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3. RESULTS 

Firstly the measured data verifies the correctness of the results of the numerical simulations 

(Fig. 3). In the subsequent analysis we therefore mainly consider the results of the simulated 

numerical simulations. 

Based on the results of image recognition for fish, the probability of fish appearing at dif-

ferent locations in the channel is obtained. The results show that lower flow velocities and rel-

atively low turbulence exist in the area behind the channel sidewalls and obstacle posts. The 

probability of fish occurrence was high in the area with low flow velocity and relatively low 

turbulence. This indicates the importance of the turbulence structure generated by the current 

and the water column in influencing the area and extent of fish aggregation. 

Fig. 3. Probability of fish occurrence in channels with different structural columns. 

4. DISCUSSION 

The BP neural network is a global convergence and local search optimization algorithm with 

strong fault tolerance and generalization ability. With flow rate Q, horizontal coordinate x, ver-

tical coordinate y, flow velocity v, and turbulent kinetic energy TKE as input covariates. The 

channel is divided into 100 uniformly sized grids, and the probability of fish occurring in the 

grid P is the output covariate, forming a machine-learning mapping relationship. A stratified 

sampling approach is adopted, with 80% of the dataset used for training the machine learning 

model and the remaining 20%, half for testing and a half for inspection. Before training the BP 

neural network, the raw data is normalized to a number between 0 and 1. Figure 4 shows that 

the slope of the line fitted once to the measured and predicated values is close to 1. Some of the 

neurons are damaged by data perturbation will not have a great impact on the global training 

results, and the trained network can still process new or noisy contaminated data correctly.  

Manual counting of the number of tail swings of carp. The 600 carp images with good qual-

ity were labeled. A two-dimensional threshold segmentation is taken to extract the foreground 

target fish body, and then the foreground graphics are refined to eliminate the bifurcation caused 

by the imperfection of the refinement algorithm to obtain a bifurcation-free fish body midline, 

extract the feature points on the head and tail of the fish body and the spine curve, and finally 
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calculate the curvature to obtain the number of tail wagging of the carp. The binary image 

refinement algorithm is chosen to extract the midline of the carp fish body. The mean value 

plus triple standard deviation of 0.003 and the empirical value of 0.005 were processed using 

the systematic error statistics. The following Table 1 shows the comparison between the number 

of tail swings calculated by the algorithm and the number of tail swings counted manually. 

Fig. 4. Prediction results for different working conditions using BP models. 

 

Table 1 

Fish tail swing frequency recognition results 

Curvature  

parameter 

Number  

of algorithm counts 

Number  

of manual counts 

Absolute  

error 

Correct  

rate 

0.005 95 109 15 92.9 

0.005 135 144 23 91.2 

0.005 167 195 31 91.9 

0.005 234 253 39 92.8 

0.003 55 109 10 60.0 

0.003 185 144 47 62.1 

0.003 102 195 11 0.58 

0.003 413 253 47 0.55 
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5. CONCLUSIONS 

1) In currents with large hydraulic structures, carp prefer to be found in locations where the 

flow and turbulence of the water are relatively low, and will also favor staying behind the 

posts. 

2) Image recognition of fish based on YOLOv5 has high confidence, it provides a new idea 

for observing fish in the field. The algorithm based on two-dimensional threshold segmen-

tation (OTSU) can identify the frequency of fish tail swing. 

3) The BP neural network has a good overall predictive performance for the probability of fish 

occurrence. The use of BP models for probability prediction can be considered in practical 

engineering, which is useful for understanding the behaviour of fish under different flow 

conditions. 
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A b s t r a c t  

The fish passage is an effective way for fish to pass through dams and obstacles, but most fish 

passes are currently not used, and the energy used by fish to pass through them is too great to 

meet the conditions for passage. This paper focuses on the factors that affect the fish swim-

ming energy expenditure. The factors include the hydraulic conditions of the fish passage, the 

fish swimming speed, and the fish tail swing frequency. A baffle is set up in a U-shaped 

channel with different barriers on either side of the baffle, making the hydrodynamic condi-

tions different on each side of the channel. HD cameras were set up to observe and record the 

fish swimming behaviors in the channel, and deep learning YOLOV5 algorithm was used to 

identify the fish swimming speed and the frequency of the tail swing. The data was analyzed 

to derive an equation for calculating the fish swimming energy consumption. FLUENT was 

used to simulate the fish energy consumption in the channel during high flows and to obtain 

the route with the lowest energy consumption of the fish, which will provide suggestions for 

the subsequent construction of fish passage and fish crossing facilities. 

