf sf
j j i

iS S

u
f p n dS n dS i j

V V x
∂

= − + =
∂∫ ∫ μ  (4) 

where S is the surface of the grains within the averaging volume defined by the unit 
normal vector sf

in  (Fig. A.1). 

Due to commuting properties of all averaging and deviation operators (A.11) – 
(A.14) the double-averaged momentum equation obtained using a reverse order of 
averaging steps i.e. by averaging Navier-Stokes equation first in space and then in 
time is identical to (2) (Pedras and de Lemos 2001). 

In order to obtain a useful form of the double-averaged equations the terms that 
contain microscopic variables have to be parameterized. In analogy with the free-fluid 
flow at a point, spatially averaged turbulent stress can be parameterized using turbu-
lent viscosity and macroscopic deformation tensor (de Lemos and Silva 2006). Param-
eterisation for the form-induced stress term is at present not available. In porous media 
flow a common model for the drag term is 

 , 1,2,3,
s s sF

j j j j
cf u u u j

K K
= + =

φρμφ  (5) 

where K is the intrinsic permeability of the porous medium and the constant cF is 
known as the non-liner Forcheimer coefficient. The effect of flow unsteadinessn be 
modelled by adding the term ∂ ∂

s

A jc u t  to the r.h.s. of Eq. (5). The superscript s on 

the spatial averaging symbol denotes the superficial average defined by (A.2a). In 

classical porous media literature 
s

ju  is usually called Darcy velocity, whereas 
s

j ju u= φ  is called pore velocity or linear velocity. The values of the linear and 

non-linear coefficient depend on the flow regime within the porous medium, which 
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can be inferred from the pore Reynolds number. Dybbs and Edwards, 1984 classify 
flow regimes as: Darcian or viscous drag dominated (Rep < 1), Forchheimer 
(1~10 < Rep < 150), post-Forchheimer or unsteady laminar (150 < Rep < 300), and 
turbulent (Rep > 300). In Darcian regime the Forcheimer coefficient cF in the second 
term on the right-hand side of (5) is zero. In all other regimes cF  differs from zero and 
may have different values for different flow regimes, due to the different mechanisms 
of generating drag (e.g. viscous drag in unsteady laminar flow and form drag in turbu-
lent flow). 

Equations (1)-(4) are valid for averaging volumes covering either solely the 
stream, where porosity is one so it vanishes from the equations, or solely the porous 
medium below the interface region. The macroscopic description of a flow field is 
obtained by moving an averaging volume over each of them and assigning the result-
ing double-averaged quantities to the position of its centre. The lowest position within 
the stream is such that the bottom of the averaging volume coincides with the bed 
surface (Fig. 2). The highest position is such that porosity is still unaffected by the 
interface. The interface region, situated between the centres of the averaging volumes 
at these two positions, requires a special treatment, which is outlined in the following 
section. 

 
Fig. 2. Definition sketch for the condition at the interface. The interface region covers the vol-
ume between the centre of the lowest averaging volume in the stream region and the centre of 
the highest volume in the homogeneous part of the porous medium shown on the left. Height of 
the averaging volume gradually increases across the interface region.  

3. Conditions at the macroscopic boundary  

Over the interface region spatial averaging, with the use of the averaging volume that 
gradually grows between the stream and the homogeneous porous medium, gives 
mathematically correct results but their physical meaning is unclear because they de-
pend on the size of the averaging volume. It is therefore beneficial to derive the bal-
ance conditions for the interface region as a whole, which can be used to couple the 
two flow regions.  

The right-hand Cartesian coordinate system is used, with x1 and x2 axes parallel 
with the interface and x3 perpendicular to it. For simplicity, the axis x3 is shifted 
downwards (compared to z in Fig. 1) so that x3 = 0 at the bottom of the interface re-
gion. The surface enclosing the interface region consists of the following three parts 
(Fig. 2):  
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1. A+: ‘Stream’ part with the outward unit vector, jn+ , in +x3 direction 

( 1 2 30, 1n n n+ + += = = ), 

2. A −: ‘Porous medium’ part with the normal, jn− , in –x3 direction 

( 1 2 30, 1n n n− − −= = = − ), 

3. Side surface with the outward unit vector ns in the plane x3 = const. The area of 
the side surface is equal δ L where L is the curve enclosing the area of the inter-
face in the plan view (Fig. 2).  

The macroscopic conditions at the interface are derived by integrating the double-
averaged balance equations (1) and (2) over the interface region.  

3.1 Continuity 
Integrating (1) over the volume of the interface region with the use of the divergence 
theorem gives 

 3 3 3
0

0, 1,2 .
+ −

+ − = =∫ ∫ ∫ ∫s
k k

L A A

u n dx dl u dA u dA k
δ

φ φ φ  (6) 

Porosity along A+ is one, along A − it is φp, whereas along the interface thickness δ 
it changes between the two values. The first integral on the left-hand side of (6) can be 
simplified by introducing unit volume flux averaged over the interface thickness, 

3
0

1
= ∫s

k kU u dx
δ

φ
δ

 and by using the area divergence theorem. The result is 

 3 3free-fluid porous medium
0, 1,2 .

⎛ ⎞∂
− + = =⎜ ⎟⎜ ⎟∂⎝ ⎠

∫
s
k

p
kA

Uu u dA k
x

δ
φ  (7) 

Shrinking the area of the interface yields the following continuity condition at the 
interface: 

 3 3free-fluid porous medium
0, 1,2 .

s
k

p
k

Uu u k
x

∂
− + = =

∂
δ

φ  (8) 

3.2 Momentum balance 
Momentum balance Eq. (2) is integrated over the interface region. The local accelera-
tion term is dropped because of the flow steadiness. The resulting equation is 

 3 3 3
0 + −

⎛ ⎞
⎜ ⎟+ − =
⎜ ⎟
⎝ ⎠
∫ ∫ ∫ ∫s

j k k j j
L A A

u u n dx dl u u dA u u dA
δ

ρ φ φ φ   
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φρ φ φ φ
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For the momentum in a direction parallel to the interface, j = 1,2, the last two 
terms in the second line of (9) are zero, whereas for the momentum in the interface-
normal direction j = 3 the second term in the second line is zero. Integrals along L can 
be simplified using the plane divergence theorem. Equation (9) becomes 
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 (10) 

where the following averages over the interface region thickness were introduced: 

3
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φ
δ
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δ
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3
0

1 .= ∫j jF f dx
δ

δ
 By grouping all the terms in (10) and shrinking the area A the follow-

ing macroscopic stress condition for the interface region is obtained 

 

3 3
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δ
ρ φ φ

δδφρ φ φ

δ
τ φ τ δ

 (11) 

The conditions at a macroscopic boundary for the case of laminar flow were de-
rived in Ochoa-Tapia and Whitaker (1995) by first integrating balance equations over 
a large volume containing ‘free-fluid’, ‘porous medium’, and ‘interface region’, then 
individually over ‘free-fluid’ and ‘porous medium’ parts. The conditions at the inter-
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face were then obtained by subtracting the latter two from the first one. In the above 
derivations the analogous result for turbulent flow is instead obtained by integrating 
directly over the interface region.  

4. Uniform two-dimensional open channel flow with the sub-surface flow 
      parallel to the interface 

At this point tensorial notation is replaced with hydraulics notation ( 1x x≡ = stream-
wise, 2y x≡ = lateral and 3z x≡ = interface-normal coordinate, u, v, w, correspond-
ing respective velocity components). The analysis is limited to the case of steady 
( 0t−∂ ∂ = ), uniform ( )0x∂ ∂ = , two-dimensional ( )0y∂ ∂ =  turbulent flows 

above and inside an immobile porous matrix. In that case the macroscopic continuity 
equation reduces to 

 0, 0,
∂

= = =
∂

u
v w

x
φ

 (12) 

so that the only direction with non-zero fluid momentum is interface-parallel direction 
x.  

The double-averaged x momentum equation simplifies to  

 ,xz
xgS f

z
∂

= +
∂
φτ

ρφ  (13) 

where sinS ≅ α  is the bed slope. The fluid shear stress is 

 ' ' ,xz
u u w u w
z

∂
= − −

∂
τ μ ρ ρ  (14) 

and the total drag force exerted by the fluid on the roughness per unit volume is  

 1 1 , 1,2,3.sf sf
x x i

iS S

uf p n dS n dS i
V V x

μ ∂
= − + =

∂∫ ∫  (15) 

Equation (13) applies to both stream region, where porosity is one, and the homoge-
neous part of the permeable bed, where porosity is φp. It states that the change of the 
macroscopic fluid shear stress in the bed-normal direction is due to the net momentum 
added to a control flow volume of the height dz (= supply by gravity – extraction by 
the roughness). 

The macroscopic continuity condition at the interface (8) reduces to 

 
free-fluid porous medium

0,pw w= =φ  (16) 

and the momentum balance condition (11) becomes, in x direction 
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0 0

free-fluid porous medium
.

− −

+ = +∫ ∫zx p zx xgSdz f dz
δ δ

τ φρ φ τ  (17) 

Condition (17) is usually referred to as stress jump condition at the interface. It 
states that the change of macroscopic fluid stress across the interface region is due to 
the change of porosity, as well as to momentum sink, and momentum supply within 
the interface region.  

It is interesting to consider a case of a very thin interface region which exists at the 
top of the roughness of constant height and constant porosity. In that case  
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The condition at the interface becomes 
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zx p zx
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u dA
A z

τ φ τ μ  (18) 

Fluid shear stress consists of viscous stress, form-induced stress and turbulent 
stress (the three respective terms in Eq. 14). The local turbulent stress and form-
induced momentum flux ( )u wρ  are zero across the top area of the roughness ele-
ments while viscous stress is probably negligible above the gap between the elements. 
Thus across the roughness tops the only component of the fluid stress is viscous stress 
and it transfers momentum to the roughness via viscous drag. Across the gap between 
the roughness elements viscous stress is negligible and momentum is transferred into 
the gap via turbulent and form-induced momentum flux. This implies that for rough-
ness elements of constant height with significant plan area across the interface local 
turbulent stress and form-induced momentum flux above the gap have to be higher 
than their spatial average. This was indeed confirmed in experimental data of Djenidi 
et al. (1994) and LES data of Stosser et al. (2004).  

The double-averaged momentum Eq. (13) applied to flow above and within the 
porous bed, together with the interface condition (17) or (18) forms a macroscopic 
description of turbulent flow above and within the gravel bed.  

In order to explore the fluid shear stress profile (13) is integrated between the free-
surface and an arbitrary bed-parallel plane z = const. For a plane above the roughness 
top the total driving force or momentum supply (per unit plan area) between the plane 
and the free water surface is  

 ( )sin d ,≅ −∫
h

z

g z gS H zρ α ρ  (19) 

where z = height of the plane above the roughness top and S = bed slope (Fig. 3). It is 
in balance with the momentum flux through the plane at the height z, τxz(z), so τxz in-
creases linearly, starting from the zero at the free surface. Far away from the rough-
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ness both viscous stress and form-induced stress are negligible so τxz is turbulent shear 
stress. Near the roughness crests persistent vortices behind roughness elements cause 
form-induced momentum flux so momentum is transferred from the flow above by 
both turbulent and form-induced shear stress. At the roughness crest, z = 0, the mo-
mentum flux from the flow above the roughness is just sufficient to balance ρghS, so 
the fluid shear stress is  

 0 .gHS≅τ ρ  (20) 

 
Fig. 3. Momentum transfer between a stream and a permeable bed. Fluid shear stress has a step 
change across the interface region. 

Below the roughness crest, in the interface region between the plane z = 0 and a 
bed-parallel plane at level = −δ, porosity changes from one to φp, with the average 
value ˆ.φ  Due to the change of porosity, an additional momentum supply of ˆ g Sφρ δ  
and the momentum sink due to drag, fluid shear stress may have a step change de-
scribed with (17). So far there are very few experimental data on the fluid shear stress 
inside permeable beds so not enough is known about the relative importance of the 
turbulent, form-induced and viscous stresses there.  

Deeper within the permeable bed flow gradually reaches the conventional porous 
media regime where all of the additional momentum supply is extracted by the drag so 
that the fluid shear stress becomes constant (Fig. 3). The depth of the transition layer 
mentioned at the beginning of the paper can now be defined as the point where the 
fluid shear stress becomes constant. 
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The velocity gradient is likely to follow the shear stress profile, so it is expected to 
have maximum at the bed surface, and then gradually change until in the porous media 
regime it becomes constant. At the interface between the stream flow and the flow 
within its permeable bed velocity gradient may change, in accordance with the step 
change in fluid shear stress. 

5. Conclusion 

At a microscopic scale the turbulent flow above and within a permeable wall is spa-
tially heterogeneous, the flow domain has a complex geometry and the flow boundary 
condition is zero velocity across the surface of the solid matrix. Double-averaging 
methodology is very convenient for investigating such flows. Time-averaging 
smoothes temporal variability due to turbulence, while spatial averaging smoothes the 
spatial heterogeneity: the details of the microscopic flow vanish in a macroscopic 
model. The influence of small-scales, however, remains and hence has to be expressed 
using the appropriate parameterizations.  

Spatial averaging also reveals the two distinct flow regions with the macroscopic 
boundary between them. The boundary splits the flow domain into two sub-domains, 
the ‘stream’ region and the ‘porous medium’ region. A complete macroscopic flow 
description contains the double-averaged balance equations for both regions and the 
conditions at the macroscopic boundary between them. At the boundary fluid shear 
stress and the velocity gradient may have a step change due to the change of porosity 
and the action of drag. 
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Appendix A:  Averaging Rules 
An averaging volume V (Fig. A1) contains volume of the fluid, Vf , and volume of the 
solid, Vs. The area enclosing V, A, is defined by the unit outward vector ni. The area of 
interface between solid and fluid contained within V is denoted with S and its geome-
try is defined by the unit vector sf

in  pointing into fluid, which is not to be mixed with 
ni. The position vector of the centre of the averaging volume is denoted with xi, and 
the position vector of any point within the averaging volume with ri (Fig. A1). Geome-
try of fluid within the averaging volume is defined by a distribution function 
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f
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r V
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Fig. A1. Averaging volume. 

