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Fig. 79. The results of the Alpine3D model for the PPS Hornsund surroundings in the period of maxi-
mum accumulation (20.03 in the coastal zone) of the 2099/2100 season.  
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parts of the Fugleberget massif under changed climatic conditions compared to the accumula-

tion maxima obtained for the 2014 and 2016 seasons (Figs. 79, 58, and 59). According to the 
predictions presented here, the maximum snow thickness on the coast will be occurring in the 
second half of March in the years 2089–2100, when it may exceed 50 cm. However, these val-
ues are much lower than those achieved by the SNOWPACK model for the 2014 and 2016 

seasons. It should also be remembered that the model does not take into account the redistribu-
tion by wind, therefore modeled snow depth from 2014 and 2016 were in extreme cases even 
four times higher than actually measured in the PPS meteorological garden (see Fig. 59). Con-
sequently, such a large snow thickness should be expected only at accumulation sites, while in 

most of the tundra area the values would be considerably lower. Obviously, the changes in 
climatic conditions will affect the internal microstructure of the snowpack. The simulations for 
the 2089/2090 and 2099/2100 seasons (Fig. 78) indicate the formation of thick ice layers in the 
snow cover. In turn, model results from 2014 and 2016 did not anticipate ice layers existence, 

even if they actually occurred in the field (see Chapter 8). The significantly higher temperatures 
projected for the period 2089–2100 will prevent the formation of high temperature gradients in 
the snowpack. These, in turn, are required for the development of specific snow grains forms, 
especially depth hoar crystals (Sommerfeld and LaChapelle 1970) that are now relatively com-

mon in the tundra (see e.g. Fig. 74). In predictions for the end of century, snow cover is no 
longer continuous throughout the whole winter season and snowfree episodes may be intro-
duced even in the middle of the winter. Such situations happened only incidentally in the current 
records of the PPS Hornsund weather station (see Fig. 21), e.g. in 2011/2012 season. The inter- 

 

Fig. 80. The SNOWPACK simulation results for the season 2089/2090 with the substitution of Polar 

CORDEX data from the PPS cell with the data from the cell located entirely above the waters of the 

Hornsund Fiord (adjacent to the PPS cell from the south). 



THE INFLUENCE OF TOPOGRAPHY AND VEGETATION ON THE SNOW COVER IN TUNDRA … 

 

105 

ruption of the continuous snow cover period is clearly visible in the SNOWPACK simulation 
for the 2099/2100 season (Fig. 78b).  

Noteworthy, the projected climatic conditions for the end of the twenty-first century indicate 
the occurrence of average air temperatures only slightly lower than 0 °C in the winter months 

(Table 12). Model predictions were also tested with input data coming from a Polar CORDEX 
simulation, but from the neighboring southern cell to that with PPS Hornsund. They were char-
acterized by an average annual air temperature equal to +5.4 °C, where the coldest February 
had already a positive mean monthly temperature (+1.1 °C). These conditions are 1.7 °C 

warmer than the annual average for the end of the century in the PPS cell. However, this is 
enough to completely change the snow cover duration and its characteristics. With the domi-
nance of positive temperatures, continuous snow cover has no chance to develop during the 
winter; however, snowfalls are still possible from November to May. In such conditions, snow 

depth would not exceed 20 cm and the cover cannot persist on the ground for more than a month 
(Fig. 80). This means that while the modeled climatic conditions for the PPS at the end of the 
century does not indicate the disappearance of permanent snow cover in the winter, a further 
increase by approximately 2 °C is enough to completely change the functioning of the ecosys-

tem, in which snow will appear only periodically. 

10. DISCUSSION 

The results obtained in this work confirm the previous findings regarding the snow cover dis-
tribution obtained from studies based on point measurements. As in the work of Migała et al.  