Keywords: deep learning, fish swimming energy consumption equation, tail swing fre-

quency, model simulation. 

 

1. INTRODUCTION 

The fish passage is an artificial channel for fish to travel upstream through a structure such as 

a lock or dam or a natural structure. The ecological significance of the fish passage is to mitigate 

the impact of dam construction on fish and to help impeded fish to pass through the barrier and 

reach their important habitat for breeding and overwintering. At present fish passages are not 

working very well (Cao et al. 2016). The fish use too much energy to swim in them to meet the 

conditions for their passage and therefore the fish passages are not working as well as they 

could. 

Fish accomplish most of their basic behaviors by swimming. The fish swimming behaviors 

can be influenced by hydrodynamic conditions in the channel. Additionally, the active meta-

bolic rate (AMR) is a valuable parameter that can be used as an indicator of the fish swimming 

efficiency (Xia et al. 2013). Ohlberger et al. (2006) analyzed the relationship between the fish 

https://www.webofscience.com/wos/author/record/1422629
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swimming speed and AMR in the channel and derive the equation (Ohlberger et al. 2005, 2006). 

This paper focuses on the relationship between the fish energy consumption and the hydraulic 

conditions in the channel and the fish own factors, and get the fish swimming energy consump-

tion equation. 

2. EXPERIMENTAL SET UP 

A baffle in the U-shaped channel divides the channel into two identical parts, with different 

barriers on each side, making the hydrodynamic conditions different on each side (Kerr et al. 

2016). Instantaneous flow velocities and water depths are measured at multiple cross sections. 

Turbulent kinetic energy is obtained using these data. A HD camera was set up at the upper end 

of the observation area to observe and record the fish swimming behaviors in the channel. 

2.1 Animals 

The fish used in the experiment is Cyprinus Carpio haematopterus, a freshwater fish belonging 

to the cyprinid family, which is an active omnivorous fish and easy to observe. Thus it is widely 

used in biological research. And a pre-experiment was needed to determine the state of adapta-

tion of the fish in the channel and to take valid data for analysis. 

2.2 Deep learning 

The camera takes the image sequence of fish swimming, and YOLOV5 uses the image pro-

cessing technology to analyze the image. Then the computer establishes the mapping relation-

ship between the pixel coordinates of the image and the coordinates of corresponding points in 

space through calibration. It can obtain the fish actual displacement in a short time, so as to 

calculate the fish swimming speed. 

A fish tail swing action is taken as the initial movement and the recognition number is taken 

as the number of swimming tail swing. So the fish tail swing frequency is obtained by combin-

ing the number of fish tail swing and the fish swimming time. 

3. DIMENSIONAL ANALYSIS  

The fish swimming energy expenditure is related to the fish swimming speed (Ohlberger et al. 

2005, 2006), tail swing frequency (Chen et al. 2009), fish length (Marras et al. 2015), flow 

velocity, water depth, turbulent kinetic energy, etc. The fish swimming energy expenditure can 

be expressed by the following functional equation. 

 F (J, U, H, TKE, f, m, v, l) = 0  ,  

where J is the joule, f is the tail swing frequency, U is the flow velocity, H is the water depth, 

TKE is the turbulent kinetic energy, m is the fish weight, v is the fish swimming speed, and l is 

the fish length. Based on the π theorem, using l, v, m, as the fundamental physical quantities, 

the above equation can be expressed in dimensionless form as follows: 

 
2 2

( , , , , )
J U H TKE f l

F
mv v l v v


 

Ohlberger et al. (2006) analyzed the relationship between the fish swimming speed and 

AMR in the channel. The fish weight is 100 g and fish length is 10 cm, so the AMR equation 

is: 

 AMR = U2.53 × 2.33 + 10  . 

Consider the AMR as the fish swimming energy consumed expenditure. 

https://www.webofscience.com/wos/author/record/1422629
https://www.webofscience.com/wos/author/record/1422629
https://www.webofscience.com/wos/author/record/1422629
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All parameters can be obtained through instrumentation and calculation. Use these param-

eters to get x, y, z, w and the fish swimming energy consumption equation is derived. 