The most important spatial averaging operators are the superficial volume average 
operator, ,s  and intrinsic volume average operator, ,  defined as (Hassanizadeh 
and Gray 1979) 

 
V

1( , ) ( , ) ( , ) ,s
i i f ix t r t r t dV

V
= ∫ϕ ϕ γ  (A.2a) 

 
V

1( , ) ( , ) ( , ) ,i i f i
f

x t r t r t dV
V

= ∫ϕ ϕ γ  (A.2b) 

where dV is the infinitesimal element of V. These two averaging operators are related 
through porosity 

 ,s =ϕ φ ϕ  (A.3) 

where porosity is equal 
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 .
sf

f
V
V

= =φ γ  (A.4) 

Intrinsic spatial averaging splits a property at a point in space into a sum of its spa-
tial average and spatial disturbance (denoted with a wavy overbar):  

 .= +ϕ ϕ ϕ  (A.5) 

Temporal averaging operator is denoted with overbar and defined as 

 1 .
t t

t

dt
t

+Δ

=
Δ ∫ϕ ϕ  (A.6) 

It splits an instantaneous property into the sum of its temporal average and fluctuation 
(denoted with prime): 

 '.= +ϕ ϕ ϕ  (A.7) 

Spatial average is associated with the centre of the averaging window, and the 
temporal average with the centre of the averaging time interval. Obviously  

 ' 0, 0.= =ϕ ϕ  (A.8) 

For any two fluid properties, ϕ, ψ, the following rules of sum and average of a 
product apply: 

 , ,+ = + + = +ϕ ψ ϕ ψ ϕ ψ ϕ ψ  (A.9) 

 ' ', .ϕψ ϕψ ϕ ψ ϕψ ϕ ψ ϕψ= + = +  (A.10) 

This discussion is limited to the case of microscopically incompressible fluid flow-
ing over and within fixed porous bed with no-slip condition for microscopic velocity 
at the interface between the fluid and the porous matrix. In this case the averaging 
volume does not change with time, the averaging windows Δ t and Vf are independent, 
so the two averaging operators commute, i.e. 

 .=ϕ ϕ  (A.11) 

It can be easily shown that then the following operators also commute (Pedras, de 
Lemos 2001): 

 ' ',=ϕ ϕ  (A.12) 

 ,ϕ = ϕ  (A.13) 

 ' .′=ϕ ϕ  (A.14) 

Finally, averaging of flow equations requires the knowledge of the relationship be-
tween the averages of derivatives and the derivatives of the averages. In temporal av-
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eraging of momentum equations for flow over and inside fixed porous bed, averaging 
window does not change with either space or time, so the temporal averages of all 
derivatives and the derivatives of the temporal averages commute. The same applies to 
volume averaging above the roughness crest.  

Below the roughness crest, the volume averaging domain changes in space, thus 
spatial averaging operator does not commute with the spatial derivatives and the local 
averaging theorem has to be invoked to yield 

 1 , 1,2,3,
s s

sf
i

i i S

n dS i
x x V

∂∂
= − =

∂ ∂ ∫∫
ϕϕ ϕ  (A.15) 

or, using the relationship between volume average and intrinsic volume average, 

 1 1 , 1,2,3.sf
i

i i f S

n dS i
x x V

φ ϕϕ ϕ
φ

∂∂
= − =

∂ ∂ ∫∫  (A.16) 

The theorem has been proved several times (e.g. Whitaker 1967, Slattery 1969, Gray 
and Lee 1977). For non-moving fluid-solid interface spatial averaging domain does 
not change with time so the volume averaging operator commutes with the time de-
rivative: 

 ,
ss

t t
∂∂

=
∂ ∂

ϕϕ  (A.17) 

or, with intrinsic volume averages 

 1 .
t t

∂∂
=

∂ ∂
φ ϕϕ

φ
 (A.18) 

Appendix B:  Spatial averaging of the RANS equation 
The Reynolds-averaged Navier Stokes equation (RANS) for incompressible fluid is  

 
2

2

1 , 1,2,3,j i j j i j
j

i j i i

u u u u u upg i j
t x x x x

′ ′∂ ∂ ∂ ∂∂
+ = − + + =

∂ ∂ ∂ ∂ ∂
ν

ρ
 (B.1) 

where  uj = velocity  component in the xj-th direction,  gj = gravity  acceleration in the 
xj-th direction, ρ = density, p = pressure, ν = kinematic viscosity. The double-averaged 
Navier-Stokes equation, DANS, is derived by finding the intrinsic average of each 
term in the RANS equation (B.1), with the use of the theorems (A.16), (A.18) and the 
rules (A.9) and (A.10). The result is 
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The surface integrals in (B.2) appear as a result of applying (A.16). The three terms in 
the second line of (B.2) can be grouped into a single fluid stress term by defining fluid 
stress as 

 ' ' , , 1,2,3,j
ij i j i j

i

u
u u u u i j

x
∂

= − − =
∂

τ μ ρ ρ  (B.3) 

where μ = ρν is the dynamic viscosity. The two terms in the third line of (B.2) can be 
multiplied with ρφ  and grouped into a single drag term: 

 1 1 , , 1,2,3,jsf sf
j j i

iS S

u
f p n dS n dS i j

V V x
∂

= − + =
∂∫ ∫ μ  (B.4) 

where jf  is the time-averaged force with which fluid acts upon the grains, per unit 
averaging volume. Multiplying (B.2) with ρφ and introducing (B.3) and (B.4)  yields: 
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Abstract  

This paper presents an alternative to distributed inundation models for real-
time flood forecasting that provides fast and accurate medium- to short-term 
forecasts. The methodology applies a State Dependent Parameter approach to de-
rive a nonlinear dependence between the water levels measured at gauging sta-
tions along the river. The transformation of water levels depends on the relative 
geometry of the channel cross-sections, without the need to apply rating curve 
transformations to discharge. The relationship obtained is used to transform wa-
ter levels as an input to an adaptive, variable time lag routing model. The paper 
provides an account of the uncertainties involved and describes the conditions 
for its application. The approach is illustrated using an 80 km reach of the River 
Severn, UK.  

1. Introduction 

Flood warning systems require accurate water level forecasts over a range of forecast-
ing horizons, from days to hours. The accuracy of the forecast varies with the forecast 
lead time. Therefore, the forecast should include not only water level values but also 
an assessment of its probable range (i.e., accuracy). Flood forecasting models apply 
data assimilation techniques and operate with varying accuracy decreasing with fore-
cast lead times. Even though deterministic forecasts are still in use in some flood 
warning systems, real-time adaptive probabilistic forecasts are in increasing demand 
(Young 2002, Romanowicz et al. 2006). The on-line updated, stochastic data assimila-
tion model presented in the second paper aimed for the longest possible forecast lead 
times. Forecasts for the river reach were combined together in order to prolong the 
forecast lead time downstream, thus forming an equivalent to a distributed flood fore-
casting system with the advantage of fast performance and probabilistic forecasts. 
However, the applied linear stage routing models were not able to give the same fore-
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cast quality for both high and low water levels. Among different nonlinear approaches 
to flood forecasting, models applying artificial neural networks (NN) have become 
popular recently (Park et al. 2005). In particular, NN models allow for online data 
assimilation and give probabilistic forecasts (Chen and Yu 2007). The latter authors 
applied deterministic, NN based water level forecast and a probabilistic error assess-
ment. The main disadvantage of NN models lies in the complex, non-transparent 
model structure. It makes it very difficult to find a physical interpretation of the model 
structure and to extrapolate model results to situations not included in the training sets 
applied for the model parameters estimation. Following experience gained during the 
derivation of stage routing models (Romanowicz et al. 2006, Young et al. 2006), we 
propose here an approach which applies both nonlinear transformation of the upstream 
stages and an advective time delay being a function of the water level. This approach 
allows the nonlinearity of the stage-stage relations to be captured, as well as account-
ing for the varying speed of the wave peak. The approach was tested on the River Sev-
ern, UK, reach between Welsh Bridge and Bewdley. 

2. Methodology  

The water levels at gauging stations along a river are usually highly correlated but 
they also show a nonlinear relationship, resulting from variable channel and floodplain 
geometry. Let us consider a river reach between two gauging stations. We shall denote 
the water level measurements upstream at discrete time period k as input variable uk 
and water levels at downstream location as an output yk. We want to find the nonlinear 
water level transformation between these two locations in order to account for nonlin-
ear channel geometry and other nonlinear processes which influence the flow. The 
shape of this nonlinear transformation is derived from the observations at the down-
stream end, using a State Dependent Parameter (SDP) approach (Young et al. 2001). 
In order to account for variations of wave celerity, we introduce a varying with water 
level advective time delay. A mathematical description of the proposed water level 
routing process is as follows:  

 ( ) ( )( )
k k k kk k u k u

k k k

x h u u

y x
δ δ

ζ
− −= ⋅

= +
 (1) 

where h(⋅) denotes the nonlinear transformation of water levels at the input to the 
reach uk at discrete time period k, derived using SDP approach; δk = d(uk) denotes the 
delay related to the celerity of the flood wave, or the travel time of the wave peak and 
changing with the peak height, and ζk is a random Gaussian error, usually coloured 
with heteroscedastic variance. The schematic presentation of the modelling approach 
is shown in Fig. 1. 

The SDP relationship is first estimated in a nonparametric (graphical) manner us-
ing CAPTAIN toolbox for MATLAB™ (Taylor et al. 2007), in order to identify its 
characteristic nonlinear form, prior to parameterisation and final estimation of this 
identified relationship based on suitable parametric forms, such as a combination of 
power, exponential and piecewise linear analytical relations or the use of more general 
parameterisations, such as radial basis functions (Martin et al. 2003). 



 225

 
Fig. 1. Schematic representation of State Dependent Nonlinear model for flood forecasting. 

It is worth noting that the model (1) is derived off-line. The nonlinear relationship 
between the water levels at two cross-sections may change with time, and the travel 
time of the wave peak also varies. In order to account for small modelling errors, the 
data assimilation procedure is used in the form of on-line adaptive gain. Namely, the 
on-line N-step ahead level forecast applies an on-line gain updating based on observa-
tions up to date, using real-time recursive estimation (Young 2002). Therefore, the 
forecast equation has the following form: 
 ˆ ˆk N k k N k Ny g x+ + += ⋅ +η  (2) 

Here, ˆk Nx +  is the deterministic N steps ahead water level estimate, obtained from vari-
able delay routing model, and k Nη +  is the noise term that represents the error in the 
estimation (lack of fit); ˆkg  denotes an estimate of adaptive gain gk which is assumed 
to vary stochastically as a Random Walk (RW) process with variance hyper-parameter 
qk associated with the stochastic input to the RW model. With this assumption, the 
gain gk can be estimated in real-time using the scalar Recursive Least Squares (RLS) 
algorithm (Young 1984), conditioned on the observations up to time k. In calibration, 
we use the minimisation of N-step-ahead forecast error as the optimisation criterion 
for the gain hyper-parameter qk. The 0.95 confidence bounds of the N-step ahead fore-
cast are identified using a Monte Carlo based estimation technique (Romanowicz and 
Beven 2006). 

The procedure for developing an on-line SDP-based flood forecasting model for 
two neighbouring gauging stations is as follows: 

1.  Estimate the relationship between the height of the wave peak upstream and the 
travel time δ required for that peak to reach the downstream station. 

2.  Determine the nonlinear transformation for the relationship (Eq. 1) between the 
water levels using an SDP approach. 

3.  Parameterize the obtained function using, e.g., radial basis functions. 
4.  Derive hyper-parameters for on-line updating of the forecast gain and 0.95 con-

fidence bounds for the N-step ahead forecast. 

3. Introducing the nonlinear water level transformation: 
      River Severn case study 

We apply the proposed approach to the River Severn reach, U.K., between Welsh 
Bridge and Bewdley. There are available 15 min water level measurements at Welsh 

Nonlinear transformation
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ku ,ku δ
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Bridge, Buildwas, Bridgnorth and Bewdley obtained from the UK Environment 
Agency, Midlands Region. This study of the River Severn was chosen as a develop-
ment of the previous work (Romanowicz et al. 2006). We applied an SDP estimation 
approach to water levels at the three sub-reaches listed above for a period 1998-2000. 
The resulting nonlinear function for Welsh Bridge-Buildwas reach is shown in Fig. 2. 
The relationship was obtained assuming that the delay δ for each station is constant 
and corresponds to the maximum peak wave travel time. The figure presents the 
nonlinear function h(.) from Eq. (1); dotted lines show 0.95 confidence bounds. These 
confidence bounds are estimated based on the parametric uncertainty of SDP method. 
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Fig. 2. SDP function for water level relationship between Welsh Bridge and Buildwas; dotted 
lines present 0.95 confidence bounds, based on the uncertainty estimates of the nonparametric 
nonlinear regression model (1). 

The comparison of wave peak travel time for different gauging stations indicates that 
flood wave celerity depends not only on location but also on water levels. Lekkas and 
Onof (2005) showed that celerity increases with increase of water depth in the 
channel, which results in a decrease in delay times. However, where inundation of the 
flood plain occurs, we observe the opposite effect, namely, the delay for high flood 
peaks is much larger than the delay for low peaks. This effect is illustrated in Fig. 2, 
which shows the relationship between the travel times and water levels for the sub-
reach between Welsh Bridge and Buildwas, derived using 15 min data for the years 
1998-2000. 

There is a scatter of points showing varying travel times for the water levels at 
Welsh Bridge between 1 and 3 m and a better defined relationship for the levels above 
3 m. At the higher stages this relationship depends on the dynamics of out-of-bank 
flow along the whole river reach between Welsh Bridge and Buildwas. Figure 3 
indicates that the delay in Eq. (1) should vary depending on the input water level in 
order to improve the SDP model fit. The results of the analysis of the relationships 
between travel times for all four gauging stations are summarised in Table 1. Table 1 
also shows the threshold water levels corresponding to the changes in time delays 
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from the minimum to maximum values, as illustrated in Fig. 3 for the Welsh Bridge to 
Buildwas case. 

 
Fig. 3. Relationship between wave peak travel times (no. of 15 minute time steps) and water 
levels at Welsh Bridge (1998-2000) for the Severn reach between Welsh Bridge and Buildwas. 

Table 1 

Minimum and maximum travel times for each of the sub-reaches and corresponding 
water levels at the upstream gauging stations (Welsh Bridge, Buildwas  

and Bridgnorth, respectively) 

 Min time
[h] 

Water level
[m] 

Max time
[h] 

Water level 
[m] 

Welsh Bridge − Buildwas 8 2 14 3.5 
Buildwas Bridgnorth 3 3.5 5 5 

Bridgnorth − Bewdley 4 1.7 6 3.5 
 

The flow (level) routing process in an open channel combines the processes of advec-
tion (translation of the wave in time) and dispersion which, in text book cases, leads to 
attenuation of the flood peak. Under over-bank flow conditions, the energy balance in 
the reach is influenced by local velocities, secondary flows, momentum transfer, and 
interface vortices between channel and flood bank and boundary shear stress (Knight 
et al. 1989). In this particular research, no attempt is made to model such effects ex-
plicitly. Instead the complex interactions between water level and flood wave dis-
charges are taken into account through the nonlinear transformation of the input water 
levels to deal with the momentum loss of the wave and the (possibly complex) 
changes in cross-section geometry and storage along the river reach. Therefore, as 
shown in Fig. 2, this transformation can result in a downstream response with a higher 
relative change in water levels (an increase in gain at higher flows), especially at man-
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made structures or other constrictions, as well as the textbook downstream attenuation 
of the flood peak.  