(1988), the Fuglebekken catchment turned out to have better snow accumulation conditions 
than the measurement site at the PPS, with the deepest snow in the lower catchment area on its 
western side. Average snow thicknesses recorded in the lower part of the catchment in 
1979/1980, 1981/1982, and 1982/1983 were 30–60 cm (Migała et al. 1988), which did not dif-

fer from the results from the analyzed here years 2013/2014, 2014/2015, and 2015/2016 (see 
Fig. 42). Average values from the coastal part of Gåshamnøyra (30 cm) and Revdalen (35 cm; 
varying from 30 cm in the lower part to 80 cm in the upper part of the valley) obtained in the 
1980s (Migała et al. 1988) are also in line with the results obtained in spring 2014 and 2016. 

The differences between the studies concern mainly snow density, which in the 1980s were 
supposed to be 400–500 kg/m3, while now such values were recorded in the catchment rather 
in the late ablation stage. At the moment of maximum accumulation, densities ranging from 
350–400 kg/m3 were dominant. However, the comparative analysis of the results from the 

1980s to those developed in this work is difficult. During the first snow measurements cam-
paigns, the probing was done without recording the GPS position, and the sounding dates were 
not always precisely defined. Nevertheless, comparable values were obtained in the same re-
gions in the 1980s and spring 2014 (Nawrot et al. 2015) and 2016, which confirm the seasonal 

repeatability of snow cover distribution. The areas with extended snow cover duration found in 
the Fuglebekken catchment, but not covered by regular measurements, may, however, be asso-
ciated with depths exceeding 2 m, found here by Dolnicki (Dolnicki 2002, 2015).  

The regularities found in the southern part of Svalbard in the glacial area are also valid in 

the tundra. In a series of works, Grabiec (2017) proved, among others, that better conditions for 
the snow cover accumulation exist in the western parts of glaciers. This rule was disturbed only 
in places characterized by a relief perpendicular to the prevailing wind directions (Grabiec 
2017; Grabiec et al. 2006, 2011). An example of a location perpendicular to the dominant zonal 
flow is the Ariedalen valley, where greater snow thickness was found in the eastern than in the 

western part (Fig. 65). However, the correlation coefficients between the snow depth and the 
topographic indices on the Hansbreen glacier were much higher (Grabiec 2017) than those pre-
sented in this work. This is probably due to the much larger amount of data used to study the 
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interrelationship provided by GPR soundings. Differences may also come from a less complex 

glacier relief, which is much easier to characterize by means of topographic indices. The wind 
velocities that initiate blowing snow in glacial areas are able to move snow in the tundra as 
well. On the Waldemarbreen glacier, the snow transport by the wind began when its speed 
exceeded 4 m/s (Grześ and Sobota 2000). The data collected in the PPS showed that drifting 

snow events occurred at wind speeds higher than 6 m/s. Due to the fact that the air flow is 
measured at a height of 10 m above the ground, it can be calculated from the wind profile equa-
tion (Van Ulden and Holtslag 1985) that the wind speed near the surface is about 2 m/s lower. 
Thus, both in the tundra and on the glaciers, the near-surface wind speed of 4 m/s is a minimum 

threshold needed to move snow deposited on the ground. On the Svalbard glaciers treated in 
the macroscale, greater snow depths occurs in its eastern parts, which is associated with higher 
precipitation sums there (Winther et al. 1998). The same can be seen on unglaciated coastal 
areas, both in model outcome (Fig. 14) as well as in the results of snow soundings carried out 

during the ablation season (Figs. 62 and 64). 
The snow cover disappearance dates obtained in this work can be compared to the results 

of studies carried out in other parts of the Svalbard archipelago. A study conducted in the 
Bayelva catchment in 2002 using a time-lapse camera showed that snow cover ablation lasted 

about 50 days there (Hinkler et al. 2003), which is consistent with the results from the Fugle-
bekken catchment area (see Table 7). As in the results presented in this study, the overwhelming 
majority of the tundra in Bayelva was snow-free at the turn of June and July (Hinkler et al.  
2003). On a larger scale of the Svalbard archipelago, the analysis of MODIS scenes allowed for 