4. DISCUSSION 

The fish swimming energy consumption in the channel when high flow occurs in the channel 

is simulated by FLUENT. The route that consumes the least amount of energy for the fish is 

get. Fish swimming energy consumption equation can be used to inform the construction of fish 

passage and fish crossing facilities. 
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A b s t r a c t  

Fluvial remote sensing of river bathymetry is crucial for characterizing the topography of the 

riverbed and monitor changes in habitat at large scales. Hyperspectral data enables bathymet-

ric retrieval through optical models. On the Ain River (France), multiple hyperspectral aerial 

campaigns with different sensors were conducted and processed to create bathymetric maps 

of the river for different flow conditions. In particular, a continuous bathymetric map was 

produced for a 20 km reach of the river with a median error of 20 cm for depths up to 2.5 m. 

Despite the uncertainties of the models tested, the result are more robust spatially and over a 

wider range of depth and flow conditions than optical models based on traditional colour im-

agery.  

Keywords: bathymetry, hyperspectral, remote sensing. 

 

1. INTRODUCTION 

River bathymetry is important for mapping riverbed topography at the mesohabitat scale, and 

to monitor channel morphology changes after restoration actions. One promising tool for bath-

ymetric remote-sensing in river environments is hyperspectral imaging which aims at establish-

ing an empirical optical model based on the Beer-Lambert law by linking water depth with at-

sensor radiance as measured through a high number of narrow spectral wavelengths. Compared 

to optical bathymetric models calibrated with more traditional colour or multispectral imagery, 
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hyperspectral images have been shown to predict depths in deeper waters (up to 6 m), and are 

thought to allow for more robust depth detection (Legleiter and Fosness 2019). However, the 

ability of models to accurately predict bathymetry over long spatial extents (more than 10 km, 

and requiring several images) at different flow conditions and with different channel bottom 

substrates is poorly understood.  

2. MATERIALS AND METHODS 

Hyperspectral remote sensing data was acquired over the Ain River (France) during three cam-

paigns that each used a different sensor, two in 2015 and one in 2021. One of those campaigns 

acquired information for a reach of 20 km while the other two focused on smaller reaches of 

the river (100–300 m). This data was coupled with a 2D bathymetric model built at the scale of 

the studied reach in order to adjust for differing discharge conditions between campaigns (low 

flow conditions at 27 m3/s and mean flow conditions at 127 m3/s), and to provide spatially-

continuous calibration and validation data for the full extent of the imaged reaches. 

The dimensionality of the hyperspectral data was increased by calculating band rations and 

the ln() transform of spectral bands and their ratios. By iterating through every such wavelength 

combination, the strength of the linear relationship between depth and reflectance was assessed 

for the full spectral resolution of each sensor – discharge combination. Bathymetric maps were 

then produced and compared to each other and to the validation dataset in order to investigate 

the spatial distribution of errors along the reach.  

In the case of the data available for the 20 km reach, the model was built by focusing on 

smaller river reaches to be able to assess the portability of site-based models to long river cor-

ridors. 

Fig. 1. Bathymetric map of the Ain River for mean annual flow conditions (127 m3/s). 
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3. RESULTS 

Multiple bathymetric maps were able to be built at the site-level with a high vertical accuracy 

(~15 cm). In addition, the campaign acquired under mean flow conditions (127 m3/s) in 2015 

was also able to predict low flow bathymetry (27 m3/s) with a similar accuracy to the low flow 

campaign from 2015 (27 m3/s).  

When expanding the bathymetric models from the shorter reach to the full extent of the 

20 km campaign (Fig. 1), accuracy was reduced (~20 cm). This reduction in accuracy is related 

to: (i) the presence of pool areas (5% of the study reach, depths > 2.5 m at mean flow) for which 

quality calibration – validation information was not available, (ii) the presence of glint and 

turbulence on the water surface, and (iii) vegetation shadows. In addition, (iv) changes in the 

water column and the riverbed properties led to errors for some wavelengths combinations, but 

not others. Therefore, the best bathymetric model for a given reach may not always be the one 

with the strongest correlation to the calibration data because the range of good bathymetric 

models may be narrower in practice. 
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