The application of the proposed methodology to the River Severn reach between 
Welsh Bridge and Bewdley resulted in improved on-line water level forecasts. Table 2 
presents the results of validation of the models on 2002 flood event based on the 
model (1), with the variable transport delay (travel time) as given in Table 1. In Table 
2, forecast success is reported in terms of the percentage of the output variance ex-
plained by the forecast 2 2 21 /N N yR σ σ= − , where 2

Nσ  and 2
yσ  denote the variances of N 

step ahead forecast error and observed water level, respectively and Root Mean 
Square Error (RMSE). 

Table 2 

The goodness of fit 2
fR  and RMSE criteria for the validation stage of on-line forecasts 

for the 2002 flood event 

River Severn Reach Lead time [h] 2
NR  [%] RMSE [m] 

Welsh Bridge − Buildwas 8 99.45 0.106 

Buildwas − Bridgnorth 3 99.93 0.038 

Bridgnorth − Bewdley 4 99.76 0.054 

Buildwas − Bewdley 7 99.65 0.067 

Welsh Bridge − Bridgnorth 11 98.81 0.117 

Welsh Bridge − Bewdley 15 98.65 0.129 

 

 

Fig. 4. Validation of SDP based, variable time delay model: 11-hour-ahead forecast for the 
Bewdley, November 2002 event, with on-line updating of the forecast gain (99.22% of output 
variation explained). 
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Since a nonlinear SDP transformation is applied to the upstream water levels at 
each sub-reach, the forecasts can be prolonged, as in Romanowicz et al. (2006), by 
using the forecast upstream instead of measurements. Obviously, the quality of the 
forecasts decreases with the increase of the lead time. The last three rows of Table 2 
show the goodness of fit obtained after combining the individual reach forecasts. 
Therefore, the Bewdley forecast may be extended to a maximum 11 hours when the 5- 
hour-ahead forecast for Bridgnorth is used, and up to a maximum of 25 hours when 
using the 19-hour-ahead forecast for Bridgnorth. The maximum lead times shown in 
brackets correspond to the wave peak time travel. Figure 4 shows the 11-hour-ahead 
validation forecast for Bewdley based on forecasts for the Buildwas-Bridgnorth-
Bewdley reaches, together with 0.95 confidence bounds. 

4. Conclusions 

We have shown that a high precision on-line forecast can be obtained from a simple, 
easily implemented, and transparent on-line data assimilation system, based on a 
nonlinear transformation of water level observations upstream and advective time 
delay varying with input water levels. The approach requires a wide range of input and 
output data to give robust predictions. From this point of view it resembles a neural 
network approach. However, in contrast with neural network models, the approach 
presented here is more straightforward and gives the possibility of generalisation of a 
nonlinear relation between water levels depending on river channel geometry. This 
generalisation is the subject of ongoing work.  
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Abstract  

In the paper, flows in the uniform rectangular channel with a bypass are ex-
amined for three different geometries of junction zones. The 2D, depth averaged 
Navier-Stokes equations were applied to solve flow field. The special attention 
was focused on changes of water surface profile along a river reach and dis-
charge split as a result of bypass channel introduction. Finally results of 2D 
modeling are compared with results achieved by simplified 1D model. 

1. Introduction 

The bypass channel may be created naturally by meandering river or designed for 
different purposes, such as flood mitigation, water supply or navigation. 

In recent years, more and more floods are observed in the same regions of the 
world. These floods constitute the threat for urbanized area and people living there. 
Efficient management and designing of flood protection system is getting very diffi-
cult. One of possibilities might be a use of bypass channel to enlarge conveyance of a 
river channel. Designing of bypass channels requires hydrodynamic studies to evalu-
ate its impact on flow condition changes in natural river. Bypass channel and river 
reach create the loop network where most abrupt flow changes occur in the split and 
the junction zones.  

In the paper, special attention is focused on the water level changes as a result of 
different α angle values (Fig. 1) which determine geometry of junction zones. In real 
designing of junction geometry, flow direction change is realized by gradual curvature 
and it is the matter of radius magnitude examination rather than angle α value (Dam-
muller et al. 1989); however, for preliminary studies the examination of the impact of 
angle α values on a flow field maybe helpful for designing purposes.  

Additionally, comparison between 2D and 1D water surface modeling results is 
presented to show the cases of meaningful differences.  
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Fig. 1. The loop network scheme. 

2. Flow computing method 

Flow computation was realized by the FST2DH model (Froechlich 2002). Within this 
model, the Navier-Stokes 2D depth averaged equations are adopted in the following 
form: 
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where: q1 = unit flow rate in the x direction; q2 = unit flow rate in the y direction; 
q = mass inflow/outflow rate; zb = bed level; h = depth; τbx, τby = bed shear stresses 
acting in the x and y directions, respectively, and 

 
( )( ) ,
∂ τ∂ τ

= +
∂ ∂

xyxx
x

hhT
x y

 
( ) ( )

,
∂ τ ∂ τ

= +
∂ ∂

yx yy
y

h h
T

x y
 (4) 

where τxx, τxy, τyx, τyy = shear stresses caused by turbulence. 
Bed shear stresses are computed based on Manning’s roughness coefficient 

(Chaudhry 1993). Depth-averaged lateral shear stresses caused by turbulence are 
computed using Boussinesq’s eddy viscosity concept whereby the turbulent stresses 
are considered proportional to gradients of the velocities. Kinematic eddy viscosity is 
related to the scales of motion being resolved by a mesh. It is computed by Smagorin-
sky formula. FST2DH model uses the Galerkin finite element method to solve the 
governing equations. The two-dimensional mesh elements may be either triangles or 
quadrilaterals. 

The 1D model is represented by energy and mass balance equations which are ap-
plied within Hec-Ras 3.1 software (Brunner 2002). In that approach, nodal geometry 
doesn’t influence flow computation, so it is not possible to take into account the α 
value directly. Bernoullie equations are solved step by step for given boundary condi-
tions. In the case of flow split the optional optimization procedure was turned on. 
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Flow discharge is divided in iterative way until energy at the upstream cross section of 
the split junction based on separate calculation for two downstream reaches has the 
same value (in the cases of subcritical flow which are considered in the paper). 

3. Numerical experiment 

Both the bypass channel and the river reach have the same uniform rectangular cross 
section of width b = 40 m and bed slope i = 0.1%. Total length of the river reaches is 
9.2 km and the bypass length is about 5 km (Fig. 1).  

3.1 Geometry of the junction zones 
Three variants of the loop channel for different α angle values (15, 30 and 60 degrees) 
were examined. Because the conveyance of river and bypass is the same it implies 
entrance length value d (Fig. 1) changing with respect to α values in the range from 
70 m to 200 m. 

 
Fig. 2. Velocity field at the split junction for α = 15 degrees. 

 
Fig. 3. Velocity field at the split junction for α = 60 degrees. 

3.2 Boundary conditions 
For every loop channel variant, two cases of steady flows were examined alterna-
tively. At upstream boundary condition total discharge Q = 500 m3/s and 
Q = 2500 m3/s were considered. At downstream boundary condition, water depth 
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h = 4.5 m and h = 10 m was applied, respectively. Manning coefficient single value 
(n = 0.03) was kept the same for all cases. Additionally, for every flow cases the refer-
ence water level were calculated for a single river reach without bypass channel. 

 
Fig. 4. Velocity field at the confluence for α = 60 degrees. 

3.3 Results and discussion 
In the junction zones of the loop network one may observe the water threshold at the 
split zone, and the water drop at the confluence zone (Fig. 5). At the steady flow con-
ditions, the threshold is hydraulic jump alike but for all cases Froud number is less 
than 0.9. The consequence of this fact is that the total water profile is in subcritcal 
regime.  
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Fig. 5. Water surface profiles at the river reach for different α angles and Q = 2500 m3/s. 
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For the case with smaller discharge (500 m3/s), the influence of α value on the 
threshold height is similar for all cases of α values but in the second case of discharge 
2500 m3/s (Fig. 5) differences are significant at some locations. The lower the α value, 
the higher the discharge in the bypass channel and the higher the threshold (Table 1). 

Table 1 

Discharge split percentage 

Discharge split percentage 

500 m3/s 2500 m3/s 
α value 

[degrees] 
middle river bypass channel middle river bypass channel 

15 51 49 50 50 
30 55 45 60 40 
60 58 42 62 38 

The threshold results in water level decrease below the reference level (computed 
for the single river without the bypass) and this depressed water profile continuous in 
upstream direction. On the other hand, at the confluence zone one may observe the 
highest water level increase above the reference level, which results in backwater ef-
fect reaching even 1 km distance in upstream direction; however, the water level does 
not vary with α values so strongly as for the split junction and the upstream river 
reach. The water level increase at the confluence does not influence significantly the 
water level at the split junction (at the 2000 m of channel length) because the flow 
regime is almost critical there. 

In the case of α = 15 degrees velocities are much more averaged at the junction 
zones in comparison with the case of α = 60 degrees (Figs. 2 and 3) where the secon-
dary flow zone is highly extended at the bypass entrance (Fig. 3). Besides, in the case 
of α = 60 degrees, strongly separated flow streams occur at the entrance of the down-
stream river reach (Fig. 4). Analysis of a flow field may help to find an optimal shape 
of the bypass entrance and exit to avoid the flow ineffective zones and minimizing 
‘choking’ effect. 

The 1D model gives similar results as the 2D model in the case of α = 15 degrees 
(Fig. 5). This may be explained by fact that for such α value the discharge is divided 
nearly into half at the split junction (Table 1) and both models capture this effect simi-
larly. 

4. Conclusion 

The loop network flows were analyzed only in qualitative manner since flow variables 
are strongly related to the bed slope, Manning coefficients and channel cross-section 
geometry. The magnitude of α angle which determines the geometry of considered 
nodal zones may influence water level profile significantly if flow velocity values are 
large enough (in the considered example, larger than 5 m/s). However, the impact of α 
magnitude is declining downstream from the split junction. 
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It is worth to notice that in the case of large α values, flow circulation zones may 
occur. Natural way to avoid it is to apply the curved bypass joint with large enough 
curvature radius.  
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Abstract  

An unsteady 1D flow model was developed for a channel with vegetated 
floodplains. The basic form of the non-linear St. Venant equations combined 
with retention effects of the vegetated areas on flood wave conveyance were 
used in the model. In this approach, friction caused by vegetation and additional 
resistance caused by interaction between the main channel and vegetated areas 
are taken into account. The Pasche method was used to calculate the total Darcy-
Weisbach friction factor for each cross-section according to the type of vegeta-
tion and flow interaction between the main channel and vegetated areas. The 
model was applied to a 50 km long double trapezoidal channel, and the obtained 
results show variations of the water level, velocities, discharges, and friction fac-
tors depending on the type of vegetation in floodplains and the main channel.  

1. Introduction 

Present studies on renaturalization of river valleys, river beds, as well as quantitative 
estimation of water demand of protected hydrogenic habitats exposed to flooding, 
require in many cases application of flooding flow models. Mathematical modelling of 
river flow with water levels not exceeding a bank elevation is widespread and de-
scribed by many authors (Cunge et al. 1980, Szymkiewicz 2000, and others). Hydrau-
lic models applications, particularly for lowland river valleys flooding with water 
overflowing the main channel, flooding adjacent areas, and flowing in the floodplains 
covered with various vegetation, are not widely used. The models used usually apply 
simplified approaches to the influence of land use in river valleys on flow conditions. 
Flow resistance, as well in river as in floodplains covered with vegetation, is usually 
described with generalized Manning’s coefficient values subject to plants vegetative 
alterations. In another simplified approach widely used, flooplains are considered re-
tention areas with no water flowing. In a one-dimensional model, floodplains geome-
try is accounted for in only one of Saint Venant’s equations – a continuity equation, 
and the momentum equation reduces to hydraulic parameters within the main channel 
geometry (Cunge et al. 1980).  
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The developed model, as opposed to many existing commercial models, with-
draws from a simplified description of flow resistance expressed by the spatially dif-
ferentiated Manning’s coefficient and the use of the Darcy-Weisbach relationship. It 
also enables introducing a water mass and momentum exchange process between the 
main channel and floodplains, and parts of a cross-section covered with vegetation and 
those with no vegetation. To this end, additional flow resistance along imaginary ver-
tical boundaries between the main channel and floodplains was introduced (Nuding 
1991, Mertens 1989, Pasche 1984, Pasche and Rouve 1985). Thus, the developed 
model enables, in unsteady flow calculations, to account for flow resistance resulting 
from both vegetation covering a cross-section and momentum exchange between the 
main channel and the floodplains, proposed in the Pasche approach (Pasche 1984). 

2. Numerical model development 

2.1 The unsteady flow model 
Unsteady flow in natural rivers is usually treated as a one-dimensional flow in prac-
tice, and is based on St. Venant equations. St. Venant equations consist of the dynamic 
equation and the continuity equation. When water discharge and water level are de-
pendent variables, these equations are written in the form, respectively: 
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where: Q = discharge;  h = water level;  x = distance;  t = time;  A = cross area of flow; 
B = width of water surface; K = conveyance factor; g = gravitational acceleration; q = 
lateral inflow; β = momentum correction factor. 

The conveyance factor K is expressed as 

 
1/ 28 ,gRK A⎛ ⎞= ⎜ ⎟λ⎝ ⎠

 (2) 

where: R = hydraulic radius; λ = friction factor. 
Equation (1) requires also determining of boundary conditions as well as initial 

conditions. Boundary conditions refer to hydraulic properties at the upstream and 
downstream ends of a river. The developed model enables only a subcritical flow de-
scription. The upstream boundary condition is determined  as a discharge hydrograph 
Q(t). A water level hydrograph h(t), discharge hydrograph Q(t), rating curve Q(h) or 
friction  slope Sf  can be used as the downstream boundary condition.  

The initial condition refers to the state of flow in the river when the simulation 
starts. In the model presented in this paper a steady flow in the channel is used as the 
initial condition (Swiatek et al. 2006). 
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The finite element method in the Galerkin formulation (Szymkiewicz 2000) was 
used to solve a pair of Eq. (1). This approach leads to the following (2M) non-linear 
ordinary differential equations: 

 [ ]{ } { }[ ] [ ],YF G Y P
t

∂
+ =

∂
 (3) 

where: 1 1 2 2[ ( ), ( ), ( ), ( ), ..., ( ), ( )]T
M MY Q t h t Q t h t Q t h t=  the unknown vector to be found; 

F = matrix of dimension 2M×2M; G = matrix of dimension 2M×2M;, P = column 
vector of dimension 2M, M = number of computational nodes. Matrices F and G are 
banded and their values depend on unknowns variables Q and h. The P vector refers to 
a lateral inflow q in the Eq. (1). 