differentiation of coastal zones in terms of the snow cover duration (Malnes et al. 2010). Be-
tween 2005 and 2009, the snow in unglaciated areas disappeared before June 1 at the earliest, 
e.g. in the Adventdalen valley near Longyearbyen (Malnes et al. 2010). On the coasts of 
Hornsund, such early disappearance of snow practically does not occur (see Fig. 61). The west-

ern shores of the Hornsund Fiord are the first to be snow-free. In the case of 2014, this took 
place in the first days of June. A little later, the snow cover melts in the Fuglebergsletta area, 
where PPS is located. In 2014, the snow disappeared on the eastern coasts of the fiord after June 
15, which was the last day from the snow season when a satellite image suitable for analysis 

was available. As about 50% of the unglaciated area of Hornsund was still under snow on that 
day, this means that the vegetation season is shorter there than in the central Svalbard coastal 
zone, where most of the shores were snow-free, on average, before June 15 (Malnes et al. 2010). 
Since the snow cover duration and thickness in the period 2005–2009 and in 2014 were similar 

(see Figs. 20 and 24), the results from these years should be comparable. 
The data presented in this work prove that the conditions for the snow cover development 

on the eastern coasts of the Hornsund Fiord are better than in its western part. The recorded 
differences in snow cover duration should be also reflected in the state of vegetation. Satellite 

studies indicate the highest bioproductivity of flora expressed by the NDVI at the mouth of the 
fiord (Karlsen et al. 2014; Vickers et al. 2016), i.e., in the place with the shortest snow season. 
This would suggest a negative impact of snow cover in the analyzed region on the vegetation 
development. The aforementioned assumption is partially confirmed by the results relating the 

snow disappearance time in the Fuglebekken catchment with the tundra vegetation type. This 
is because the snow persists the longest on rock debris that is devoid of any plants. The shortest 
snow cover duration occurred each time on the lichen-herb-heath tundra, the formation with the 
highest vascular plants in the study area, represented, e.g., by polar willow (Salix Polaris). On 

the other hand, the deepest snow during the winter season was measured on wet soils and ac-
companying wet moss tundra. This formation is characterized by the highest NDVI value (Hob-
bler 2011) as well as nitrogen content in the substrate (Skrzypek et al. 2015) necessary for plant 
growth. However, it should be remembered that due to the different spectral characteristics of 



THE INFLUENCE OF TOPOGRAPHY AND VEGETATION ON THE SNOW COVER IN TUNDRA … 

 

107 

mosses, lichens, and vascular plants (Bubier et al. 1997), comparing the NDVI values in the 
tundra environment is subject to a large degree of uncertainty (Williams et al. 2001). The re-

sults obtained in this study indicate an ambiguous impact of snow cover on the condition 
of vegetation. They generally confirm the conclusions of previous studies conducted in other 

regions of the world and indicate the decisive influence of snow cover in the Arctic on soil 

moisture and, consequently, the availability of water for plants and the occurrence of specific 

plant formations  (Bliss et al. 1984; Walker et al. 1989,1999).  
The modeled snow cover spatial distribution did not represent the actual one, mainly due to 

the problems with taking into account the snowdrift module. Alpine3D predicted a snow depth 
of 80–90 cm during the period of maximum accumulation in both 2014 and 2016. This corre-
sponded to a SWE peak of less than 300 mm. At the same time, the average snow thickness 
from the measurements in the catchment was approximately 60 cm (240 mm SWE) in 2014 and 

less than 50 cm (175 mm SWE) in 2016. This means that in an area with a relatively good 
ability to accumulate snow, its depth was overstated by about 50%. Part of this overestimation 
can be explained by the use of simplified assumptions. Calculations for the entire winter seasons 
were carried out with the assumption of a neutral atmosphere. However, such model settings 

indicated greater snow thickness in the low-lying area (see Fig. 60). In addition, studies from 
alpine and polar regions indicate a significant overestimation of heat fluxes in the Alpine3D 
model, mainly in strong wind conditions, when using a neutral atmosphere (Schlögl et al. 2017). 
Nevertheless, such large disproportions between the model and the actual snow distribution are 

difficult to explain only with this. Field measurements in the Canadian Arctic show that 48 to 
58% of snow on the ground is removed before ablation begins (Pomeroy and Li 2000). The 
results of the PBSM model for the same area show that the snow mass losses due to sublimation 
are comparable to the losses caused by wind transport (approximate ratio 1:1) (Pomeroy and Li 