The time-weighted finite difference method is used in the approximation of the 
time derivative (Eq. (3)). This method forms a system of algebraic non-linear equa-
tions which are numerically solved by iteration method (Szymkiewicz 2000).  

The total conveyance (Eq. (2)) for a compound cross-section is obtained by sum-
ming the subdivision conveyances, of the channel and floodplains. The total flood-
plains conveyances are calculated according to the vegetation distribution with 
Pasches’s method used to computing the total Darcy-Weisbach friction factor λ. The 
total conveyance K was introduced to the St. Venant Eq. (1) computation. It was cal-
culated for each cross-section and water level in the iterative method of solving Eq. 
(4). 

2.2 Determination of friction factors  
The discharge of steady flow in the river was expressed as a product of the velocity 
and the water area. The basis of calculations is the friction law of Darcy-Weisbach. 
Velocities, friction factors and components of water discharge in the main channel and 
in floodplains were calculated using momentum transfer between the main channel 
and floodplains. This process was included in the model using Pasche’s method 
(Pasche 1984).  

Physically, composite roughness along the wetted perimeter of the compound 
cross-section modifies the velocity distribution in the cross-section. A detailed exami-
nation the effects of varying wall roughness and cross-sectional geometry would re-
quire a three-dimensional analysis of the flow. Pasche (1984) proposed a one-
dimensional analysis of steady flow in a compound cross-section of the lowland river 
based on the Darcy-Weisbach formula. 

According to observed velocity distribution a compound river cross-section is di-
vided into sections with vertical imaginary walls between the main channel and 
neighbouring floodplains. The heights of these boundaries are taken into consideration 
in calculations of the wetted perimeter of the main channel. Mean velocity in each 
section is calculated from the Darcy-Weisbach equation. The method has the follow-
ing limitations (Schumacher 1995): 

− friction factor of the imaginary boundary must be larger than the friction factor 
of the bottom of the main channel; 
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− distance between plants along the flow, ax, must be less than the length of the 
Karmann path, aNL, formed at a single plant submerged; 

− ratio of the main channel and the floodplain width must be less than 40. 
Flow resistance in parts of channel sections overgrown with vegetation depends on 

both vegetation and bed roughness and is calculated as a sum of the channel bed λs 
and submerged vegetation λv friction factors (Indlekofer 1981). Friction factors for 
high vegetation, λv, were the aim of investigations by Kaiser (1984), Lindner (1982) 
and Pasche (1984), and is computed  according to the concept issued by these authors. 

3. Example of calculations 

In order to check correctness of the developed algorithms and calculation procedures, 
the elaborated model was used for an unsteady flow simulation in a very simple ex-
ample. A channel of L = 50 km and a bottom slope of J = 0.0005 is studied. A com-
pound river cross-section is stable and its geometry and growth of vegetation (Fig. 1) 
were taken from (Kubrak and Nachlik 2003). The left floodplain is 20 m wide and 
covered with shrubs of dp = 0.03 m diameter and an average distance between individ-
ual shrubs of ax = ay = 0.25 m. The channel slopes are covered with low vegetation of 
roughness height ks = 0.09 m. The bottom of the main channel is covered with small 
and medium-grain sand of roughness height ks = 0.05 m. The right flooplain is 33 m 
wide and planted with shrubs and trees of an average diameter dp = 0.04 m and aver-
age spacing ax = ay = 0.3 m. The roughness height of the foodplains is 0.10 m. 

 
Fig. 1. A sketch of a compound cross-section (Kubrak and Nachlik 2003). 

A numerical mesh with a constant space step Δx = 1000 m and with 51 nodes was 
used. The time step Δt was constant and equal to 180 seconds. The simulation was 
performed for the following initial and boundary conditions: 
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− at the moment t = 0 there was a steady flow in the analyzed channel of dis-
charge Q = 15 m3/s. 

− at the cross-section x = 0 starting the channel a discharge  hydrograph Qx=0(t) 
was given, as presented in Fig. 3 (Q0 curve). 

− at the end of the river (x = 50 km) a boundary condition was assumed in the 
form of a rating curve Q(H) calculated from channel discharge computation at 
the slope J = 0.0005 (Fig. 2).  
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Fig. 2. Rating curve − downstream boundary conditio.  

In Fig. 3, discharge hydrographs  are presented calculated  at the cross-sections 
x = 0, x = 20 km, and x = 40 km. Calculated discharges for the main river channel and 
floodplains for forecast time t = 18 h are shown in Fig. 4. 
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Fig. 3. Discharge hydrograph Q0 for boundary condition x = 0 and flow hydrographs Q20 and 
Q40 calculated for x = 20 km and Q40 for x = 40 km.  
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Fig. 4. Discharges Qch in the main river channel, Qlf in the left floodplain and Qrf in the right 
floodplain, calculated for forecast time t = 18 h. 

In Fig. 5, discharge variability is shown for selected forecast time. In the ana-
lysed example, the maximum water discharge in floodplains is about 15% of the total 
discharge. The developed model enables calculating water velocity in the main river 
channel, as well as in floodplains. In the analysed example, for forecast time t = 12 h, 
when hydrograph at x = 0 equals the maximum value of 80 m3/s, water velocity at this 
cross-section for the left floodplain is 0.15 m/s, for the main channel – 1.74 m/s, and 
for the right floodplain – 0.14 m/s, at the water depth in floodplains of 1.7 m and in 
the river channel of 3.7 m. The velocity VT in the imaginary walls between the main 
channel and its floodplains is 0.38 m/s and 0.37 m/s for a left and right part, respec-
tively. The calculated water mass balance error for the total time simulation (t = 60 h) 
was 0.09% and shows that the developed numerical scheme well fulfils the mass bal-
ance equation.  

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50
x [km]

Q
[m

3/
s]

t=12h  t=18h t=24h  

Fig. 5. River flow rates calculated for forecast time t = 12, 18, and 24 h. 
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4. Conclusions 

The developed model enables finding a solution for unsteady flow problems in natural 
rivers with vegetated floodplains. It may be used as a tool to estimate new water sur-
face level for renaturalized rivers, especially for flood conditions, as well as to ensure 
suitable conditions for habitat diversity in projects of environmental flood manage-
ment. It is an appropriate tool to estimate floodplain vegetation influence on flow con-
ditions.  

The model in which Pasche’s method was combined with St. Venant equations 
was stable and computationally fast. Contrary to the traditional approach, where 
floodplains are considered as storage areas, the proposed model computes velocities, 
discharges and friction factors for each specified part depending on the type of vegeta-
tion in floodplains and the main channel.  

The model was used for a relatively simple reach. In this case, the floodplains do 
not convey a significant part of the total discharge. Over 15% of the total discharge 
was transported in the floodplains. The obtained results allow to analyze variations of 
water level and discharges in the main channel as well as on the floodplains. Actual 
measurement data will be used for calibration and verification of the model in future 
development.  

References 
Cunge, J.A., F.M. Holly and A. Verwey, 1980, Practical aspect of computational ri-

ver hydraulics, Boston, 420 pp.  
Indlekofer, H., 1981, Überlagerung von Rauhigkeitseinflüssen beim Abfluß in offenen 

Gerinnen. Mitt. Institut für Wasserbau und Wasserwirtschaft, RWTH Aachen, Heft 
37, 105-145. 

Kaiser, W., 1984, Flieβwiderstandsverhalten in Gerinnen mit durchströmten Uferge-
hölzzonen. Thesis presented for the degree of Doctor in Applied Sciences TH 
Darmstadt. 

Kubrak, J., and E. Nachlik, 2003, Hydrauliczne podstawy obliczania przepustowości 
koryt rzecznych, Wydawnictwo SGGW, 317 pp. 

Lindner, K., 1982, Der Strömungswiderstand von Pflanzenbeständen.  Mitteilungen 
aus dem Leichtweiss - Institut für Wasserbau der TU Braunschweig, H. 75. 

Mertens, W., 1989, Zur Frage hydraulischer Berechnungen naturnaher 
Flieβgewasser. Wasserwirtschaft 79 (4), 170-179. 

Nuding, A., 1991, Flieβwiederstandsverhalten in Gerinnen mit Ufergebusch. Entwick-
lung eines Flieβgewasser mit und ohne Geholzufer, unter besonderer Berucksichti-
gung von Ufergebusch, Wasserbau-Mitteilugen Nr.35, Technische Hochschule 
Darmstadt. 

Pasche, E., 1984: Turbulenzmechanismen in naturnahen Fließgewässern und die Mög-
lichkeit ihrer mathematischen Erfassung. Thesis presented for the degree of Doctor 
in Applied Sciences, RWTH, Aachen. 



 244

Pasche, E., and G. Rouve, 1985, Overbank flow with vegetatively roughened flood 
plains. Journal of Hydraulic Engineering 111 (9), 1262-1278. 

Rickert, K., 1988, Hydraulische Berechnung naturnaher Gewässer mit Bewuchs.  
DVWK-Fortbildung, H. 13. 

Rouvé, G., DFG Deutsche Forchungsgemeinschaft, 1987: Hydraulische Probleme 
beim naturnahen Gewässerausbau Ergebnisse aus Schwerpunktprogramm "Anthro-
pogene Einflüsse auf hydrologische Prozesse", Band 2. 

Schumacher, F., 1995, Zur Durchfluβberechnung gegliederter naturnah gestalteter 
Flieβgewasser. Mitteilung Nr. 127, TU Berlin. 

Swiatek, D., J. Kubrak and J. Chormański, 2006, Steady 1 D water surface model of 
natural rivers with vegetated floodplain: An application to the Lower Biebrza, Pro-
ceedings of the International Conference on Fluvial Hydraulics River Flow, Vol. 1, 
p. 545-553. 

Szymkiewicz, R., 2000, Modelowanie matematyczne przepływów w rzekach i 
kanałach, Warszawa PWN, 321 pp.  



PUBLS. INST. GEOPHYS. POL. ACAD. SC., E-7 (401), 2007 

Inundated Flood Planes and the Flow over Groynes 
and Oblique Weirs  

Wim S.J. UIJTTEWAAL  
Faculty of Civil Engineering and Geosciences, 

Delft University of Technology, The Netherlands 
e-mail: w.s.j.uijttewaal@tudelft.nl  

Abstract  

At high water stages the flow in groyne fields is highly affected by the water 
flowing over the groyne. For those conditions the groyne acts as an (im)perfect 
weir. In a similar way local elevations in the flood planes can be considered as 
weirs. The arbitrary orientation of those obstacles with respect to the flow pro-
hibits the use of straightforward weir formulations. By considering the generic 
case of the flow over oblique weirs, a simple analytical approach already gives 
good insight and acceptable estimates, whereas a 3D numerical model clearly 
shows the complexities of flow separation and non-hydrostatic effects.   

1. Introduction 

The winter-bed of many lowland rivers contains a variety of obstacles that affect the 
flow and its conveyance capacity. Training works such as groynes and summer em-
bankments are build for the purpose of guiding the water at low and moderately high 
stages. Groynes are constructed in order to stabilize the river banks and to keep the 
main channel navigable. Summer embankments prevent the flooding of the whole 
flood plane in the case of incidental high water during summer. During very high dis-
charges both types of obstacles are submerged and will have an effect on the convey-
ance capacity of the river (stage discharge relation). Despite the fact that the geometry 
of a trained river has not undergone many changes over the last decades (or even cen-
turies), little is known about the flow details around groynes and other obstacles that 
induce a sudden change in flow direction, either horizontally or vertically (Bos 1989, 
Fritz and Hager 1998). 

In this paper attention will be paid to groyne field flow patterns as occurring with 
emerged and submerged conditions. Especially the dynamics of sudden vertical varia-
tions will be addressed, as it occurs with submerged summer embankments and groy-
nes. 
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2. Flow patterns 

2.1 Groyne fields 
Bank protection by means of groynes is established by keeping the high flow veloci-
ties in a river away from the bank. Blocking the flow in the near-bank region confines 
the cross-sectional area which leads to higher velocities in the centre of the river with 
a consequent deepening of the main channel. This provides a second purpose for 
groynes. The equilibrium bed level in the main channel can be ‘tuned’ locally by 
choosing the proper length for the groynes. The standard flow field in groyne fields 
with an aspect ratio close to unity consists of a single gyre that fills up the whole 
groyne field (Fig. 1). The circulation is driven by the momentum exchange through 
the mixing layer.  

Mixing layer
Mixing layer

Primary gyre
Sec.
gyre

l

w

 
Fig. 1. Patterns as observed with dye exchange experiment for two different aspect ratios 
w/l = 0.7 left, w/l = 0.3 right. 

In the corners near the bank small counter rotating gyres are found. With this ge-
ometry a stable circulation is obtained which flows rather smoothly at about 30% of 
the main stream velocity. When the distance between the groynes increases to an as-
pect ratio of about 3, the circulation cell becomes elongated and separates from the 
bank (Uijttewaal et al. 2005a). This provides room for a secondary gyre rotating in the 
opposite direction. The secondary gyre gets its momentum from the primary gyre via 
an intermediate mixing layer, resulting in a velocity of approximately 30% of the 
speed of the primary gyre. There appears to be little interaction between the secondary 
gyre and the main stream. Its flow velocity and the exchange with the main stream are 
therefore very small. A much stronger interaction is found in the region where the 
primary gyre is in contact with the main stream. The mixing layer grows to a bigger 
width than in the square groyne field. This is due to the vortex shedding that occurs 
downstream of the groyne tip and the velocity gradient sustaining the vortical motion.  

2.2 Submerged groynes 
When the water level increases, the groynes become submerged and water starts flow-
ing over the groyne crest. The recirculating flow pattern of the emerged case interacts 
with the unidirectional flow in the top layer. Therefore the momentum balance in the 
groyne field has two sources that can cause a strongly fluctuating flow field when they 
are of the same order of magnitude (Uijttewaal 2005b).  
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Fig. 2. Velocity contours (m/s) for flow over a submerged groyne. Lab experiment with 30 cm 
water depth in the main stream and 5 cm above the groyne crest (Uijttewaal 2005b). 

Figure 2 shows the contours of the velocity magnitude over a groyne that is 5 cm 
submerged. It shows that near the bank the water flows uniformly over the crest 
whereas near the tip the exchange of momentum with the main stream is clearly visi-
ble in the much higher velocity there. The larger region with higher velocity down-
stream of the crest is caused by separation of the flow in the vertical plane. The verti-
cal recirculation provides no room for the surface layer to decelerate.  

A further interpretation of the flow dynamics around submerged groynes is 
sketched in Fig. 3. With high water levels the flow over the groynes is stationary with 
almost parallel streamlines. The flow will detach in the vertical plane just downstream 
of the groyne crest. When the groynes are slightly submerged, the dynamics in the 
flow pattern is caused by the large eddies that move through the groyne field thereby 
governing the amplitude variations of the flow over the groyne. 

eddy path  

Fig. 3. Flow patterns for submerged groynes. Fully submerged; with smooth stationary flow 
(left), small submergence level causing a dynamic flow field governed by the interfacial vortex 
(right).  
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In the idealized configurations, as described above, the mean flow direction is 
generally perpendicular to the groyne crest. In that case the flow over the groyne 
shows strong similarities with that over a weir, when the effects of the tip are necleg-
ted. The discharge over the groyne crest will be affected by the energy losses due to 
wall friction and de- and acceleration of the flow. In practice the direction of the 
groyne crest is not always perpendicular to the flow. Especially for submerged condi-
tions where the flood plane configuration has a great influence on the mean flow di-
rection, it is likely that the flow is oblique with respect to the crest. In order to be able 
to understand the processes related to the flow over submerged groynes we consider 
the generic problem of flow over oblique weirs. 

2.3 Oblique weirs 
From  a  standard  analysis  using  energy  conservation  the  specific  discharge  over 
a perfect weir (i.e. critical flow over the weir crest) is readily obtained: 

2 2
0 03 3dvq C H gH⊥ =  where H0 is the upstream energy height above the crest and Cdv 

the discharge coefficient. The imperfect (sub-critical) condition can straightforwardly 
be analysed using momentum conservation for the downstream part. Though this ap-
proach leads to exact solution, the downstream energy loss is quite often described 

multiplying with an extra loss coefficient 2
*

0
1

pHC H
⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 where H2 is the down-

stream energy height and p an adjustable parameter (Villemonte 1947).  

When a weir is situated under an angle with the main flow direction the length of 
the weir, denoted kB , is larger than the width of the stream sB  resulting in a decreased 
discharge per unit weir length. This geometrical effect is often used to increase the 
discharge capacity of perfect weirs used for regulation of the water level. Also, from 
the viewpoint of inundating floodplains, we are mainly interested in the specific dis-
charge for the weir kq Q B=  rather than sQ B  (see also Fig. 4). 

Bs
Bkφ

hd
aweir1:41:4

H0 Lk

Top 
view

Side view

 
Fig. 4. Flow configuration with definitions of weir dimensions and flow properties. The dash-
dotted line represents the energy height while the upper solid line is the free surface. 



 249

The approaches for the oblique weirs as found in literature are not very attractive 
mainly because of their highly empirical character. Aichel (1953) suggested that the 
specific discharge q for an oblique weir relates to the specific discharge q⊥  of a per-
pendicular weir in accordance with:  

 01 A
h aq

q a⊥

−
= − β  (1) 

All effects of the obliqueness are captured in a single coefficient Aβ . This method 
was extended by Borghei et al. (2003) using a large number of coefficients and cali-
brating them for small values of 0( )h a a−  only. It was found that for free flow the 
discharge coefficient increases with upstream water level for inclinations 45<ϕ  
whereas dC  decreases for 45>ϕ . For submerged conditions the inclination gave 
slight increases of the discharge. Since Borghei et al. did not account for the effects of 
the upstream velocity it is difficult to read their results in terms of energy loss.  

In order to better understand the physics, we look for a very simple approach and 
see how well this explains reality. For an inclination of the weir with respect to the 
approaching streamlines the flow is decomposed in a component perpendicular to the 
weir and a component parallel to the weir (see Fig. 5). The component parallel to the 
weir is assumed not to be affected by the weir because away from the wall significant 
pressure gradients in that direction are absent. The effects of bed friction are neglected 
for the smooth-bed cases while short downstream distances are considered. The above 
described weir behaviour can now be applied to the perpendicular velocity component 
straightforwardly.  
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Fig. 5. Decomposition of velocities parallel and perpendicular with respect to the oblique weir. 

The increased velocity above the weir results in a change in flow direction towards 
the crest-normal direction. For perfect weir conditions and small values of 2( ) ,h a a−  
the upstream velocity is small and the flow will be directed almost perpendicular to 
the weir (see Fig. 5). For increasing water levels the relative increase of the velocity 
above the weir is smaller resulting in a large angle with respect to the weir crest. In the 
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limit of very high water levels the flow is hardly sensing the weir and keeps its direc-
tion: .≈β ϕ   

3. Experiments and numerical simulations 

The data that we use to validate the above assumptions in combination with the model 
computations are obtained from an experiment performed long ago by DeVries 
(1959). It concerns a 1:25 scaled physical model as depicted in Fig. 3. The typical weir 
height was 0.12 m whereas the width of the flume sB  was equal to 4 m. Unfortunately 
the available information is limited to upstream energy height and downstream water 
level 2 0( ) .h a H−  For a number of discharges the properties are determined with 
weirs of various inclinations ϕ = 0°, 30°, 45°, and 60°. Despite its limitations this data 
set contains at least a number of cases with submerged weirs and is thus very useful in 
view of application to inundated flood planes at high water stages. In order to supple-
ment the limited data set and to obtain a more detailed insight into the structure of the 
flow, 3D numerical simulations were performed using the FINLAB-model with non-
hydrostatic pressure formulation and a moving free-surface. For more details see Wols 
(2006).  

The numerical model captures the distinct flow regimes ranging from fully sub-
merged to critical flows quite well, with a proper representation of the undular and 
breaking hydraulic jump. Figure 6 shows the result of a simulated undular hydraulic 
jump with a strong deformation of the free surface and associated deviation of the 
mean pressure from the hydrostatic pressure. It is only a small part of the domain 
where the strong deviations occur, clearly related to the surface curvature. 

 
Fig. 6. Example of a simulation showing the surface deformation and deviations of the mean 
pressure from the hydrostatic pressure for an undular jump. 

The energy loss associated with the flow over the weir can straightforwardly be 
determined from the numerical data by determining velocities and water levels. In this 
way, the numerical simulations may be used to analyze the cause of the increased 
losses in case of obliqueness of the weirs. With sufficiently accurate simulations, to be 
confirmed by direct comparison of the model results with the experimental data, the 
numerical results may be used to further analyze the energy losses in the flow field, 
including the 3D flow structure in the wake of the weir.  

Figure 7 shows a comparison of the experimental analytical and numerical weir 
discharge coefficients Cd = C*Cdv for the various conditions of the experiment. Despite 
the scatter in the measured data, the agreement between the three approaches is rather 
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good. There is only a clear deviation for the 60˚-case where the analytical model over-
estimates the discharge whereas the numerical model properly accounts for the addi-
tional energy losses.  

3.1 Velocity direction 
With the simple analysis sketched in Fig. 5, the assumption was made that the velocity 
in the direction parallel to the weir was not affected by the weir. In order to demon-
strate the validity of this assumption, the magnitudes of the decomposed velocity 
components obtained from the numerical simulations are shown in Fig. 8.  

 
Fig. 7. Discharge coefficients for different weir inclination compared. 

The upper panel reveals that over almost the full length of the weir the perpendicu-
lar velocity component is uniform and that only small effects of the side walls are 
visible. Further downstream the deflected flow interacts with the side walls and this 
uniformity is gradually lost. The deflected flow might also give rise to flow separation 
in the horizontal plane. At the location (x, y) = (3.5 m, 2 m), the velocity becomes very 
small and might even change sign. This interesting phenomenon lies outside the scope 
of this study but will receive further attention in the program of experiments that will 
be undertaken.  

In a similar way, the parallel velocity component is mostly affected near the side 
walls. For the larger part of the domain this velocity is roughly constant and only a 
small and gradual change is observed in the vicinity of the weir. At the downstream 
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side of the weir the non-uniformity is the largest. Nevertheless, the results show that 
the assumption of a constant weir-parallel velocity is valid for the locations not too 
close to the wall.  
 

 
Fig. 8. Contour plots of decomposed velocities for a 45° weir. The flow is from left to right and 
the weir crest is located between (x, y) = (−2 m, −2 m) and (x, y) = (2 m, 2 m). 

3.2 Flow separation  
It turns out that for the imperfect flow over an oblique weir, the detailed flow field 
downstream of the weir is highly affected by the angle of the weir with respect to the 
approach flow. Even if the submergence is relatively large, the weir causes a strong 
deflection of the flow. The inclination, in combination with the separation zone at the 
downstream side, gives rise to helical streamlines transporting mass and momentum 
along the weir. Figure 9 shows that through this effect material can be advected over 
large distances across the flow. Near the bed, high velocities can occur that can give 
rise to bed scour.  

The simulated shape of the recirculation zone is highly affected by the inclination 
of the weir. In Fig. 10, the flow separates in the area of strong deceleration. For the 
perpendicular case (left) the downward directed momentum leaves little room for a 
separation bubble. There seems to be an almost stagnant region but it is not very con-
vincing. It should be noted that the limited resolution puts restrictions on the flow 
details that can be reproduced. Keeping the total discharge constant while changing 
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the inclination of the weir to 60° results in a more pronounced separation bubble. With 
the same total discharge the greater length of the weir leads to a smaller velocity per-
pendicular to the weir and a smaller associated momentum transport. 

 
Fig. 9. Free surface (light grey) and streamlines (black) around an oblique weir (dark grey). 

 

 

Fig. 10. Flow pattern downstream of the weir in the plane perpendicular to the weir crest (left) 
perpendicular weir, (middle) oblique 60°, with the same total discharge, (right) oblique 60° 
weir with same specific discharge as the perpendicular weir left. 

This might enhance the separation and give a larger recirculation zone. For a fair 
comparison also the flow pattern around the inclined weir is shown where the specific 
discharge and velocities perpendicular to the weir are kept the same (right). In this 
case a clear separation bubble is found. Since the total velocity over the inclined weir 
is much bigger, wall friction will play a bigger role. It is also seen that the depression 
in the free surface is not as deep as in the case of a perpendicular weir. These details 
show that the velocity component parallel to the weir crest affects the flow separation 
and results in a slightly smaller energy loss reflected in a higher downstream water 
level. It must be noted here that the details that are resolved by the numerical model 
are not compared with experimental data because these were not available. Clearly, 
detailed data are necessary in order to find out whether the modeling details including 
the turbulence model, resolution and boundary conditions are correct. 
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4. Conclusions 

Groynes have a profound effect on the flow in rivers and give rise to a large variety of 
flow phenomena. The momentum exchange driving the circulations is governed by 
separation. Depending on the relative submergence, the mixing layer at the groyne 
field interface is capable to sustain a gyre pattern including a return flow near the 
bank. With increasing water level, the flow over the groyne crest dominates resulting 
in a unidirectional flow through the groyne field. Depending on the direction of the 
approach flow in relation to the groyne crest, the flow will be deflected in the accel-
eration phase.  

Separation in the vertical plane is governing the discharge over the groyne. A nu-
merical model used for estimating discharge capacity and dispersion should therefore 
account for the observed complex flow phenomena. This requires a non-hydrostatic 
model with a moving free surface and advanced turbulence modeling. The latter is 
important for the vertical separation of the flow downstream of the groyne crest but 
also for the large-scale horizontal separation near the groyne tip. 
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Abstract  

Bifurcations in river networks are key components of anastomosing river 
systems. However, most research has investigated bifurcations in meandering 
and braided river systems but not in anastomosing ones. In addition, numerical 
modelling has been mainly conducted for a single reach. This paper is to investi-
gate the use of a numerical modelling approach (i.e. cellular automata (CA) 
paradigm) for a large bifurcation in the Mekong River system at the Siphandone 
Wetlands, Laos. The main characteristics of this river system are: (i) multiple 
complex channel; (ii) the combination of bedrock and alluvial river bed; (iii) 
flooding is quite fixed in terms of timing annually but extremely variable in 
terms of peak discharge; and, (iv) more than 60% of the river banks are unstable. 
The CA approach is relatively simple and has the ability to address some of the 
shortcomings of other types of numerical model. Via a CA model with a proper 
flow routing scheme, channel dynamics can be accounted, with the relevant pre-
diction of inundation patterns, and water depths. The results show the application 
of a CA model for predicting the scale of flood inundation according to different 
scenarios of discharge from upstream. Finally, the discussion is used to argue 
how to successfully apply a CA model in such a complicated hydraulic system, 
as a bifurcation pattern. 

 
Key words: Numerical modelling, cellular automata (CA), discharge rout-

ing, bifurcation river system, water surface, flood inundation pattern. 

1. Introduction 

The cellular automata (CA) approach represents a simple dynamical system approach, 
which can describe the properties of a physical system at different levels of concern. 
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In other words, the CA approach is a powerful method to describe, understand, and 
simulate the behaviour of a complex system (Chopard and Droz 1998). Moreover, in 
the CA approach, a set of specific rules are identified to show the relationship between 
a cell and its neighbours (Murray and Paola 1997). 

Even though 1D, 2D, and even 3D hydraulic models are common, due to some 
limitations such as (i) the complexity of solving complex Navier-Stoke equations; and, 
(ii) the difficulty of defining finite element lattices, application of this type of hydrau-
lic model is limited (Coulthard et al. 1999). The CA approach appears as a promising 
one that can be used to perform different types of hydraulic calculation (Murray and 
Paola 1994, Coulthard et al. 1996, Nicholas 2000). This type of numerical model does 
not require complex, but quite simple data input (i.e. a Digital Elevation Model 
(DEM) of the study area and the hydraulic-related data such as a hydrograph, and 
sedimentation transportation pattern). Among these CA-family models, CAESAR 
(Cellular Automaton Evolutionary Slope And River) firstly developed by Coulthard 
(1996) can be used to estimate the scale of flood inundation which can then be used 
for catchments management purposes and ecological studies. In addition, while most 
research so far has been done for a single river reach, CAESAR can be applied for a 
large river system.  

The overall aim of this paper is to test if CAESAR is suitable for simulating a bi-
furcation river system. In specific, this paper is to estimate the behaviours of a bifurca-
tion river system via the application of CAESAR with different scenarios of upstream 
discharge. 

2. Approach and methods 

2.1 Study area 
At the global scale, the Mekong River is ranked the twelfth in terms of the length (i.e. 
approximately 2,500 km in total) and the eighth in terms of the mean discharge (i.e. 
approximately 475 km3 yr−1) (Gupta et al. 2002). Downstream from Tibet and China, 
the Mekong flows through other five countries (i.e. Myanmar, Laos, Thailand, Cam-
bodia, and Vietnam). At the southernmost part of Laos, the Mekong has an anastomos-
ing river pattern with a maximum width measured across islands and channels of 
about 15 km (i.e. the Siphandone Wetlands) (Fig. 1B). 