2000). Other studies from Canada, showing the amount of sublimation at 4 measuring stations, 
estimate its impact on SWE reduction at 15–41% (Pomeroy and Gray 1995). However, this 
value is difficult to measure directly and depends largely on local conditions, especially wind 
speed and relative humidity. Hence, the estimates are very different and, e.g., SnowTran-3D 

model indicates 10–25% reduction of snow mass during blowing snow episodes (Liston and 
Sturm 1998) and the PBSM used in the Canadian Rockies suggests a 17–19% weight loss due 
to the same process (MacDonald et al. 2010). On the other hand, the results of Alpine3D from 
Switzerland indicate that the reduction of SWE caused by sublimation during the winter season 

may reach even 400 mm on mountain ridges, while on less elevated terrain it does not exceed 
100 mm (Groot Zwaaftink et al. 2013). All the above studies point out significant snow mass 
losses caused by wind activity, even at negative air temperatures. For this reason, the obtained 
Alpine3D results seem rational and suggest that the wind in the tundra environment of southern 

Spitsbergen is responsible for removing even more than half of the snow mass supplied by 
precipitation. 

The SNOWPACK simulation, like the Alpine3D model, greatly overestimated the actual 
snow thickness. Especially problematic was the representation of bottom layers, where the 

model indicated the presence of snow heavily transformed by wet metamorphism. In reality, 
the layers beneath thick ice layers are rather protected from the effects of meltwater and may 
be the last to be modified during the ablation period (Kępski et al. 2016). However, the model 
turned out to be generally sufficient to simulate snow metamorphism and ablation in the period 
with a predominance of positive temperatures. Then, the blowing and drifting snow processes 

appear rarely and have a smaller impact on the shape of the snowpack (see Fig. 76; Table 11). 
Therefore, SNOWPACK calculations were used to interrelate the snow depths measured at var-
ious locations on different days during the spring season (Fig. 64). It should be remembered 
that attempts to model the snow cover in Svalbard, mainly in the Ny-Alesund region, have 
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always been characterized by considerable errors (Brun et al. 1989; Martin 1996). None of the 

models used there was able to correctly reproduce the snowmelt rate in the tundra, but the re-
sults obtained by CROCUS (analogous to SNOWPACK used in this work) were closest to those 
measured in the field (Bruland et al. 2001).  

Due to the strong relationship of the climate with other components of the natural environ-

ment, the observed and forecasted warming will cause severe changes in the entire southern 
Spitsbergen tundra ecosystem. These will include hydrology (Rouse et al. 1997; Adam et al.  
2009), vegetation (Wang and Overland 2004; Elmendorf et al. 2012), permafrost and soils 
(Hinzman et al. 2005; Isaksen et al. 2007), as well as animal populations (Aanes et al. 2002; 

Jensen et al. 2007; Fuglei and Ims 2008). The rise in temperatures and the associated shortening 
of the snow cover duration will undoubtedly affect the land cover. Currently, for example, an 
improvement of vegetation condition and an increase in tundra biomass in Svalbard are ob-
served, but these processes seem to be slowing down (Park et al. 2016; Vickers et al. 2016). It 

is predicted that in the future, thinner snow cover and more frequent rain on snow episodes 
initiating the ice layers formation may eventually lead to deterioration of plant growth condi-
tions and the so-called tundra browning (Phoenix and Bjerke 2016). It is also expected that the 
tundra plant species composition will change. A decrease in the number of mosses and mois-

ture-loving flora is anticipated, with a simultaneous increase in the share of vascular plants 
(Elmendorf et al. 2012). However, the overall number of species is projected to decline due to 
the rapid expansion of plants best adapted to changing conditions, which will replace a variety 
of organisms specialized in living under long persisting snow cover and frost (Chapin et al.  