The main characteristics of the river system within the Siphandone Wetlands are: 
(i) multiple complex channel; (ii) the combination of bedrock and alluvial river bed; 
(iii) flooding is relatively fixed in terms of timing annually, but extremely variable in 
terms of peak discharge; and, (iv) more than 60% of the river banks are unstable. In 
addition, along the Mekong, there are 23 gauging stations where hydraulic features of 
the river are collected daily. However, in the study area, there are no station and the 
nearest upstream station is at Pakse (Fig. 1A). Because there are no main tributaries 
between Pakse and the Siphandone Wetlands, the discharge at Pakse is used as the 
main input to the Siphandone Wetlands in this paper. 

Due to the limitation of topographic data, portions of the Siphandone Wetlands in 
the south and south-west cannot be considered at this time (Fig. 1B). Therefore, only a 
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bifurcation within the main channel is of concern in this paper. The size of the avail-
able DEM of the study area is 315×135 cells and the resolution of each cell is 80 m2. 
 

no avaiable data area  
Fig. 1. Pakse station (A), and Siphandone Wetlands (B), Laos. 

From historical data, three representative peaks of water discharge during the 
monsoon flooding period are used as the main scenarios for the hydraulic model. They 
are: (1) the highest discharge of 56,000 cumecs (in 1978); (2) the average of the peak 
discharges from 1978 to 2005 (i.e. 39,791 cumecs); and (3) the lowest discharge of 
26,797 cumecs (in 1998). 

2.2 Methods 
To route water along a river, CAESAR uses a four dimensional scanning algorithm as 
illustrated in the following figure (Fig. 2). 

 
Fig. 2. Schematic of the scanning algorithm after Coulthard et al., 2002. Copyright John Wiley 
and Sons Limited. Reproduced with permission. 
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At each iteration, four scans are successively taken as shown in Fig. 2. The first 
scan (Box 1) is taken from right to left (looking downstream) and water is routed from 
the current cell to a set of neighbouring cells with lower elevation. In the case where 
there is no cell with lower elevation relative to the current cell, but the combination of 
the elevation and water column (of the current cell) is higher than the elevation of the 
neighbouring cells, water is retained in the current cell up to the height of the obstruc-
tion whilst the rest is routed on. When the valley is reached, the scan continues “up-
hill” without moving any water (Box 2); this is the intermediary step to start Box 3. 
Next, Box 3 is performed with the same calculation, but in the opposite direction of 
that of Box 1. Finally, the last scan is to direct water downstream (Box 4). 

In this paper, only one process of discharge routing is presented as it is relevant to 
the objectives of the study. The water depth at the cell exit is calculated using a rear-
rangement of the Manning’s equation (Eq. 1). The differences in slope between di-
agonal neighbours are accounted for dividing by 2Dx  (where, Dx is the size of grid 
cell). The surface flow is then routed as in the described scanning routing and the pro-
portion routed to the neighbouring cells (i.e. Qi) is calculated as follows (Eq. 2): 
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where d is water depth in the cell exit; n is Manning’s coefficient; S is the average 
slope; e is the elevation of the current cell; ei is the elevation of the neighbouring cell 
i; Q is discharge of the current cell; and Qi is the proportion of discharge delivered to 
the neighbouring cell i from the discharge at the current cell. 

3. Results 

Calibration data will be available in due course from nine daily read stage boards and 
from local information on the lateral extent of annual flooding. This means that later 
on, modelled water surface elevations and lateral extent to flooding can be checked for 
accuracy. At the present the calibration data have not been validated. So, the tests 
were done to estimate the changes of flooding extent and water depth due to different 
scenarios of discharge upstream. 

A test was undertaken to simulate the inundation pattern for different scenarios 
(i.e. Scenario 1 – the highest discharge; Scenario 2 – the average discharge; and Sce-
nario 3 – the lowest discharge) of upstream discharges (Fig. 3). By looking at the in-
undation pattern, it is clear that the higher the discharge, the more the area along river 
banks is flooded. At Scenario 3 – the lowest discharge scenario, the wetted area is 
narrower and water is not able to route along the central (noted as “A”) cross channel 
of the river system. In addition, the river bed of lower branch (noted as “II” in Fig 3, 
Scenario 1) of the river system has lower elevation compare to that of the upper one 
(noted as “I” in Fig 3, Scenario 1) therefore the water depth at the lower branch is 
greater than that at the upper one. 
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Fig. 3. Flooding extent and water depth at different discharges from upstream. 

The following figure (Fig. 4) shows the water depths at three different cross-
sections (see Fig. 3, Scenario 1) with three scenarios of discharge. It can be seen that 
even though the obtained results have not been validated yet, they are quite accept-
able. The water depth across the cross-section increases while the upstream discharge 
increases and the water depth changes quite consistently at all three cross-sections. 

4. Discussion 

CAESAR is a useful model to estimate the change of river morphology as one compo-
nent of catchments (Coulthard et al. 2007). To use CAESAR to achieve an acceptable 
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inundation pattern and water depth along a complex river system, the code of the 
model can be further adjusted. This possibility is being explored. 
 

 
Fig. 4. Diagram of water depths at three cross-sections with three scenarios of upstream 
discharge. 

Even though the requirement of input data is quite simple, CAESAR requires that 
flow direction must be from the left to right hand side of a DEM and river system 
must fully exist on a DEM as well. However, the current version of the DEM for this 
study has no information about the elevation for the lower branch at the later segment 
of the river (see Fig. 3). The lack of the elevation information would cause the accu-
mulation of water at the end of the lower branch and would result in the “up-hill” 
flows at the surrounding areas. To overcome this problem, an “extended channel” was 
inserted to route water after running through the end of this branch to the right side of 
the DEM. 

CAESAR is a CA model using a simple approach to simulate the action of a river 
system over time. In this paper, the results show that the model can be used to simu-
late the inundation pattern and water surface (WS) of a bifurcating river system with 
different levels of discharge from upstream. An advantage of this model is that it 
automatically includes Manning’s n in its calculation of WS based on the user-
specified grain size, or other roughness length, of the river bed as well as the rough-
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ness of the riparian vegetation. In addition, a pit-filling algorithm included in the 
model can help achieve an acceptable WS. However, to achieve acceptable water sur-
faces that are close to real ones, tests must be done by applying different input values 
of different parameters (i.e. water discharge from upstream, Manning’s n, WS smooth 
radius, flow distribution width as well as the iterations of simulation) to determine a 
suitable set of parameters for a specific river system before any calibration tests are 
conducted. 

CA models can readily deal with deposition and erosion in anastomosing channels 
where the radius of curvature is large, but small-radius meandering river systems 
where bends always occur along the river are difficult to accommodate. However, in 
CAESAR, attention has been paid to overcome this problem. Thus, additional calcula-
tion will be very important in the case of consideration for erosion and deposition 
along the river banks because bifurcations in the Mekong River system do not only 
include multiple channels, but also involve some tightly meandering patterns. 

The possibility to communicate with GIS (e.g. Arc GIS) means that CAESAR can 
be applied widely. The outputs from CAESAR can be directly imported into GIS for 
further spatial analysis or display (i.e. to calculate and demonstrate, for example, areas 
of inundation for different discharge values).  

By using simple empirical flow equations, such as Manning’s n or Chezy, the 
terms of momentum are lost within the CAESAR calculation. However, the relation-
ship between empirical roughness determination, field data and CAESAR model for-
mulation is the subject of current research.  

5. Conclusion 

CAESAR is not only a useful CA model to estimate changes of river morphology 
(Coulthard and van de Wiel, 2006), but can also be used to estimate the flooding scale 
for a large and complicated river system (e.g. the bifurcation river system for a range 
of discharge values, from low to extreme). At present, there are various additional CA 
models available based on different theories as well as being used for different pur-
poses which poorly reproduce water surfaces. CAESAR is able to simulate the water 
depth of a river system and therefore it is useful for obtaining a reliable water surface 
and for flooding estimation as well. Nevertheless, water depth is not the main objec-
tive of CAESAR’s simulation. The model needs to be further adjusted and test to ob-
tain reliable water depth, which then can be used to interpolate the water surface. Fur-
thermore, intensive sensitivity analysis and calibration are needed to make sure the 
model matches reality closely. 

CAESAR can also be used to estimate the erosion and deposition of the river 
banks and to simulate the evolution of the river bed. It is suggested that this model 
should be used in its full capacity (i.e. not only to simulate the inundation patterns and 
water depths of the river system) to simulate the “real” behaviours of the complicated 
river system (i.e. the anastomosing river system within the Siphandone Wetlands, 
Laos). 
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Abstract  

The ADZ model is a simple and effective tool for simulating solute transport 
in rivers. The study reported here concerns the model's numerical algorithm. 
Tracer data from the Murray Burn in Edinburgh is used to compare the perform-
ance of three alternative formulations. The theoretical advantages of a new algo-
rithm are borne out by simulations of the tracer data, although improvements in 
simulations, compared to those obtained with the standard algorithm, are proba-
bly only significant when the problem is poorly resolved in time. Nevertheless, 
the new algorithm can be recommended on the grounds that little extra effort is 
required to use it and simulations so obtained are generally more robust. 

1. Introduction 

The Aggregated Dead Zone (ADZ) model is an alternative approach to the Advection-
Dispersion Equation (ADE) for simulating solute transport in rivers (Rutherford, 
1994). Since the model's inception, little attention has been paid to the model's nu-
merical algorithm. The aim of this paper is to draw readers' attention to this aspect of 
the model. This is achieved by showing how the algorithm is derived, and by explor-
ing some straightforward alternatives. The performance of three algorithms is illus-
trated by applying the model to tracer data collected in the Murray Burn, which is a 
small stream that runs through the Heriot-Watt University Campus at Riccarton in 
Edinburgh. 

The following sections present relevant details of the ADZ model, its application 
to the Murray Burn, presentation and discussion of illustrative results and, finally, 
some conclusions. 

 
 
 
 



 264

2. The ADZ Model 

2.1 Background 
The ADZ model originated in the work of Beer and Young (1983), where it was de-
scribed within the framework of the physically-based ADE model (Rutherford 1994). 
In that era, possibly the major disadvantage of the ADE model was that it did not ex-
plicitly account for the action of transient storage (TS) on the transport of solutes in 
rivers. It had been postulated that transient storage in dead zones was responsible for 
the elevated tails of, and the persistence of skewness in, observed concentration pro-
files that were not catered for by the ADE model. However, although (a) it was rela-
tively straightforward to include transient storage caused by dead zones in the ADE 
model (Bencala and Walters 1983) and (b) as a result better agreement with observa-
tions could be obtained, two additional model coefficients were introduced that were 
difficult to relate to measurable physical features. 

More recently, this ADE+TS model has become more popular (Hart 1995, Ro-
wiński et al. 2004). However, since transient storage may occur not only through the 
action of re-circulating flow within dead zones, but also through exchange with the 
hyporheic zone (Marion et al. 2003, Worman et al. 2002), the physical significance of 
the model coefficients remain a subject of debate (Czernuszenko and Rowiński 1997, 
Hart 1995, Schmid 2002). 

In the ADZ model, in contrast to simulating the action of a complex system of 
physical interactions, a conceptually simpler (but less well physically-based) approach 
is taken. Several matters are simplified, but crucially dispersion is modelled as if it 
were created by the action of a single transient storage zone that represents the aggre-
gated effect of all the physical dispersive mechanisms taking place in a reach. Previ-
ous studies (Wallis et al. 1989) have shown the benefits of this rather radical ap-
proach. Interestingly, the ADZ model coefficients have a simple physical interpreta-
tion, and have generally been found to be robust. 

2.2 Derivation 
Under steady flow conditions, the ADZ model is based on the following reach scale 
dynamic solute mass balance equation: 

 [ ]( ) ( ) ( )= −
dS t Q u t y t

dt V
 (1) 

where V is the volume of water in a reach, S(t) is the reach average solute concentra-
tion, Q is the flow rate of water through the reach, u(t) is the cross-sectional average 
solute concentration at the upstream boundary of the reach, y(t) is the cross-sectional 
average solute concentration at the downstream boundary of the reach and t is time. 

To model dispersion in the reach by the action of a (single effective) transient 
storage zone, the reach is represented by a continuously stirred tank (Chapra 1997). 
With this, any solute that enters the tank is immediately and uniformly mixed 
throughout the entire tank volume such that any change in the input concentration 
causes an immediate change in the output concentration. As it stands, this is not a 
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good representation of solute transport in a river, however, because there is no delay to 
represent the time it takes for the leading edge of a solute cloud to be advected through 
a reach. Similarly, if the continuously stirred tank is assumed to contain the same vol-
ume of water as the reach this is also inconsistent with reality, because it is certainly 
not the case that all the water in a reach is so well mixed longitudinally that the solute 
concentration in it is uniform. 

Both the above difficulties are overcome by assuming that the continuously stirred 
tank contains only a fraction of the total reach volume, and that the remaining water is 
contained in a plug flow tank (Chapra 1997) in series with the continuously stirred 
tank. With the plug flow tank there is no longitudinal mixing, but it introduces the 
required advective time delay.  

If γ is the fraction of the reach volume contained in the continuously stirred tank, 
and τ is the time delay associated with the plug flow tank, Eq. (1) can be modified by 
(a) replacing S(t) with γy(t) and (b) moving the origin of u(t) forward in time by τ. 
Thus the ADZ model equation that describes advection and dispersion is: 

 [ ]( ) 1 ( ) ( )dy t u t y t
dt T

= − τ −  (2) 

where T is the residence time of the transient storage zone (= γV/Q). A moment analy-
sis (Wallis 1994) reveals that: 
 t T= + τ  (3) 
where t  is the reach travel time (V/Q). γ is termed the dispersive fraction. 

2.3 Numerical algorithms 
Equation (3) can be used to predict the temporal solute concentration profile at the 
downstream boundary of a reach assuming that the model coefficients (T and τ) and 
the corresponding temporal solute concentration profile at the upstream boundary of 
the reach are known. Since the latter is usually in discrete form, a numerical solution 
algorithm for Eq. (2) is required. 