1995). One of the effects of global warming will also be a reduction in soil moisture, even 
despite the increase in precipitation totals (Houghton et al. 1992; Oechel and Vourlitis 1994). 
This will be the result of a faster snow cover disappearance and thus a deeper thawing of per-
mafrost (Hinzman et al. 2005). The availability of water for plants seems to be the most im-

portant factor for their development in the vicinity of the PPS; therefore, a warmer climate with 
shorter snow cover duration does not necessarily improve the conditions for the local flora 
(Opała-Owczarek et al. 2018). In southern Svalbard, negative changes in vegetation condition 
caused by the increase in the reindeer population are currently observed (Olech et al. 2011; 

Ziaja et al. 2016). The mortality of these animals is, in turn, strongly correlated with the occur-
rence of rain on snow episodes during the winter season. Such a rainfall can lead to the for-
mation of basal ice or ice layers inside a snowpack, hindering an access to the food for 
herbivores (Kohler and Aanes 2004). On the other hand, climate projections indicate a signifi-

cant increase in winter liquid precipitation, which may deplete the reindeer population in Sval-
bard (Hansen et al. 2011). Thick ice layers are clearly visible in the SNOWPACK simulation 
for the period 2089–2100 (see Fig. 78). Overall, the projected global warming will undoubtedly 
have an impact on the southern Spitsbergen ecosystem. However, due to the number of possible 

effects of the temperature increase and the shortening of snow cover duration presented above, 
it is very difficult to determine whether this impact will be positive or negative.  

11. SUMMARY AND CONLUSIONS 

The aim of the study was to identify the snow cover distribution on the tundra in the vicinity of 

the Polish Polar Station, to determine the dynamics of its changes during the ablation season 
and to define their relationship with the relief and land cover on the basis of the cartographic 
materials available. The presented methodology of processing time-lapse and satellite images 
allowed to successfully present the temporal and spatial variability of the snow cover occur-

rence in the unglaciated catchment and relate it to the wider area of the fiord coast. The conclu-
sions coming from remote sensing data were confirmed by the results of field measurements. 
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The tasks set in the study were successfully completed, although the initially assumed relation-
ships between the snow cover duration and the topography and land cover turned out to be 
weaker than expected. The spatial variability of the snow cover on the coasts of Hornsund had 
not been well recognized before, which, due to its crucial environmental importance, was a ma-

jor research gap that prevented understanding the functioning of the area’s ecosystem. The ex-
tensive study presented here addresses these shortcomings, and the most important results are 
briefly discussed below. 

1. On the basis of data from the PPS Hornsund, the seasonal and long-term variability of 

meteorological conditions influencing the snow cover were presented. The average annual air 
temperature in 1979–2017 was –3.7 °C and the mean annual precipitation total amounted to 
450 mm. However, the determined trends indicate the occurrence of significant climatic 
changes: an increase in air temperature, the strongest in the winter period (+2.16 °C per decade 

in case of winter months), growth of precipitation sums (+55.5 mm per decade) with a simulta-
neous decrease in the share of snowfall. Data from the PPS and the period 1983–2017 show 
that the snow cover lasts, on average, 235 days, from mid-October to mid-June. However, ob-
served climate warming results in the shortening of that period by 10 days per decade. Addi-

tionally, reduction of the snow cover thickness is observed (–3.8 cm per decade). The spatial 
variability of the climate was presented using the WindNinja software (anemological condi-
tions), GIS tools (potential solar radiation), and climate projections from the Polar CORDEX 
initiative, verified with data from AWS located at various locations in the Hornsund Fiord. They 

show that the average annual air temperature decreases towards the east (with growing distance 
to the open Greenland Sea), with a simultaneous increase in annual precipitation totals. The 
northern shores of the fiord have better insolation conditions and are also more exposed to the 
most common eastern wind. 

2. The results of field measurements carried out since the winter season 2013/2014 in the 
Fuglebekken catchment indicate much better conditions for snow accumulation in this place 
compared to the measurement point in the meteorological garden of the Polish Polar Station 
Hornsund. The Fuglebekken catchment is also characterized by smaller fluctuations in snow 

thickness from year to year compared to measurements carried out at PPS. The considerable 
variability of snow cover at the PPS site can be attributed to the greater wind exposure, while 
the catchment area is partially sheltered from direct wind action. This means greater represent-
ativeness of data from the catchment area. 

3. The comparison of data from field measurements with changes in snow cover extent re-
vealed a strong relationship between snow thickness during maximum accumulation and its 
persistence duration. The pattern of snow disappearance turned out to be repeatable and snow 
patches formed in the same places every year. Similarly, the same parts of the area have the 

shortest snow cover duration each year. Zones near the rock outcrops, both at the eastern and 
western edges of the catchment accumulated the greatest amount of snow. On the other hand, 
the prominent terrain features, such as the storm ridges, are characterized by the shortest snow 
cover duration. This implies that wind plays a decisive role in the snow cover distribution in 

the tundra. The strongest and most frequently observed eastern wind has the greatest influence 
on the snow distribution. Deeper snow was found at the western edges of the studied areas, not 
only in the Fuglebekken catchment, but also in the Revdalen valley and the Bogstranda region. 
The comparison of measurements from 2014 and 2016 confirmed the repeatability of the snow 
cover distribution along the entire coast of the Hornsund Fiord. 

4. The snow cover thickness in the Fuglebekken catchment area is average compared to 
values measured elsewhere along the Hornsund Fiord coast. This is also confirmed by the mod-
erate snow cover duration. The snow cover extent in the catchment area drops below 50% at 
a similar time as on the shores of the Hornsund Fiord treated as a whole. This means that the 
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results of the monitoring conducted since the 2013/2014 season are representative of the larger 

coastal region. Snow cover duration is the longest at the south-eastern part of the fiord, while 
the fastest disappearance is observed in the north-western part. This is also reflected in snow 
depth. At comparable altitude, the deepest snow has been found on the eastern shores of Svovel-
bukta (SE Hornsund), while, upon excluding the problematic area of Gåshamnøyra, snow is the 

thinnest in the Revdalen Valley (NW Hornund). The snow thickness is strongly correlated with 
the modeled average air temperature values (r = –0.78) and annual precipitation totals 
(r = 0.57). Statistically significant, although definitely weaker, is the correlation with the sum 
of potential solar radiation (r = –0.24), which explains the slightly earlier disappearance of 

snow cover on the northern coasts.  
5. The snow cover duration and its thickness depend to some extent on the type of land 

cover. The performed statistical analyzes indicate that during the winter season the snow is 
several centimeters deeper in the area covered by wet tundra mosses. On the contrary, on lichen-

herb-heath tundra, the snowpack is on average thinner. It is also a type of vegetation that is 
generally first exposed from under the snow in spring. There, the snow disappears completely 
two weeks earlier than on rock debris that is devoid of vegetation. However, it should be as-
sumed that it was the snow cover that influenced the occurrence of certain vegetation types and, 

for example, its extended duration prevented the development of flora on areas classified as 
rock debris. On the other hand, the tundra type cover, most likely, does not influence on the 
snow cover distribution in the study region, because due to the very low variation in plants ’ 
height, it could not significantly affect the surface roughness, and thus the accumulation condi-

tions. Among the landforms, the shortest occurrence of snow was found on beaches and the 
longest on talus cones. There, during the winter season, snow is on average at least a few cen-
timeters deeper than on other geomorphological formations. 