There are many numerical methods that are appropriate for such a straightforward 
ordinary differential – delay equation, including the well-known Euler and Runge-
Kutta algorithms. The approach used here, however, comes from linear dynamical 
systems theory (Schwarzenbach and Gill 1984). Consider, initially, the general first 
order linear dynamical system equation (with no time delay) shown below: 

 ( ) )()( tUtY
dt

tdY
β+α=  (4) 

where Y(t) is the system output, U(t) is the system input and α and β are constant coef-
ficients. A general numerical solution for this equation that relates the output at time 
t+Δt to the output at time t (where Δt is a short time interval or time step) is: 

 ( ) ( ) ( ) λλβ+=Δ+ ∫
Δ λ−ΔαΔα dUeetYttY

t tt

0
)(  (5) 

where λ is a dummy integration variable. Applying these ideas to Eq. (2) gives: 
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T
1

−=β−=α  (6) 

The accuracy of Eq. (5) depends on how U(λ) is approximated over Δt and on the 
product αΔt. Three treatments of U(λ) are now considered for the ADZ model. 

The simplest (and most natural) treatment of the input is to assume that it is con-
stant over a time step and that it takes the value corresponding with the start of the 
time step, i.e. u(t). Using this, Algorithm 1 (the standard algorithm) for Eq. (2) is: 

 δ−+ += kkk buayy 1  (7) 

where: 
 ( )Tta Δ−= exp  (8) 

 ab −=1  (9) 

 ( ) 1−Δτ=δ t  (10) 

and yk+1 is the downstream concentration at the time (k+1)Δt , yk is the downstream 
concentration at the time kΔt and uk−δ is the upstream concentration at an earlier time 
corresponding to a time delay of τ. Note that Eq. (10) allows for the fact that Eq. (7) 
automatically introduces a time delay of one time step. An equally valid treatment of 
the input assumes that it is constant over a time step and that it takes the value corre-
sponding with the end of the time step, i.e. u(t+Δt). Hence, Algorithm 2 is defined by 
Eqs. (7)−(9), but the time delay is now defined as: 

 ( )tΔτ=δ  (11) 

A theoretically better treatment of the input would consider its variation over the 
time step. The simplest variation is a linear one, i.e.: 

 [ ]
t

tuttutuU
Δ
λ

−Δ++=λ )()()()(  (12) 

Using this, Algorithm 3 for Eq. (2) is: 

 δ−+δ−+ ++= 11 kkkk cubuayy  (13) 

where: 
 ( )Tta Δ−= exp  (14) 

 tTatTab Δ−Δ+−=  (15) 

 tTatTc Δ+Δ−=1  (16) 

 ( )tΔτ=δ  (17) 

Differences in simulations obtained with these three algorithms are discussed below in 
relation to observed solute transport in the Murray Burn, which is a small stream run-
ning through the Heriot-Watt University Campus in Edinburgh. 
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3. Application to the Murray Burn 

Data were available from a series of tracer experiments (Burke 2002). Each experi-
ment consisted of the (gulp) injection of a known mass of Rhodamine WT dye fol-
lowed by the measurement of tracer concentration-time profiles at up to four meas-
urement sites. The profiles were obtained by measuring tracer concentrations in water 
samples (from the stream centre) using a calibrated Turner Designs fluorometer.  

The three ADZ model algorithms were used to simulate the solute transport in the 
reach between the first and second sampling sites. This reach is 137 m long with a 
mean width of 3.7 m, a mean longitudinal slope of 0.025 and a bed covered with cob-
bles of nominal size between the order of 1 cm and the order of 15 cm. In applying the 
algorithms, the values of T and τ were adjusted until an optimum agreement was 
found between predicted and observed tracer data at Site 2, under the constraint pro-
vided by Eq. 3 (reach travel times were evaluated as the time delay between the cen-
troids of the tracer data at the two sites). Note also that with the ADZ model, values of 
τ are constrained to be integer multiples of the time step. Eighteen experiments pro-
vided reliable data: experiments containing incomplete profiles were not used. 

4. Results and discussion 

Some clear trends emerged from the simulations. For example, the peak concentration 
and the overall shape of the observed concentration-time profiles were generally re-
produced well by all three algorithms for all eighteen experiments. However, simula-
tions with Algorithm 1 tended to show a phase lead, simulations with Algorithm 2 
tended to show a phase lag, while simulations with Algorithm 3 tended to show little 
phase error and were, therefore, consistently better. These features are illustrated well 
in Figs. 1 and 2. Table 1 shows a measure of the agreement between the observed and 
simulated concentration profiles for each algorithm, evaluated over all experiments. 
The data in the table are based on the coefficients of determination for each simula-
tion, calculated as 1-(e/var), where e is the mean square error and var is the variance of 
the observed  concentration profile,  respectively  (a value of unity indicating a perfect 
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Fig. 1. Comparison of observed and simulated concentrations: experiment 24. 

Coefficients of determination 
Algorithm 1 0.9620 
Algorithm 2 0.9445 
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Fig. 2. Comparison of observed and simulated concentrations: experiment 24. 

fit). The table suggests that there is little to choose between Algorithms 1 and 2, but 
that Algorithm 3 is better. Of course, it is difficult to judge the significance of the dif-
ferences between the values in Table 1, but the individual coefficients of determina-
tion shown on Figures 1 and 2 help to put them into perspective. In addition to these 
overall data, consideration of the individual experiments showed that in all but one 
experiment, Algorithm 3 produced the largest coefficient of determination. 

Table 1 

Coefficients of determination 

Algorithm 1 Algorithm 2 Algorithm 3 

Mean Standard 
deviation Mean Standard 

deviation Mean Standard 
deviation 

0.9686 0.0243 0.9668 0.0211 0.9889 0.0113 
 

The superiority of Algorithm 3 reflects its inherently more accurate treatment of 
the upstream concentration data. Also, Algorithm 3 is better suited to cases where 
there is some ambiguity in the time delay, δ, due to τ/Δt not being close to an integer 
value. As would be expected, the differences between the simulations obtained with 
Algorithm 3 and those obtained with either of the other two algorithms reduced as (a) 
the temporal resolution of the problem increased and (b) the ratio T/Δt increased. 
Since both of these parameters decrease with increasing river flow, it is probably more 
important to use Algorithm 3 for higher flow events. Alternatively, tracer experiments 
at high flows could be designed to employ a reduced sampling interval, as indeed had 
been attempted in the Murray Burn experiments. 

5. Conclusions 

This paper has focused attention on numerical algorithms for simulating solute trans-
port in rivers with the ADZ model. Some advantages of using an algorithm that uses 

Coefficients of determination 
Algorithm 3 0.9974 
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two values of upstream concentration (Algorithm 3) in contrast to the standard algo-
rithm that uses only one upstream concentration value have been discussed. Although 
Algorithm 3 generally provides better simulations, the differences are perhaps not 
significant unless the time step used is not matched satisfactorily to the river flow. On 
the other hand, the extra effort required to implement Algorithm 3 is negligible, so 
there is no impediment to using it, and by doing so ADZ model simulations would 
always tend to be more robust. 
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Abstract  

To determine the mass transport characteristics in rivers, a Lagrangian-
Particle-Tracking-Method (LPTM) based on random walk simulations has been 
developed. In a first step the accuracy of this model formulation has been tested 
using analytical results for horizontal shear flow in an infinite wide channel. To 
implement the effect of second order processes as they are given for example by 
the mass exchange with dead-water zones, a modified boundary condition has 
been introduced that allows to reduce the transport velocity of the tracer mass in 
the system. The model has been used to determine transport characteristics in a 
section of the river Rhine. The results are compared with tracer experiments that 
have been performed for different hydrological conditions. 

1. Introduction 

Accidental pollutant spills can influence the water quality in natural rivers over very 
long distances. To aid decision makers, river alarm models are used to predict trans-
port scenarios in the case of accidental pollutant spills. Channel heterogeneities, such 
as dead zones or retarded flow zones caused by overbank flows, meanders, hyporheic 
flow, partially vegetated areas, and groin fields cause additional flow non-uniformities 
which result in increased stretching of the pollutant cloud, i.e. increased dispersion 
once a new asymptotic stage has been reached. These effects occur in combination 
with a reduction (retardation) of the effective transport velocity below the cross sec-
tional mean velocity. No consistent, mechanistically justifiable approaches to this 
problem of channel heterogeneities have been developed to date. A high degree of 
empiricism prevails on that issue in current practice, e.g. on river alarm models im-
plementation and operation, since heterogeneities in channel morphology are usually 
irregularly distributed along the river. For the calibration of the Rhine Alarm Model 
(RAM), which has been developed by the ICPR/CHR (International Commission for 
the Protection of the Rhine / International Commission for the Hydrology of the Rhine 
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basin) as a consequence of the disastrous chemical accident in 1986 in Basel, a series 
of extensive tracer experiments under various hydrological conditions (van Mazijk 
2002, Behr 2001) were necessary. A reduction of needed tracer experiments for the 
implementation of new river alarm models is the overall goal of this work.  

Groin fields form – depending on their geometry – more or less “dead-zones”, i.e. 
the mean field-averaged forward convective velocity is zero. However, there is an 
effective shear zone at the groin field boundary to the mean channel: these causes both 
a net circulatory mechanism as well as intermittent turbulent exchange between the 
main river and the groin field. When a pollutant cloud propagates in the main channel 
a fraction of the cloud mass gets advected into the groin field, is temporarily retained 
and finally gradually returned into the main river. This leads to increased dispersion, 
skewness and reduced transport velocity. Thus, understanding the intensity of the ex-
change mechanism as a function of groin field morphology is key to quantifying the 
aggregate effect of groin field sequences on dispersion. 

To predict the transport of dissolved tracer mass in rivers different approaches are 
used.  

• 3-D Advection Diffusion Equation: not possible to solve for long river 
stretches 

• 1-D Advection Dispersion Equation (ADE) Taylor model (Taylor 1953): 
Taylor regime is only achieved after long travel times, result is always 
Gaussian, which is contradictory to results from tracer experiments. 

• 1-D Dead-Zone-Model (DZM): Difficult to solve numerically, calibration is 
necessary (Hays et al. 1966, Czernuszenko and Rowiński 1997) 

• Simplifications of Dead-Zone-Model like the 1-D Rhine Alarm Model, only 
valid under fully mixed conditions, a constant skewness coefficient is given. 
Needs extensive calibration, (van Mazik 2002).  

Lagrangian-Particle-Tracking-Methods (LPTM) or random walk models (Sullivan 
1971, Kinzelbach 2001) represent another alternative to simulate transport problems. 
The principle of these models is to track numerically a large number of particles that 
move through a virtual representation of a flow field. In every time step the particles 
follow an advective motion due to the mean flow field and a random component rep-
resenting diffusion. These models are computationally very simple compared to nu-
merical solutions of the ADE and the DZM. Much research has been performed to 
establish solid and robust methods to solve the ADE numerically correct (Abbott and 
Basco 1989) in an Eulerian coordinate scheme. The problem of numerical diffusion 
and grid-scale oscillations within numerical solutions of the ADE remain. LPTM 
models do not have the problem of numerical diffusion and computational instabili-
ties. The accuracy of these models is mainly determined by the number of particles. 
As input parameters random walk models need mean velocity fields and diffusion 
coefficients. In addition to the simple implementation of a random walk model, this 
approach has the advantage of simulating directly the physical processes, such that the 
interpretation of the results is very clear. 



 273

2. Model formulation  

A 2-dimensional Lagrangian-Particle-Tracking-Method (LPTM) has been developed. 
The method represents a random walk approach as has been used, for example, by 
Sullivan (1971) to model turbulent shear flow based on statistical mechanical transport 
theories presented by Taylor (1921). As the present transport problem is basically a 
problem of longitudinal dispersion, we assume that the dominating processes in this 
case are longitudinal shear and transverse diffusion. Thus, the behavior of discrete 
particles under the influence of advection in longitudinal direction and of transverse 
diffusion is determined in a 2-dimensional domain. The idea is to initiate a cloud of 
particles that is advected within a known mean flow profile. This advective movement 
is superimposed by a random movement in transverse direction, representing turbulent 
diffusion. The characteristic transport parameters, like dispersion coefficient, transport 
velocity and skewness coefficient, can be determined by analyzing the statistics of 
such a particle cloud at any position of the simulation. In addition to 1-dimensional 
information this method yields concentration distributions in transverse direction in 
order to describe near-field phenomena. 

A random walk simulation can be understood as the tracking of discrete particles, 
under the influence of the governing flow processes. Typically, the particle displace-
ment dXi is described by a deterministic and a stochastic part, leading to the so called 
Langevin equation (Gardiner 1985) 

 ( , ) ( ) ( , ) ,i i idX f X t dt Z t g X t dt= +  (1) 

where Xi is the position x, y and z, f(Xi, t) represents the advective or drift component, 
which can be interpreted as the mean flow velocity field. The expression g(Xi, t) de-
scribes the diffusive or noise component of the particle movement that represents the 
strength of the turbulent diffusion in space. The stochastic part sits in the Langevin 
force Z, which is a Gaussian distributed variate with a mean quantity of zero and a 
variance equal to one. 

In order to simplify the mathematical description of our transport model in equa-
tion 1 we have to recall the dominating transport processes for the given problem. In a 
first step we look at pure channel flow without the influence of dead-water zones or 
groin fields. In case of instantaneous tracer releases, as it is often the case for acciden-
tal pollutant spills, the tracer distribution in longitudinal and transverse direction as 
well as the decay rate of the peak concentration is dominated by the two following 
processes: 1st differential advection in longitudinal direction depending on the trans-
verse position of particle and related to the mean velocity profile across the channel; 
2nd transverse mixing or turbulent diffusion due to the fluctuating or turbulent part of 
the flow. The first process (differential advection) leads to a stretching of the particle 
cloud in longitudinal direction, where transverse mixing is counteracting and leading 
to a homogeneous tracer cloud. Turbulent diffusion in longitudinal direction as well 
dispersion due to the vertical velocity shear only have a very small influence on the 
transport characteristics downstream of the tracer source and might only play an im-
portant role in the very near field.  Therefore,  we can neglect  the drift component in 
y-direction and the noise component in x-direction in Eq. 1. 
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Fig. 1.  Particle displacement for a time step Δt determined  by a deterministic  component  in 
x-direction due to the mean flow velocity and a stochastic part in transverse direction 
determined by the instantaneous fluctuating part of the velocity. 

The link between the diffusive step size and the chosen the time step is an impor-
tant aspect. Here we use the result given by Taylor (1921) who stated that the spread-
ing of a particle ensemble measured with the standard deviation σ under the influence 
of turbulent diffusion can be treated as a Fickian type of diffusion, where 2 Dt=σ  
with D as the diffusion coefficient and t the time. The diffusive step size for a single 
particle at a certain time step in y-direction (see Fig. 1) is therefore given with  

 2 ,yv t D tΔ = Δ  (2) 

where Dy is the turbulent diffusion coefficient in y-direction. Using these assumptions, 
the position  of the particles  in every time step  Δt  can  be described  by a simplified 
2-dimensional version of Eq. 1: 

 ( ) ,new oldx x t u y= + Δ  (3) 

 2 ,new old yy y Z D t= + Δ  (4) 

where xold, yold and xnew, ynew are the spatial locations at times t and t+Δt respectively, 
and Dy is the transverse component of the turbulent diffusion coefficient. The function 
u(y) denotes the mean flow velocity in relation to the position in transverse direction. 
Consequently, in every time step, a particle moves convectively in x-direction depend-
ing on the velocity profile and does a positive or negative diffusive step in transverse 
direction. 