6. The snow cover occurrence in the ablation period is poorly correlated with topographic 

indices. In the Fuglebekken catchment, a positive relationship with the snow cover duration 
was found for the TRI index (Pearson’s r = 0.29) representing the surface roughness. Terrain 
exposure to wind had a negative impact, especially for the one from the north-eastern direction 
(r = –0.24). For the entire area of the Hornsund Fiord coasts, these relationships were even 

weaker and much less correlated than with the meteorological parameters. Similar conclusions 
were also obtained after analyzing the relationship between the topography and the measured 
snow cover depths. This may indicate the dominant influence of wind activity on the snow 
distribution on the micro and meso scale, while air temperature and precipitation totals play 

a leading role on a larger scale. 
7. The spatial modeling of snow cover distribution was performed using the advanced phys-

ical model Alpine3D. To the author’s knowledge, this is the first attempt to use this software in 
Svalbard and one of the first ever used in the high Arctic environment. Due to the enormous 

computing power requirements, it was not possible to implement the snowdrift module in the 
simulations. Therefore, the model output did not reflect the actual snow cover distribution and 
predicted a fairly uniform snowpack shape in the Hornsund coastal zone. However, the simu-
lated snow cover development in the season was highly consistent with the observational data, 

although the modeled thickness was significantly overstated. In the accumulation sites sheltered 
from the wind, the differences between the modeled and actual snow depth turned out to be 
much smaller than at the PPS weather station measurement point. The result of the Alpine3D 
model may indicate the amount of snow that would be stored in the tundra without wind redis-

tribution and associated sublimation processes. This would mean a reduction in snow cover 
depth and SWE caused by wind activity by 40–50% in the Fuglebekken catchment and even 
80% at the PPS measurement point. However, due to the troublesome measurements of snow 
transport by wind, this statement is difficult to prove. The performance of the Alpine3D model 
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has been tested using various settings. The chosen atmospheric stability correction method had 
the greatest impact on the results in the study area. On the other hand, the soil parameters set-
tings did not have a significant effect on the model output. 

8. The one-dimensional SNOWPACK model coupled with Alpine3D did not correctly re-

flect the development of the vertical snowpack structure during winter mostly due to problems 
with taking into account the wind redistribution. However, running the model on the data ac-
quired in the field just before the start of ablation period allowed to obtain a reliable course of 
snow cover metamorphism and the melting rate in the following days. The model had also 

problems with correct snow hardness representation. All layers affected by wet metamorphism 
were characterized by maximum hardness in the SNOWPACK output, which, of course, was 
not confirmed in the field.  

9. The Polar CORDEX climate projections for 2089–2100 allowed for the implementation 

of simulated precipitation totals and air temperatures for the SNOWPACK and Alpine3D mod-
els. In these years, the air temperature will increase by 6.5 °C and the precipitation total will 
grow by almost 100 mm compared to the end of the twentieth century under the most severe 
greenhouse gas emission scenario (RCP8.5). The tundra climate (ET in the Köppen classifica-

tion) currently prevailing on the coasts of southern Spitsbergen will therefore change into a sub-
arctic oceanic climate (Cfc), that is now characteristic for Iceland shores. As a result of these 
changes, the simulations show a shortening of the period with snowfall to November–May. 
Under such conditions, the occurrence of the maximum accumulation period will shift from the 

turn of April and May to late March or early April. This means an almost twofold extension of 
the snow-free period in the tundra in the Hornsund region. The simulation results in modified 
climate show that despite the increase in precipitation totals, the snow thickness will decrease. 
Moreover, at the end of the twenty-first century, the period with permanent snow cover may be 

interrupted by snowless episodes related to the occurrence of strong thaws even in the middle 
of winter. A further increase in air temperature by about 2 °C will completely change the course 
of snow cover development and ablation on the tundra. The positive air temperatures prevailing 
in this case for most of the winter period will not allow for the formation of a permanent snow 

cover, but will only lead to temporary episodes with snow on the ground. Climate warming, 
although apparently conducive to the development of life in the tundra area, may turn out to be 
unfavorable to both vegetation and animals. Plants may suffer drought stress due to shortened 
snow cover duration and associated lowering of groundwater levels. On the other hand, more 

frequent rain-on-snow events may lead to the formation of ice layers hindering, e.g., reindeer 
access to food. 
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AP P E N D I X  

Explanation of symbols and values used in graphs  

showing the vertical structure of snow. Modified after Fierz et al. (2009) 
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