In many transport problems the turbulent diffusion coefficient Dy is a function of 
y. A problem in performing LPTM simulations is that particles segregate into regions 
of low diffusivity because the probability of a particle to move from a region of high 
diffusivity into a region of low diffusivity is higher than vice versa. Thus, an extra 
advection term in y-direction has to be included, called the noise-induced drift compo-
nent (Dunsbergen 1994). Matching the resulting stochastic transport equations with 
the Advection-Diffusion-Equation Dunsbergen (1994) showed, that in this case, the 
noise-induced drift component Δyn can be described as follows 

 .y
n

D
y t

y
∂

Δ = Δ
∂

 (5) 
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If Eq. 4 is extended with the given expression for the noise-induced drift compo-
nent (Eq. 5), the transport problem with varying diffusivity is described consistently 
with the Advection-Diffusion-Equation. 

 
( )

2 ( ) y
new old y

D y
y y Z D y t t

y
∂

= + Δ + Δ
∂

 (6) 

The outcome of a LPTM simulation are x and y-positions of every single particle 
at every time step. By analyzing the statistics of the particle positions, information 
about the transport characteristics can be determined. The one-dimensional longitudi-
nal dispersion coefficient DL, as a measure of the spatially averaged spreading rate of a 
tracer cloud, can be determined by calculating the time change of the longitudinal 
variance of the particle distribution (Rutherford 1994) as follows 

 
2 2

2 1

2 1

( ) ( )1 .
2

x x
L

t tD
t t

σ − σ
=

−
 (7) 

Further results would be the skewness of the particle cloud and the transport velocity. 

2.1 Boundary conditions 
The boundaries of the calculation domain and how they act on the particles have to be 
defined. The inflow and outflow boundaries do not affect the particles as in our case 
the domain has an infinite length. In y-direction there are two possibilities for the 
boundaries. If we analyze the effect of vertical shear on dispersion, we have the water 
surface as well as the channel bottom. In case of horizontal shear flow the boundaries 
represent the channel banks. For both situations the boundaries act as reflective walls. 
The effect of dead-water zones on the mass transport is increased stretching of the 
tracer cloud in longitudinal direction and reduced transport velocity. Both effects sit in 
the typical time that a particle needs to get back into the main stream after it was 
trapped in the dead-water zone. This time is called the storage time TD. In the present 
study this effect is introduced into the LPTM with a modified boundary condition, 
such that this boundary simulates the behavior of mass trapping and mass release. 
Thus, the interface between main channel and dead-water zone has to act as a tran-
sient-adhesion boundary, which means that particles that reach such a boundary are 
fixed to that position until TD has passed. 

2.2 Model verification 
A quantitative verification of the LPTM is presented in the following by comparing 
the results with analytical solutions of the Advection-Diffusion-Equation. In order to 
test also the formulation of the drift-noise adjustment a case with inhomogeneous dif-
fusion regime has to be used. Such a case is the solution of the ADE equation given by 
Elder (1959) for unbounded shear flow, where the turbulent diffusivity is assumed to 
follow a parabolic distribution over the water depth. 

 (1 / )yD u y y h∗= κ −  (11) 
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Using this expression in combination with a logarithmic velocity distribution 

 ( ) log(1 / )uu y y h∗= − −
κ

 (12) 

by inserting Eqs. 11 and 12 into the triple integral to determine the longitudinal dis-
persion coefficient in turbulent shear flows shown by Taylor (1954) 

 
0 0 0

1 1h z z

L
z

D u u dzdzdz
h D
− ′ ′= ∫ ∫ ∫  (13) 

the Elder solution follows. 

 5.86LD u h∗=  (14) 

To determine the correction term for the diffusive-noise drift component from Eq. 6, 
for the varying diffusivity in space, differentiation of Eq. 12 has to be determined 
leading to 

 (1 2 / )yD
u y h

y ∗

∂
= κ −

∂
 (15) 

In order to compare the results of the analytical Elder solution with the output of the 
LPTM a simulation has been performed, where 10,000 particles were released homo-
geneously distributed over the river cross-section at x = 0.  

In Fig. 2 the particle cloud and the distribution of the particles in longitudinal di-
rection are visualized after the first and the last time step of the simulation. Prior ana-
lytical and experimental studies (Taylor 1954, Fischer et al. 1979), showed that an 
equilibrium between longitudinal stretching and transverse diffusion at a certain dis-
tance downstream of the mass release is established. Downstream of that point the 
longitudinal variance of the spatial averaged concentration increases linearly with time 
(σ ~ t1/2), which means that DL reaches a certain limit, which is also the case in this 
simulation (Fig. 3). Skewness that is induced in the near field by velocity shear, 
should vanish slowly (Rutherford 1994), if no additional disturbance like a change in 
geometry or discharge causes a change in the dispersive character of the flow. In the 
final stage the tracer distribution in longitudinal direction becomes a Gaussian profile. 
In the present simulation the given logarithmic velocity profile is clearly visible after 
the first time step in Fig. 2, because the diffusive step in transverse direction is small 
compared to the advective step in x-direction. The initial distribution of the particles in 
longitudinal direction is negatively skewed, with a strong rising limb and the typical 
long tailing. After a travel distance of approximately 100 times the water depth (Fig. 
2b, i) the velocity distribution has been smeared out and the particle distribution in 
longitudinal direction is close to a Gaussian distribution (Fig. 2b, ii). The qualitative 
behavior of the mixing process therefore, represents well the theoretical expectations. 

In Fig. 3 the evolution of the longitudinal dispersion coefficient and of the skew-
ness Gt is plotted. The value for DL shows that the equilibrium between longitudinal 
stretching and transverse diffusion, which corresponds to a linear growth of the tracer 
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cloud, is reached after approximately 12 water depths. At this distance, DL has attained 
its final value of 5.86u*h in agreement with the analytical prediction by Elder. The DL 
curve has been smoothed, in order to show the mean behavior of the tracer cloud. 
Without filtering an increased scatter could be observed, due to the increasing error 
that is produced by determining the standard deviation σx that gets larger with increas-
ing width of the tracer cloud.  

 
Fig. 2. Lagrangian particle tracking simulation of the Elder’s case with unbounded shear flow 
and a parabolic distribution of the diffusivity over the water depth; (i) side view into the chan-
nel, showing the particle positions after the first (a) and the last (b) time step; (ii) showing the 
particle density cross-sectionally averaged in longitudinal direction. 

 
Fig. 3. Evolution of the longitudinal dispersion coefficient DL and the skewness Gt during the 
LPTM simulation. DL is smoothed with a sliding average filter of increasing window size. 

3. Application 

In the following the proposed method is used to predict the transport characteristics in 
the river Rhine near Karlsruhe between km 351 and km 376. The results are compared 
with tracer experiments (van Mazijk 2002, Behr 2001) that have been performed to 
calibrate the Rhine Alarm Model (RAM) (Spreafico et al. 1993).  

Fig. 4 shows a downstream view of the Rhine at km 362 at low water conditions, 
where the groins are emerged and the flow in the groin fields is very weak.  
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Fig. 4. Downstream view of a groin regulated river reach at low water conditions (river Rhine 
near Karlsruhe at km 362). 

In that reach the Rhine is about 315 m wide (including the groin fields), the mean 
discharge Q is around 1200 m³/s and the bottom slope is approximately 0.015% (Behr 
2001). The groin fields cover approximately 30% of the channel width B so that the 
effective width of the main channel is about 210 m in case of low water conditions 
(see Table 1). An averaged groin field in this river section has been determined to a 
distance L between two groins to 190 m and a width of the groin field W of 105 m. 

Table 1 

Averaged flow conditions in the River Rhine between km 351 and km 376  
for tracer test 9/90 4/89 and 6/91 (Behr 2001) 

Tracer 
test 

River 
section 

Bottom 
slope Discharge Width

B 
Main 

Channel
Water
depth 

Flow vel.
U 

Groin fields 
L W 

 [km]  [m³/s] [m] [m] [m] [m/s] [m] [m]  

9/90 351−376 0.015%   628 315 210 1.9 1.05 190 105 emerged 

4/89 351−376 0.015% 1560 315 315 3.5 1.42 190 105 submerged 

6/91 351−376 0.015% 1811 315 315 3.8 1.50 190 105 submerged 

An LPTM simulation has been performed first, to reproduce the transport charac-
teristics determined with the tracer test 9/90 for low water conditions where the groins 
are emerged. The transverse depth averaged velocity profile is approximated with a 
parabolic velocity profile 

 
1
8

max( ) 1 2 1 ,yu y U
B

⎛ ⎞
⎛ ⎞⎜ ⎟= − −⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎝ ⎠

 (15) 

where Umax is the maximum velocity in the main channel, W the river width, or the 
main channel width. In the simulation Umax is adjusted to match the overall discharge. 

The transverse diffusivity Dy is set constant, according to Fischer (1979) to 
D = 0.6u*h with u* as the bottom shear velocity and h the mean water depth. Because 
in the case of low water conditions the groins are emerged, the river width B repre-
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senting the simulation domain is reduced from 315 m to the effective main channel 
width of 210 m. To model the effect of dead-water zones as they are given in this river 
reach by groin fields in one of the channel banks the modified reflective boundary 
namely the transient adhesion-boundary (see Section 2.1) is introduced using three 
different Storage times TD, namely 0, 130 and 515 seconds. The simulation parameters 
are listed in Table 2. 

Table 2 

Parameter values for LPTM simulation and resulting dispersion coefficients 

Run 
No. 

Tracer 
test Q River 

width u(y) No. of 
time steps Δt Dy 

No. of 
particles 

Storage 
time TD 

Dispersion 
coefficient 

   
[m³/s] 

 
[m] 

 
[m/s] 

 
[ ] 

 
[s] 

 
[m²/s] 

 
[ ] 

 
[s] 

LPTM 
[m²/s] 

Tracer 
[m²/s] 

1 9/90 628 210 Eq 15 2 105 2 0.6 u* h 3000 0 1500 8300 

2 9/90 628 210 Eq 15 2 105 2 0.6 u* h 3000 130 8400 8300 

3 9/90 628 210 Eq 15 2 105 2 0.6 u* h 3000 515 40000 8300 

4 4/89 1560 315 Eq 15 2 105 2 0.6 u* h 3000 130 6400 6700 

5 6/91 1811 315 Eq 15 2 105 2 0.6 u* h 3000 130 7100 6600 

Run No. 1 with TD = 0 s represents pure channel flow. The simulations 2 and 3 
with TD = 130 and 515 s represent channel flow plus the interaction with dead-water 
zones. The resulting dispersion coefficients are summarized in Table 2. In run 2 the 
residence time TD = 130 has been fitted to match the measured dispersion coefficient 
from tracer test 9/90 (see Table 1 and Table 2). For run No. 3 the time TD = 515 s has 
been determined using the proposed relation from Jirka and Weitbrecht (2005) be-
tween the dimensionless exchange coefficient k and a morphometric parameter RD 
based on a hydraulic radius like dimension of a typical groin field. 

 0.005 0.0035 DRk
h

= +  (16) 

with  

 
D

Wk
T U

=  (17) 

and 

 
( )D

WLR
W L

=
+

 (18) 

where W is the length of a groin and L the distance between two groins. The resulting 
dispersion coefficients show, that dispersion due to pure channel flow (Run No. 1) 
strongly underestimates the stretching of the tracer cloud. On the other hand the simu-
lation No. 3 using the proposed relation to predict the storage time TD strongly overes-
timates the stretching effect and the corresponding dispersion coefficient by a factor of 
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four. One explanation could be that only a fraction of the total groin field volume is 
affecting the mass exchange (Lehmann et al. 1999). Van Mazijk (2005) concluded that 
‘Natural Dead Zones’, comprising the effect of all regions in a river with low flow 
velocities, are strongly dominating the stretching effect compared to the specific effect 
of groin fields. Following that argument the determined storage time TD is much less 
depending on the existence or the shape of groin fields than the overall heterogeneity 
of the river. 

In a second step the same river stretch has simulated for the high water conditions 
(tracer study 6/91 and 4/89, see Table 1 and Table 2), where the groins are submerged. 
Under these conditions a clear distinction between main channel and the complete 
river width is not possible any more. In that case the effective width of the main chan-
nel is set equal to the overall width of the river. The storage time TD = 130 s has not 
been changed compared to the calibrated one in run No. 2. The resulting dispersion 
coefficients of simulations 4 and 5 are still comparable to the determined values 
measured in the field. If the storage effect in the groin fields would be a dominant 
effect, the resulting storage time should be considerably different, compared to the 
emerged conditions. Under submerged conditions, depending on the submergence 
level the storage effect should vanish more and more, until the groin represents just a 
roughness element on the river bed. 

4. Conclusions 

In the current study a Lagrangian-Particle-Tracking-Method (LPTM) based on random 
walk simulations has been evaluated for the prediction of mass transport characteris-
tics in turbulent channel flow. Analytical solutions of the Advection-Diffusion-
Equation can be reproduced with the given model formulation, if a sufficient number 
of particles is used and the chosen time steps are appropriate. Biasing effects due to 
varying diffusivity in the simulation domain have to be suppressed by a correction 
term for the diffusive-noise drift component To include the effect of dead-water zones, 
one of the reflective boundaries has been modified to a transient adhesion boundary 
condition. This boundary contains information about the typical residence time of 
mass in the dead-water zone. 

The LPTM has been applied to a river stretch of the Rhine where extensive tracer 
tests have been performed during the development of the Rhine-Alarm-Model (Spre-
afico 1993). Without the additional effect of a certain storage capacity the dispersive 
effect is strongly underestimated. The prediction of the storage time using the relation 
given by Jirka and Weitbrecht (2005), leads to a strong overestimation of the disper-
sion coefficient. Using a calibrated moderate storage time the dispersive character 
could be represented for different hydrological conditions, leading to the conclusion 
that the mass exchange between main stream and groin field is not the dominating 
dead-water effect, which is in agreement with observations made by van Mazijk and 
Veling (2005). 

In order to predict mass transport in case of accidental pollutant spills a sound un-
derstanding of the different physical transport processes and especially their relative 
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influence compared to each other is important. On the other hand it can be concluded 
that errors in the representation of the hydrological conditions will always control the 
accuracy of the predicted transport scenario. 
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